
CSC304: Algorithmic Game Theory and
Mechanism Design

Fall 2016

Allan Borodin (instructor)
Tyrone Strangway and Young Wu (TAs)

December 5, 2016

1 / 17

Lecture 23

Announcements

I I am sorry for the confusuion due to Markus being unavailable for a
short period of time. Hopefully everyone was able to submit the
assignment by the extended due date.

I I note again that students are responsible for material discussed in the
lectures and tutorials whether or not that material is available in the
lecture slides or text. In particular, students are responsible for this last
week of material. There is no tutorial this coming Friday. I will use this
Wednesday partially as a tutorial.

I The makeup Wednesday class will take place in SS 1087.

Todays agenda

I Our last topic for mechanism design without money (and for the
course) is fair division, chapter 11 in KP text. In particular, we are
considering cake cutting, the cutting of a divisible object.

I You should read up to section 11.1.1; I would skip section 11.1.1 and
then read section 11.2 for enjoyment, some historical perspective and
some alternative fairness conditions.

2 / 17

Cake cutting and fair division

Consider the problem of cutting (i.e. partitioning) a cake into some
number n disjoint “pieces”, say A1, . . . ,An. We want to do this in a “fair
way”. By definition, we view our cake as being completely divisible. For
our more mathematical/computational purpose, we can think of the cake
as the unit interval [0, 1]

198 11. FAIR DIVISION

The classical method for dividing a cake fairly between two people is to have
one cut and the other choose. This method ensures that each player can get half
the cake according to his preferences, e.g., a player who loves icing most will take
care to divide the icing equally between the two pieces.

Figure 11.2. This figure shows a possible way to cut a cake into 5
pieces. The ith piece is Bi = [

Pi�1
k=1 xk,

Pi
k=1 xk). If the ith piece goes

to player j, then his value for this piece is µj(Bi).

To divide a cake between more than two players, we first model the cake as
the unit interval, and assume that for each i 2 {1, . . . , n}, there is a distribution
function Fi(x) representing player i’s value for the interval [0, x]. (See Figure 11.2
for a possible partition of the cake.) We assume these functions are continuous. Let
µi(A) be the value player i assigns to the set A ⇢ [0, 1], in particular µi([a, b]) =
Fi(b) � Fi(a). We assume that µi is a probability measure.

Definition 11.1.1. A partition A1, . . . , An of the unit interval is called a fair
division1 if µi(Ai) � 1/n. A crucial issue is which sets are allowed in the partition.
For now, we assume that each Ai is an interval.

Remark. The assumption that Fi is continuous is key, since a discontinuity
would represent an atom in the cake, and might preclude fair division.

Moving-knife algorithm for fair division of a cake among n people

• Move a knife continuously over the cake from left to right
until some player yells ”Stop!”

• Give that player the piece of cake to the left of the knife.
• Iterate with the other n�1 players and the remaining cake.

Definition 11.1.2. The safe strategy for a player i is defined inductively as
follows. If n = 1, take the whole cake. Otherwise, in the first round, i should yell
”stop” as soon as a 1/n portion of the cake is reached according to his measure.
If someone else yells first, player i employs the safe strategy in the (n � 1)-person
game on the remaining cake.

Lemma 11.1.3. Any player who plays the safe strategy is guaranteed to get a
piece of cake that is worth at least 1/n of their value for the entire cake.

Proof. Any player i who plays the safe strategy either receives a piece of cake
worth 1/n of their value in the first round, or has value at least (n � 1)/n for the
remaining cake. In the latter case, by induction, i receives at least 1/(n � 1) of
his value for the remaining cake and hence at least 1/n of his value for the whole
cake. ⇤

1 This is also known as proportional.

Figure: Cutting a “cake” into 5 contiguous pieces

So what is a “piece” and what is “fair”? Maybe I only like certain parts of
the cake while others like other parts? A “piece” is a finite collection of
disjoint intervals. Pieces need not be contiguous. 3 / 17

Cake cutting definitions

We will assume that each agent (also called players) i has a valuation
function vi : [0, 1]→ R≥0 that can be thought of as a cummulative
distribution function. Namely,

1 For all X ⊆ [0, 1], vi (X) ≥ 0

2 For all X ,Y ⊆ [0, 1] : X ∩ Y = ∅, vi (X ∪ Y) = vi (X) + vi (Y)

3 For all x ∈ [0, 1], vi (x , x) = 0

4 vi ([0, 1]) = 1

There are two natural definitions of “fair division”:

A division A1, . . . ,An is a proportional division if vi (Ai) ≥ 1/n for all
i . Note: This is called “fair” in the KP text but I prefer to use “fair”
as a more intuitive concept.

A division A1, . . . ,An is an envy-free division if vi (Ai) ≥ vi (Aj) for all
i , j . iThat is, i does not envy j ’s allocation.

4 / 17

Proportional fairness vs envy-free fairness

The main concern is fairness. It turns out that envy-freeness is a more
desireable property.
We need only consider n ≥ 2 agents since n = 1 is trivial.

Every envy-free division is a proportional division

Proof: For any i , there must be some Sj such that vi (Sj) ≥ 1/n. Then
since the division is envy-free, vi (Ai) ≥ vi (Aj) ≥ 1/n.

However, for n ≥ 3, the converse is not necessarily true. Consider the
following valuation profile:
v1([0, 1/3]) = 1/3, v1([1/3, 2/3]) = 2/3, v1([2/3, 1]) = 0; v2, v3 have
uniform valuations.
The division A1 = [0, 1/3),A2 = [1/3, 2/3),A3 = [2/3, 1] is proprtional
since everyone is receiving a 1/3 valuation but agent 1 envies the
allocation to agent 2.

5 / 17

What other properties do we want in a fair cake
cutting algorithm?

The following properties are all desireable but maybe not all are
achieveable.

The allocated pieces are contiguous.

The protocol is truthful.

The protocol is (approximately) socially optimal.

The “complexity” of the cake-cutting algorithm is (approximately)
optimal amongst envy-free or proportional divisions.

We need to define what measures of complexity we might want to
consider. But before we do so, let us consider a natural algorithm for
n = 2 agents. We will then see that the situation for n ≥ 3 agent becomes
more complicated.

6 / 17

The “Cut and Choose” algorithm for n = 2 agents

The following is a protocol (i.e. algorithm) you may have used and can be
found in the Old Testement (see chapter notes):

The cut and choose algorithm

1 Agent 1 cuts the “cake” [0, 1] into two equal parts according to his
valuation; that is, v1(A1) = v1(A2) = 1/2.

2 Agent 2 chooses between A1 and A2.

What properties are satisfied by cut and choose?

Envy-free? Yes. Agent 2 clearly gets the best of A1 and A2 and is
hence envy-free; agent 1 chose the partition so as to have equal value
so he is also envy-free. Division must then be proportional.
Contiguous? Yes agent 1, can choose to “query” which location x
satisfies v1[0, x) = v1(x , 1]
Complexity? One cut which is clearly optimal. What else might we
measure?
Truthful? To be more precise “ex-post IC”?
Socially optimal?

7 / 17

The “Cut and Choose” algorithm for n = 2 agents

The following is a protocol (i.e. algorithm) you may have used and can be
found in the Old Testement (see chapter notes):

The cut and choose algorithm

1 Agent 1 cuts the “cake” [0, 1] into two equal parts according to his
valuation; that is, v1(A1) = v1(A2) = 1/2.

2 Agent 2 chooses between A1 and A2.

What properties are satisfied by cut and choose?

Envy-free?

Yes. Agent 2 clearly gets the best of A1 and A2 and is
hence envy-free; agent 1 chose the partition so as to have equal value
so he is also envy-free. Division must then be proportional.
Contiguous? Yes agent 1, can choose to “query” which location x
satisfies v1[0, x) = v1(x , 1]
Complexity? One cut which is clearly optimal. What else might we
measure?
Truthful? To be more precise “ex-post IC”?
Socially optimal?

7 / 17

The “Cut and Choose” algorithm for n = 2 agents

The following is a protocol (i.e. algorithm) you may have used and can be
found in the Old Testement (see chapter notes):

The cut and choose algorithm

1 Agent 1 cuts the “cake” [0, 1] into two equal parts according to his
valuation; that is, v1(A1) = v1(A2) = 1/2.

2 Agent 2 chooses between A1 and A2.

What properties are satisfied by cut and choose?

Envy-free? Yes. Agent 2 clearly gets the best of A1 and A2 and is
hence envy-free; agent 1 chose the partition so as to have equal value
so he is also envy-free. Division must then be proportional.
Contiguous? Yes agent 1, can choose to “query” which location x
satisfies v1[0, x) = v1(x , 1]
Complexity? One cut which is clearly optimal. What else might we
measure?
Truthful? To be more precise “ex-post IC”?
Socially optimal? 7 / 17

Complexity meausres

Lets look a little closer at the complexity of cut and choose. As we said,
the number of cuts was optimal. More generally, for any number n of
agents, the minimum possible number of cuts is n − 1 and this is
achieveable iff the division is contiguous.

In the cut and choose protocol, besides the number of cuts, there were two
other queries that can be considered as possible meausres of complexity.
Agent 1 asked where to cut so as to obtain a piece of value 1/2 and agent
2 asked for his value of a piece. (Agent 2 only had to ask about one piece
as that determined the value of both A1 and A2.).

Here is the Robertson and Web [1998] complexity model:

1 Agent 1 used a demand query; namely given some value v and some
current piece X (i.e. X is an interval in [0, 1]), the agent i asked
where to cut the piece X so as to obtain a piece Y (i.e. Y is a
subinterval of X) such that vi (Y) = v .

2 Agent 2 used a value query; namely, given a piece X , the agent asked
for his value on this piece.

8 / 17

The moving knife proptocol: A proportional division
for any number of agents

The moving knife protocol (due to Dubins and Spanier [1961]) is the
following conceptually simple algorithm:

Moving knife protocol

Initialize: Let N be the set of n agents; X := [0, 1];
start the knife at the leftmost location 0.

While |N| > 1
Move the knife to the right until some agent i ∈ N yells “STOP”
having observed value vi (Y) = 1/|N| for the piece Y to the left
of the knife
Cut the “cake” and give agent i piece Y ; N := N \ {i}; X := X \ Y

End While The one remaining player gets the remaining piece.

Equivalently, the KP text presents the algorithm recursively.

9 / 17

Properties of the moving knife protocol

The following properties are easy to verify

The allocation is a contiguous division using the minimum n − 1 cuts.

The division is fair. Why?

Note that when the first cut is made, any
one of the remaining n − 1 agents (say agent j) has value for what
remains vj(X \ Y) ≥ 1− 1

n = n−1
n which has to be shared but now

shared with only n − 1 players. Hence (by induction) every agent gets
a share with value at least 1

n .

More precisely, the first n− 1 players to yell STOP get exactly a value
of 1

n and the last player obtains a value at least 1
n .

The division is not necessarily envy-free for n > 2 agents as shown in
figure 11.3 of the KP text (see next slide). What agent is guaranteed
to not be envious?

10 / 17

Properties of the moving knife protocol

The following properties are easy to verify

The allocation is a contiguous division using the minimum n − 1 cuts.

The division is fair. Why? Note that when the first cut is made, any
one of the remaining n − 1 agents (say agent j) has value for what
remains vj(X \ Y) ≥ 1− 1

n = n−1
n which has to be shared but now

shared with only n − 1 players. Hence (by induction) every agent gets
a share with value at least 1

n .

More precisely, the first n− 1 players to yell STOP get exactly a value
of 1

n and the last player obtains a value at least 1
n .

The division is not necessarily envy-free for n > 2 agents as shown in
figure 11.3 of the KP text (see next slide). What agent is guaranteed
to not be envious?

10 / 17

The negative aspects of the moving knife protocol

As we just stated, the division may not be envy-free.
11.1. CAKE CUTTING 199

0
0
0 0

12__ 12__

13__ 23__

1

value to player I

value to player II

value to player III

The Cake:

Figure 11.3. This figure shows an example of how the Moving-knife
algorithm might evolve with 3 players. The knife moves from left to
right. Player I takes the first piece, then II, then III. In the end, player
I is envious of player III.

While this cake-cutting algorithm guarantees a fair division if all participants
play the safe strategy, it is not envy-free. It could be, when all is said and done,
that some player would prefer the piece someone else got. See Figure 11.3 for an
example.

11.1.1. Cake cutting via Sperner’s Lemma. Let µ1, . . . , µn and F1, . . . , Fn

be as above. In this section, we will show that there is a partition of the cake [0, 1]
into n intervals that is envy-free, and hence fair, under the following assumption.

Assumption 11.1.4. Each of the n people prefers any piece of cake to no piece,
i.e. µi(A) > 0 for all i and any interval A 6= ;.

We start by presenting an algorithm that constructs an ✏-envy-free partition.

Definition 11.1.5. A partition A1, . . . , An is ✏-envy-free if for all i, j we have
µi(Aj) µi(Ai) + ✏.

This means that player i, who was assigned interval Ai, does not prefer any
other piece by more than ✏.

11.1.1.1. The construction. Let ei be the i-th standard vector. Each point
(x1, . . . , xn) in the simplex �(e1, e2, . . . , en) describes a partition of the cake (see
Figure 11.2) where Ai is the piece of cake allocated to player i. By Lemma 5.4.5
and Corollary 5.4.7, for any simplex � and ⌘ > 0, there is a subdivision � for which
all simplices in � have diameter less than ⌘, and for which there is a proper-coloring
(that is, any two vertices in the same simplex �1 2 � are assigned di↵erent colors.)

Apply this subdivision and coloring to �(e1, . . . , en). Then there is a proper
coloring with colors {c1, . . . , cn} of the vertices of �. If the vertex v has color ci,
we will say that player i owns that vertex. See Figure 11.4.

Next, construct a Sperner labeling `(·) of the vertices in the subdivision as fol-

lows: Given x = (x1, . . . , xn) a vertex in �, define Bi = Bi(x) = [
Pi�1

k=1 xk,
Pi

k=1 xk].
(Again, see Figure 11.2.) If x is owned by player j, then `(x) = k if µj(Bk) is maxi-
mal among µj(B1), . . . , µj(Bn). In other words, `(x) = k if Bk is player j’s favorite
piece among the pieces defined by x. The fact that `(·) is a valid Sperner labeling
follows from Assumption 11.1.4. See Figure 11.5.

Finally, we apply Sperner’s lemma, from which we conclude that there is a fully
labelled simplex in �.

Figure: an envious division

In addition to not being envy-free, the moving knife requires an active
referee who is slowly moving the knife. In other words this is not a discrete
algorithm with a finite number of queries of the two types we have
described. Each agent would need to be continuously asking for the value
of the piece to the left of the knife. Evan and Paz [1984] adapted the
moving knife so that it is a discrete algorithm in the Robertson and Web
model using O(n log n) queries. 11 / 17

The continuing story for cake cutting for the n > 2
agents

All of the following non-trivial cake cutting protocols result in
non-contiguous but discrete computation divisions. (Note: for n > 2, it is
not possible in genetal to have an envy-free continuous divisions.)

For n = 3, Steinhaus [1943] gave a protocol that ylelds a proportional
division using at most 3 cuts. This protocol is not envy-free.

For n = 3, Selfridge and Conway [1960] gave a envy-free protocol
with at most 5 cuts.

For n = 4, Brams and Taylor [1995] gave an envy-free protocol with
an unbounded number of cuts. That is, for any instance the
algorithm uses some finite number of cuts and queries but that
number depends on the instance; that is, for all c, there is an instance
requiring at least c cuts.

Using Spereer/s lemma (section 11.1.1 in KP), Su [1999] gave a non
constructive proof that there exist envy-free divisions for all n.

12 / 17

The latest developments in this continuing story of
cake cutting

After 20 more year, Aziz ans MacKenzie [2016, spring] gave an
envy-free protocol for n = 4 agents with a bounded number of cuts.

In the latest development, the same Aziz and McKenzie [2016, fall]
gave an envy-free protocol for all n using a bounded number of cuts
and queries. However, so far the bound on the number of cuts is
astronomically infeasible even for n = 2.

Namely, the current bound is :

nn
nn

n

.

13 / 17

The latest developments in this continuing story of
cake cutting

After 20 more year, Aziz ans MacKenzie [2016, spring] gave an
envy-free protocol for n = 4 agents with a bounded number of cuts.

In the latest development, the same Aziz and McKenzie [2016, fall]
gave an envy-free protocol for all n using a bounded number of cuts
and queries. However, so far the bound on the number of cuts is
astronomically infeasible even for n = 2.

Namely, the current bound is :

nn
nn

n

.

13 / 17

Some impossibility results

Edmonds and Pruhs [2006]: Any proportional cake cutting algorithm
require Ω(n log n) queries in the Robertson and Web modeli matching
(asymptotically) the Evan and Paz discrete version of the moving
knife.

Stromquist [2008]: For n ≥ 3, no envy free algorithm can produce a
contiguous allocation.

Proccacia [2009]: Any envy free algorithm requires Ω(n2) queries in
the Robertson and Web model.

Caragiannis et al [2009]: The price of proportionality is Θ(
√
n) and

the price of envy-freeness is at least Ω(
√
n) and at worst O(n). These

concepts are in analogy with the price of anarchy and measure how
much fairness costs relative to an optimal allocation in terms of social
welfare.

See Proccacia [2016] for a recent survey of such complexity results.

14 / 17

The Selfridge and Conway envy-free protocol for
n = 3

For a sense of how involved cake cutting procedures can be (even when
the number of cuts is small), here is the Selfridge and Conway protocol
(using CMU lecture notes by Ariel Proccacia).

Stage 0
I 0.1 Agent 1 cuts the cake into three equal parts according to v1
I 0.2 Agent 2 “trims” his most valuable piece (according to v2) of these

three pieces so that the trimmed piece Z has the same value as the
second most valuable piece M. Lets say that Y is what has been
trimmed off and X is the what remains of the entire cake after Y is
removed. Note: Z and M are each one of the three pieces in X .

Stage 1: Dividing X
I 1.1 Agent 3 chooses a piece of X
I 1.2 If agent 3 chooses the trimmed piece Z then agent 2 chooses M.

Otherwise, if agent 3 chooses L one of the other two pieces in X , then
agent 2 chooses Z .

I 1.3 Agent 1 chooses the remaining piece of X

15 / 17

The last part of the n = 3 protocol; dividing the
trimmed off part Y

Lets say that agent i ∈ {2, 3} chose Z and agent j ∈ {2, 3} chose L

Stage 2: Dividing the trimmed off piece Y
I 2.1 Agent j divides Y into 3 equal pieces according to vj .
I 2.2 These three pieces of Y are allocated in the following order: Agent

i chooses first, then agent 1, and then agent j .

It is easy to see that the protocol uses 5 cuts if Y 6= ∅ and 2 cuts if
Y = ∅.

Proving envy-freeness is done by proving that each agent is envy free with
respect to their piece in X and with respect to their piece in Y .

16 / 17

Completing the argument for envy-freeness

For the envy-freeness of the division of X , agent 3 chooses first so she is
envy-free. Agent 2 gets one of his best two equal valued pieces and agent
1 gets a piece other than Z which has the same value to her.

For the envy-freeness of the division of Y , agent i chooses first so he is
envy-free. Agent 1 chooses before agent j so she is not envious of him.
Agent 1 is also not envious of agent i because i ’s share of both X and Y
is at most 1/3 with respect to v1. Finally, agent j is not envious about his
share of Y since he divided Y into three equally valued pieces.

17 / 17

	Lecture 23

