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Lecture 2

Announcements

While we have a choice of rooms with full teaching stations for
Wednesdays and Fridays, unfortunately there are some negatives.
Hence we will stay in the rooms assigned to us. Namely, SS 1087 on
Mondays, and SS 1086 on Wednesdays and Fridays.

Why I do not like to make my lecture slides available before the class.

I believe that it is good to take notes as it reinforces learning. But I
will announce in advance the text material we are planning to cover
for the next few lectures. And yes I would advise looking at the
suggested readings in advnace of lectures if possible. But do not
worry if you do not understand everything on a first read. These are
new concepts and will take time to be understood.

Talk of possible interetst: This coming Tuesday, September 20,
there will be a seminar “Preferences and Manipulative Actions in
Elections” by Gabor Erdelyi. The talk will be held in Pratt 266.
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Agenda for today and next few lectures

We ended the first class asking “What kind of games are we considering?”

We begin the technical discussion (this lecture and probably the next)
with material from Chapter 4. More specifically we will first discuss
two person (general-sum) games (in matrix or normal form). We do
this while introducing some of the fundamental concepts in game
theory that apply more generally. In particular, we will introduce pure
and mixed Nash equilibrium.

We will return to games with more than two players after discussing
material from Chapter 2 (and one section in Chapter 3). I suggest
first reading Chapter 4 up to and including Section 4.3. After our
discussion of material in Chapters 2 and 3, we will finish the
remaining sections in Chapter 4.

Chapter 2 considers an important class of games, namely two person
zero-sum games. For Chapter 2, read the chapter with the exception
of Section 2.6. For Chapter 3, read the Section 3.2.
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Many types of games

Perhaps the most common perception of games are two person games
such as chess, tic-tac-toe, etc and now more in vogue video games.
These can be thought of as games played in alternating (or random)
rounds and usually the utility to a player (i.e. an agent) is just some
value associated with winning. Such games are examples of what are
called games in extensive form and that is the subject of Chapter 6.
We will start the course by looking briefly at finite games played
simultaneously by two or more (finitely many) agents, each agent
having some finite number of strategies and a real valued utility for
the various possible outcomes of the game. This topic is called
general-sum games in normal form. They are also called games in
matrix form or standard form.
Normal form games can be studied as “one-shot” games or as
repeated games.
The utilities represent agents/players who can be cooperative (to
some extent) or competitive. In all cases, the goal of a player is to
optimize their utility.
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The Stag-Hunt game: An example of a two person
game played simultaneously

Although games can involve many players, often examples are given for
two player games because they are easier to illustrate. Furthermore, to
simplify things even more we will see many examples where each player
has only two strategies.

The Stag-Hunt narrative: example 4.1.2 in KP text)

Two hunters are stalking a stag and a hare and have to act immediately
(and can’t discuss what to do) or both the stag and hare will escape. The
stag provides 8 days of food for a hunter and a hare only 2 days. But to
catch the stag, both hunters are needed and they will then have to share
the value of the stag. On the other hand each hunter can catch the hare
on their own or share it if they both decide to go for the hare.

How to state this game precisely?
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Matrix (also called normal or standard) form games

In order to precisely formulate such a two person game, we use a matrix.
The rows of the matrix correspond to the strategies of the first agent (i.e.
Hunter I) and the columns correspond to the strategies of Hunter II. (For
two person games with more strategies per agent, we would use an m × n
matrix.) The matrix entries specify the payoffs to the players; the first
(resp. second) component being the payoff for Hunter I (resp/ Hunter II).

68 4. GENERAL-SUM GAMES

prisoner II
silent confess

p
ri

so
n
er

I

silent (�1,�1) (�10, 0)
confess (0,�10) (�8,�8)

In this game, the prisoners are better o↵ if both of them remain silent than they are
if both of them confess. However, the two prisoners select their actions separately,
and for each possible action of one prisoner, the other is better o↵ confessing, i.e.,
confessing is a dominant strategy.

The same phenomenon occurs even if the players were to play this same game
a fixed number of times. This can be shown by a backwards induction argument.
However, as we shall see in §6.4, if the game is played repeatedly, but payo↵s are
averaged, or play ends at a random time, the mutually preferable solution may arise
even with selfish play.

Example 4.1.2 (Stag Hunt). Two hunters are following a stag when a hare
runs by. Each hunter has to make a split second decision: to chase the hare or to
continue tracking the stag. The hunters must cooperate to catch the stag, but each
hunter can catch the hare on his own. (If they both go for the hare, they share it.)
A stag is worth four times as much as a hare. This leads to the following payo↵
matrix:

Hunter II
stag (S) hare (H)

H
u
n
te

r
I stag (S) (4, 4) (0, 2)

hare (H) (2, 0) (1, 1)

Figure 4.2. Stag Hunt

Figure: The stag-hunt payoff matrix; Figure 4.2 in KP text
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Some concepts and observations about this game

The following concepts are all relevant for any number of players and
strategies. But the observations are for this particular game.

This is a symmetric game ; that is, the game is unchanged by any
relabelling of the agents.

The Hare ‘H’ strategy is a safe strategy for each player in that playing
H will guarantee the best (i.e. maximum) minimum payoff when
minimizing over all possible strategy profiles for the other player(s).

In this game, neither player has a dominant strategy. A (weakly)
dominant strategy D for a player P is one in which P will achieve the
maximize payoff possible for any given strategy profile of the other
players. (Usually one assumes that D is better for P for at least one
strategy profile of the other players. If two strategies have the same
value for all strategy profiles of the other players, then we do not have
to distinguish these two strategies.) A strictly dominant strategy is
one that yields a better value for all strategy profiles of the other
players.
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More observations about this game

A dominant strategy is a safe strategy but not necessarily conversely.
Note that H is not a dominant strategy.

Given the strategy pair (H,S), the best response of player I is to
change to strategy S. Similarly, given the strategy pair (S,H), the best
response of of player II is also to change to strategy S.

The strategy pair (S,S) is an optimal strategy profile; that is, this pair
of strategies maximizes the social welfare defined as the sum of the
player payoffs.

The strategy pairs (H,H) and (S,S) are pure Nash equilibria (NE).
That is, assuming the other player(s) do not change their strategies,
each player cannot benefit (and here will lose) by changing its
strategy. Equivalently, in a NE, a best response of each player is not
to change strategies. (There can be more than one best response.)
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How general are the previous observations about the
stag-hunt game?

It should be clear that not every game is symmetric. (See example
4.1.4 in the KP text.)

Given any strategy profile (i.e. pair of strategies in a 2-person game),
each player always has at least one best response.

In some games, there are dominant strategies for some or all players.
More generally, (i.e. for possibly more than two strategies per player),
a given strategty si might dominate a strategy sj in which case, we
can eliminate strategy sj and simplify the game.

Not all games have pure Nash equilibria.
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A game without any pure Nash equlibria

4.1. SOME EXAMPLES 77

What are good strategies for the hunters? We begin by considering safety
strategies.1 For each player, H is the unique safety strategy and yields a payo↵ of
1. The strategy pair (H, H) is also a pure Nash equilibrium, since given the choice
by the other hunter to pursue a hare, a hunter has no incentive to continue tracking
the stag. There is another pure Nash equilibrium, (S, S), which yields both players
a payo↵ of 4. Finally, there is a mixed Nash equilibrium, in which each player
selects S with probability 1/3. This results in an expected payo↵ of 4/3 to each
player.

This example illustrates a phenomenon that doesn’t arise in zero-sum games:
a multiplicity of equilibria with di↵erent expected payo↵s to the players.

Example 4.1.3 (War and Peace). Two countries in conflict have to decide
between diplomacy and military action. One possible payo↵ matrix is:

Firm II
diplomacy attack

F
ir

m
I diplomacy (2, 2) (-2, 0)

attack (0, -2) (-1, -1)

Like Stag Hunt, this game has two pure Nash equilibria, where one arises from
safety strategies, and the other yields higher payo↵s. In fact, this payo↵ matrix is
the Stag Hunt matrix, with all payo↵s reduced by 2.

Example 4.1.4 (Driver and Parking Inspector). Player I is choosing be-
tween parking in a convenient but illegal parking spot (payo↵ 10 if she’s not caught),
and parking in a legal but inconvenient spot (payo↵ 0). If she parks illegally and is
caught, she will pay a hefty fine (payo↵ -90). Player II, the inspector representing
the city, needs to decide whether to check for illegal parking. There is a small cost
(payo↵ -1) to inspecting. However, there is a greater cost to the city if player I
has parked illegally since that can disrupt tra�c (payo↵ -10). This cost is partially
mitigated if the inspector catches the o↵ender (payo↵ -6).

The resulting payo↵ matrix is the following:

Inspector
Don’t Inspect Inspect

D
ri

ve
r Legal (0, 0) (0, -1)

Illegal (10, -10) (-90, -6)

In this game, the safety strategy for the driver is to park legally (guaranteeing
her a payo↵ of 0), and the safety strategy for the inspector is to inspect (guarantee-
ing him/the city a payo↵ of -6). However, the strategy pair (legal, inspect) is not
a Nash equilibrium. Indeed, knowing the driver is parking legally, the inspector’s
best response is not to inspect. It is easy to check that this game has no Nash
equilibrium in which either player uses a pure strategy.

There is, however, a mixed Nash equilibrium. Suppose the strategy pair (x, 1�
x) for the driver and (y, 1�y) for the inspector are a Nash equilibrium. If 0 < y < 1,
then both possible actions of the inspector must yield him the same payo↵. If, for

1 A safety strategy for player I is defined as in Definition 2.2.1. For player II the same

definition applies with the payo↵ matrix B replacing A.

Figure: Driver and parking inspector game; Example 4.1.4 in KP

However, the seminal result of Nash is that : Every finite general-sum
game has a (possibly mixed) Nash equilibrium; that is, independently
players probabilistically choose strategies so that their expected payoff is
maximized assuming all other players are playing their (possibly mixed)
equilibrium mixed strategy.

Some games have both pure and mixed Nash equilibria.
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The mixed strategy for the stag-hunt game

For the stag-hunt game each player will play strategy S with probablility 1
3

and strategy H with probability 2
3 resulting in each player obtaining

expected payoff 1
9 · 4 + 2

9 · 2 + 2
9 · 0 + 4

9 · 1 = 4/3.

How do we verify or find such a mixed NE?
It is easy (i.e. polynomial time) to verify that a strategy profile is a pure or
mixed NE; namely, just see if a best response for each player is to not
change their strategy. More specifically, whenever the other player(s) have
set their (pure or mixed) strategies, a best response is always a pure
strategy. Hence it suffices to compute the (expected) payoff for each
player P and verify that it is at least as good as each pure strategy for P.

However, we now “have evidence” from a sequence of results in
complexity theory (see references in the notes of Chapter 4) that even for
two player games (with each player having many strategies) that (in the
worst case) it is computationally difficult (e.g. possibly exponential
time) to find a mixed NE.
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Efficiently finding a mixed NE for a “2 by 2” two
person game

For a “2 by 2” two person game (such as the stag-hunt game) where each
player has only two strategies, using the principle of indifference it is
relatively easy to understand how to verify or find a mixed NE as follows:
Suppose, in a mixed NE, player 1 (resp. player 2) uses the mixed strategy
defined by the probability vector x = (x1, x2) (resp. defined by the
probability vector y = (y1, y2).

Given that we have a NE, when player I is playing mixed strategy x, it
must be that the expected payoff for player II must be the same for each
of its pure strategies or else the best response for player II would be to
purely play the better strategy against player 1’s mixed strategy. Similarly,
for player I, playing against player II’s mixed strategy.
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The mixed strategy for the stag-hare game

Since this is a symmetric game, we need only consider one player, say
player 1. So again assume player 1 is playing the mixed strategy x.

For the stag-hunt game, we have

1 The expected payoff for player II is x1 · 4 + x2 · 0) if player II plays
strategy S.

2 The expected payoff for player II is x1 · 2 + x2 · 1) if player II plays
strategy H.

3 Setting these two expectations to be equal, we have :

4x1 = 2x1 + x2

which along with x1 + x2 = 1 implies that x1 = 1
3 and x2 = 2

3 .
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The principle of indifference

For two person games, we can state the principle of indifference as follows:

Principle of indifference

In any m by n game two person game, suppose there is a mixed NE where
the row player (resp. column) player is using mixture x (resp. y). If
I = {xi > 0} and J = {yj > 0} then for all i ∈ I , Ex (i.e. the column
players expected payoffs wrt x) for the pure strategies in J must be equal.
Similarly the expected payoffs (wrt y) for the pure strategies in I must be
equal.

Consider how you can use the principle of indifference to find all possible
Nash equilibiria for a two person game when each player only has a
“small” number of strategies.

Note: There can be a continuum (i.e. a subspace) of mixed NE. Note:
The principle of indifference provides necessary conditions for a mixed NE
but one still have to verify that each candidate is an NE.
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