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Lecture 17

Announcements

I I have posted the first 3 questions for the last assignment. I have
added a fourth part to question 3.

I The tests have been graded; average around 70%.
I Usual policy as to requests for regrading.
I There is a memorial service for Professor Kelly Gotlieb which I am

attending tomorrow so that I cannot hold the usual office hours. I
remind eveyone that I am available at other times on request or by
dropping by (if I am free).

Todays agenda
I Finish discussion of (one-sided) matching markets.
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Review of our matching markets discussion from
lecture 16

Last lecture we defined the matching markets problem for one-sided
markets with unit demand buyers and passive sellers/items.

A key concept was that of the demand set (of items) for a buyer and the
demand graph D(p).

The demand set and demand graph

Given a vector of prices p, the demand set of items for agent i is
{j : vi ,j − pj ≥ vi ,k − pk for all k}. The demand graph D(p) is the
unweighted bipartite graph where there is an edge between buyer i and
item j if and only if j is in the demand set of i .
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Recalling basic graph definitions

We recall that in a graph G = (V ,E ), a matching is a set of edges E ′ ⊆ E
such that no vertex appears in more than one edge in E ′. For a bipartite
graph with V = X ∪Y and E ⊆ X ×Y , a matching E ′ satisifes that every
vertex in X and Y has degree at most 1 in G ′ = (V ,E ′).

A perfect matching in a bipartite such that every vertex is in the matching
and this of course requires |X | = |Y |. A perfect matching is of course a
maximum matching but not necessarily conversely.

We will show how to efficiently find a maximum matching in a unweighted
bipartite graph and we will then be able to know if that matching is
perfect or not.

Moreover, if the maximum matching is not perfect, the algorithm will
exhibit a constricted set that is preventing a perfect matching. (In our
application of matching markets, we will have found a constricted set of
buyers which will determine a corresponding set of items whose prices need
to be raised.
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Constricted sets

Let G = (V ,E ) be a n × n bipartite graph. Let V = X ∪ Y and for any
subset S ⊆ X , let N(S) = {y ∈ Y : (x , y) ∈ E for some x ∈ Y }. That is,
N(S) ⊆ Y is the neighbourhood of S .

Constricted sets

S ⊆ X is a constricted set if |N(S)| < |S |

Constricted&Sets
!This,graph,has,no,perfect,matching
!Why?

• X,4Y,4Z4only,collectively,satisfied,with,P1,4P2:,
not,enough,projects,for,the,three,of,them

! If,S is,a,subset,of,agents,,let,neighbor4set N(S)4
be,the,set,of,all,items,they,are,connected,to

!Constricted4set:4any,set,S whose,neighbor,set,
N(S)4is,smaller,than,S itself

! If,G has,a,constricted,set,,then,obviously,there,
is,no,perfect,matching

!Matching&Theorem:&If,G has,no,perfect,
matching,,then,it,must,have,a,constricted,set

!We’ll,look,briefly,at,an,algorithm,for,constructing,matchings next,time
• if,it,does,not,find,a,perfect,matching,,it,will,identify,a,constricted,set
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Figure: Example of a constricted set
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An ascending auction algorithm for a matching
market

We will do things a little different than the KP text. One simplification is
that we are assuming integral valuations, so when we need to raise prices
we just increases prices by 1. Our auction can raise more than one price in
an iteration. But mainly the auctions follow the same idea and are based
on the same basic result:

Hall’s Marriage (aka Matching) Theorem

An n ×m (with say m ≤ n) bipartite graph G = (V ,E ) with V = X × Y
has a matching of size m if and only if for all X ′ ⊆ X , |N(X ′)| ≥ |X ′|

Hall’s Theorem is stated and proved in Theorem 3.2.2 of the KP text. We
will also sketch an constructive proof (i.e. an algorithm that either finds a
maximum matching or finds a constricted set). An immediate consequence
is that an n × n bipartite graph has a perfect matching if and only if there
are no constricted sets.
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An ascending auction template for a matching
market continued

We let {vi ,j} be the value of buyer i for item j . We let X be the set of
items and Y the set of buyers.

An ascending auction for a matching market

Set the price vector p = (0, 0, . . . , 0).
Let D(p) be the demand graph.
Repeat until D has a perfect matching
Find a constricted set S ⊆ X and raise the prices of all items in N(S) by
one unit. % There can be many constricted sets. For analysis, uniformly
reduce prices so that the minimum price is 0.
Create a new demand graph for the updated prices
End Repeat

Theorem: The ascending auction terminates. A perfect matching in D(p)
is an envy-free allocation since every buyer is getting an item in their
demand set.
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Social welfare and termination in the ascending
auction

We will show termination by what is called a potential argument. And in
doing so, will show that the algorithm results in an allocation that is
socially optimal.

Given the current prices (p1, . . . , pn) and the valuation profile of the
buyers, define

The potential of a buyer i is the utility vi ,j − pj for any item j in
buyer is demand set.

The potential of an item/seller j is its price pj .

The potential Pt of the auction (at any iteration t in the algorithm) is
the total sum of all buyer and seller potentials.

Note that initially, the potential P0 equals
∑

i maxj(vi ,j).

Claim: After each iteration the potential decreases by at least 1. Why?

Conclusion: The auction must terminate and a perfect matching in the
resulting demand graph provides a socially optimal allocation. Why?
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An example of the ascending auction

Illustration
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Figure: Example of the ascending auction

9 / 21



One not so subtle problem with the ascending
auction

As stated, a buyer could be assigned to an item and receive negative
utility. And we are assuming individual rationality since there is usually no
reason a buyer will willingly accept an allocation resulting in negative
utility. (Here we want ex-post IR since we are not in the Bayesian setting.)

However, there is an easy way around this problem. Note that the demand
graph D(p) does not change if we uniformly raise or lower the price of
each item by the same amount.

As stated in Easley and Kleinberg, at the end of each iteration we can
reduce prices so that the lowest price is 0. Alternatively, at the end of the
ascending auction we can eliminate any “sale” that resulted in negative
utility. (By convention, we have been allowing sales having 0 utility.)
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How to find a maximum matching or a constricted
set

The Marriage theorem (also called the Matching Theorem) tells is that in
a n × n bipartite graph, either there is a perfect matching or there is a
constricted set. We will now sketch an algorithm that will find a perfect
matching or find a constricted set; in doing so we are constructively
proving the Hall Marriage Theorem.

I am going to follow the proof in the Easley and Kleinberg text “Networks,
Crowds, and Markets”. Their text can also be found online. Note that
they refer to the demand graph as the prefered seller graph (PSG) but I
think demand graph is more accepted.

The main concept in this proof is that of an an augmenting path.
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Augmenting paths

Let M be a matching in a bipartite graph G = (V ,E ) that is not of
maximum size. Let V = X × Y . Think of the Y nodes as representing
buyers.

Augmenting Paths

An augmenting path is a simple path in G that starts at an unmatched
node in Y and ends at a node in X . The path alternates between edges
not in the matching and edges in the matchingr; i.e. the path starts with
an edge not in the matching, then an edge in the matching, and then an
edge not in the matching, . . ., and ending in an edge not in the matching.

When do we have or not have an augmenting path?

Theorem: A matching is maximum if and only if there is no augmenting
path.

If there is an augmenting path, then that path must contain exactly one
more edge not in the matching than the number of edges in the matching.
So we replace all the matched edges by unmatched edges increasing the
size of the matching.
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Augmenting path example from Chapter 10 of
Easley-Kleinberg

10.6. ADVANCED MATERIAL: A PROOF OF THE MATCHING THEOREM 295
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Figure 10.9: The principle used in Figure 10.8 can be applied to larger bipartite graphs as
well, sometimes producing long augmenting paths.

following the only edge available at each step. But in more complicated bipartite graphs,

there can be lots of dead-ends in the search for an augmenting path. Consider, for example,

the graph with a matching in Figure 10.10(a). There is in fact an augmenting path that

succeeds in including W and D in the matching, but even on this relatively small example

one needs to check a bit carefully to find it. Moreover, there are other alternating paths

starting from W — such as W -A-X and W -B-Y -C-Z — that don’t make it to the other

unmatched node D, as well as paths from W to D — such as W -B-Z-C-Y -D — that are

not alternating.

Searching for an Augmenting Path. Fortunately, however, there is a natural procedure

we can use to search for an augmenting path in a bipartite graph with a matching. It works

by simply adapting the breadth-first search (BFS) procedure to include the requirement of

alternation — as a result, we will refer to this new procedure as alternating BFS.

Here is how it works. We start at any unmatched node on the right. Then, as in

traditional BFS, we explore the rest of the graph layer by layer, adding new nodes to the

next layer when they are connected by an edge to a node in the current layer. Because

the graph is bipartite, these layers will alternate between consisting of nodes on the left

Figure: A simple example of an augmenting path leading to improved matching
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Second augmenting path example from Chapter 10
of Easley-Kleinberg

296 CHAPTER 10. MATCHING MARKETS
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Figure 10.10: In more complex graphs, finding an augmenting path can require a more
careful search, in which choices lead to “dead ends” while others connect two unmatched
nodes.

and nodes on the right. Now, here is the di�erence from traditional BFS: because we are

searching specifically for an augmenting path, we want the paths that move downward layer-

by-layer to all be alternating. Thus, when we build a new layer of nodes from the left-hand

side, we should only use non-matching edges to discover new nodes; and when we build a

new layer of nodes from the right-hand side, we should only use matching edges to discover

new nodes.

Figure 10.11 shows how this works on the example from Figure 10.10(a). Starting at W

(which we’ll think of as layer 0), we build the first layer by following non-matching edges to

A and B. We then build the second layer by only following matching edges, which leads us

to nodes X and Y . Following non-matching edges from this layer to new nodes not already

discovered, we get a third layer consisting of C and D; and finally, taking the matching edge

from C brings us to Z in the fourth layer. Notice that in this process, we never used the

edge B-Z: we couldn’t use it out of B in the first layer, because we were only allowed to

follow matching edges at that point; and we couldn’t use it out of Z in the fourth layer,

because by then B had already been discovered.

Now, the crucial thing to observe is that if this alternating BFS procedure ever produces

Figure: A somewhat more complicated example. Note than starting with the
edge (W ,A) does not yield an augmenting path whereas starting with edge
(W ,B) does lead to an augmenting path.
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Finding a constricted set

Clearly, if there is an augmenting path, the matching is not a maximum
matching. But what if we do not find an augmenting path?10.6. ADVANCED MATERIAL: A PROOF OF THE MATCHING THEOREM 299
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(c) The resulting constricted set

Figure 10.13: (a) A matching that has maximum size, but is not perfect. (b) For such a
matching, the search for an augment path using alternating breadth-first search will fail. (c)
The failure of this search exposes a constricted set: the set of nodes belonging to the even
layers.

2. Moreover, each odd layer contains exactly the same number of nodes as the subsequent

even layer. This is because we never reach an unmatched node in an odd layer: so in

every odd layer, the nodes are all connected by their matching edges to distinct nodes

in the next layer, as illustrated in Figure 10.12.

3. So not counting node W in layer 0, there are exactly the same number of nodes in even

layers (numbered 2 and higher) as there are in odd layers. Counting the one extra

node in layer 0, there are strictly more nodes in even layers overall than there are in

odd layers.

4. Finally, every node in an even layer has all of its neighbors in the graph present in some

layer. This is because each even-layer node other than W has its matched partner just

above it in the previous layer; and if any of its other neighbors were not already present

in a higher layer, they would be added to the next layer down, when we’re allowed to

explore using non-matching edges.

(Notice that it’s not necessarily true that every node in an odd layer has all of its

Figure: An example when there is no augmenting path thus yielding a constricted
set
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Using an “alternating breadth first search” to find
an augmenting path or a constricted set

The last figure shows how a breadth first search (never repeating nodes
already found) using alternating edges from a node W (not in the match)
and ending with edges in the matching. This yielded a constricted set;
namely the nodes at all the even levels (in this case, just the root W and
the leaves A and B).

When we go from an odd numbered level (say level 2i − 1) for i ≥ 1 to an
even numbered level (2i), we have the same number of nodes at these two
levels since we have matching between these two levels.

On the other hand if a node at an odd level cannot be continued (via an
edge in the matching) then we have found an augmenting path.
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Using an alternating breadth first search to find an
augmenting path or a constricted set continued

Summarizing, from each unmatched node W in Y (e.g. the nodes
representing buyers), we can run an “alternating breadth first search”
starting at W . (If all nodes are matched, then there is nothing more to
do.)

Clearly this breadth first search must terminate. If an augmenting path is
not found then all the leaves are Y nodes. The constricted set consists of
all nodes at even levels (including the root node W at level 0). (In our
application, these are all nodes representing buyers.)

The next figure presents a generic example of how a constricted set is
found by an alternating breadth first search when the search failed to find
an augmenting path.

Aside: For those familiar with the Ford Fulkerson method for the max
flow problem, the maximum size bipartite problem reduces to max flow
and augmenting paths correspond to paths in the residual graph.
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A generic alternating breadth first search that failed
to find an augmenting path

298 CHAPTER 10. MATCHING MARKETS

W

Layer 1

Layer 2

Layer 3

Layer 4
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}

}

equal numbers 
of nodes

equal numbers 
of nodes

Figure 10.12: A schematic view of alternating breadth-first search, which produces pairs of
layers of equal size.

alternating BFS fails to find an augmenting path, we can in fact extract from this failed

search a constricted set that proves there is no perfect matching.

Here is how. Consider any bipartite graph, and suppose we are currently looking at a

matching in it that is not perfect. Suppose further that we perform an alternating BFS

from an unmatched node W on the right-hand side, and we fail to reach any unmatched

node on the left-hand side. The resulting set of layers at the end of the search will look

schematically like what’s depicted in Figure 10.12. More concretely, Figure 10.13(a) shows

a specific example of a graph with no perfect matching, and Figure 10.13(b) shows a set of

layers from a failed alternating BFS on this example.

Let’s make some observations about the structure after a failed search.

1. First, the even-numbered layers consist of nodes from the right-hand side, while the

odd-numbered layers consist of nodes from the left-hand side.

Figure: A generic example when there is no augmenting path thus yielding a
constricted set
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Returning to our matching markets application

We recall that in our application, we kept raising prices (for items
corresponding to a constructed set of agents until we know that a perfect
matching exists (and has been found by iteratively finding augmenting
paths in the demand graph until no such augmenting path exists and a
perfect matching has thus been found.

There need not be a unique perfect matching although any perfect
matching gives buyers an item in their demand set.

The prices that are derived are market clearing in that every item is sold
(albeit perhaps at price 0) to a unique buyer . How much can we
uniformly raise prices and still maintain the same demand graph.?

Sellers can also set reserve prices (r1, . . . , rn) for their items. This reduces
to the case of no reserve prices by changing the valuations to
wi ,j = max(vi ,j − rj , 0) and treating a negative utility vi ,j < rj for a match
between agent i and item j as not letting that transaction take place.
Alternatively, we can start with initial prices equal to reserve prices and
again removing sales having negative utility for the buyer.
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Some concluding comments about such market
clearing prices

The matching provides a permutation π between buyers and items such
that buyer i is matched with item j = π(i) with j in buyer i ’s demand set.
Hence the allocation is envy free.

The resulting allocation is socially optimal. This follows as the allocation
is maximizing

∑
i [v(i , π(i))− rπ(i)] which is equivalent to maximizing∑

i v(i , π(i))

If one chooses the minimum envy free price vector, the allocation is still
optimal (with respect to social welfare), and the resulting prices are VCG
prices.

As stated in Lemmas 17.2.4, 17.2.5, and Theorem 17.2.6, the set of envy
free price vectors forms a lattice in which the minimum envy free prices are
the prices charged by the VCG mechanism.
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Concluding remarks contnued

The observation about VCG being optimal for the sponsored search
problem is actually a special case of the fact that VCG is optimal for the
matching markets problem.

But note that there are instances of CAs where VCG is not envy free.
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