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Lecture 17

@ Announcements

> | have posted the first 3 questions for the last assignment. | have
added a fourth part to question 3.

» The tests have been graded; average around 70%.

» Usual policy as to requests for regrading.

» There is a memorial service for Professor Kelly Gotlieb which | am
attending tomorrow so that | cannot hold the usual office hours. |
remind eveyone that | am available at other times on request or by
dropping by (if | am free).

@ Todays agenda
» Finish discussion of (one-sided) matching markets.

)
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Review of our matching markets discussion from
lecture 16

Last lecture we defined the matching markets problem for one-sided
markets with unit demand buyers and passive sellers/items.

A key concept was that of the demand set (of items) for a buyer and the
demand graph D(p).

The demand set and demand graph

Given a vector of prices p, the demand set of items for agent i is

{j i vij— pj > Vvik — pk for all k}. The demand graph D(p) is the
unweighted bipartite graph where there is an edge between buyer i and
item j if and only if j is in the demand set of /.




Recalling basic graph definitions

We recall that in a graph G = (V/, E), a matching is a set of edges E' C E
such that no vertex appears in more than one edge in E’. For a bipartite
graph with V = XU Y and E C X x Y, a matching E’ satisifes that every
vertex in X and Y has degree at most 1 in G’ = (V, E').

A perfect matching in a bipartite such that every vertex is in the matching
and this of course requires |X| = |Y|. A perfect matching is of course a
maximum matching but not necessarily conversely.

We will show how to efficiently find a maximum matching in a unweighted
bipartite graph and we will then be able to know if that matching is
perfect or not.

Moreover, if the maximum matching is not perfect, the algorithm will
exhibit a constricted set that is preventing a perfect matching. (In our
application of matching markets, we will have found a constricted set of
buyers which will determine a corresponding set of items whose prices need
to be raised.



Constricted sets

Let G = (V, E) be a n x n bipartite graph. Let V = X U Y and for any
subset S C X, let N(S) ={y € Y : (x,y) € E for some x € Y}. That is,
N(S) C Y is the neighbourhood of S.

Constricted sets
S C X is a constricted set if [N(S)| < |S| J

Figure: Example of a constricted set



An ascending auction algorithm for a matching
market

We will do things a little different than the KP text. One simplification is
that we are assuming integral valuations, so when we need to raise prices
we just increases prices by 1. Our auction can raise more than one price in
an iteration. But mainly the auctions follow the same idea and are based
on the same basic result:

Hall’s Marriage (aka Matching) Theorem

An n x m (with say m < n) bipartite graph G = (V,E) with V =X x Y
has a matching of size m if and only if for all X' C X, |N(X")| > |X’|

Hall's Theorem is stated and proved in Theorem 3.2.2 of the KP text. We
will also sketch an constructive proof (i.e. an algorithm that either finds a
maximum matching or finds a constricted set). An immediate consequence

is that an n X n bipartite graph has a perfect matching if and only if there
are no constricted sets.
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An ascending auction template for a matching
market continued

We let {v;} be the value of buyer i for item j. We let X be the set of
items and Y the set of buyers.

An ascending auction for a matching market

Set the price vector p = (0,0,...,0).

Let D(p) be the demand graph.

Repeat until D has a perfect matching

Find a constricted set S C X and raise the prices of all items in N(S) by
one unit. % There can be many constricted sets. For analysis, uniformly
reduce prices so that the minimum price is 0.

Create a new demand graph for the updated prices
End Repeat

v

Theorem: The ascending auction terminates. A perfect matching in D(p)

is an envy-free allocation since every buyer is getting an item in their
demand set.



Social welfare and termination in the ascending
auction

We will show termination by what is called a potential argument. And in
doing so, will show that the algorithm results in an allocation that is
socially optimal.

Given the current prices (p1, ..., pn) and the valuation profile of the
buyers, define

@ The potential of a buyer i is the utility v;; — p; for any item j in
buyer is demand set.

@ The potential of an item/seller j is its price p;.

@ The potential P; of the auction (at any iteration t in the algorithm) i

the total sum of all buyer and seller potentials.

S
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Social welfare and termination in the ascending
auction

We will show termination by what is called a potential argument. And in
doing so, will show that the algorithm results in an allocation that is
socially optimal.

Given the current prices (p1, ..., pn) and the valuation profile of the
buyers, define

@ The potential of a buyer i is the utility v;; — p; for any item j in
buyer is demand set.

@ The potential of an item/seller j is its price p;.

@ The potential P; of the auction (at any iteration t in the algorithm) i

the total sum of all buyer and seller potentials.
Note that initially, the potential Py equals ) ; max;(v;;).
Claim: After each iteration the potential decreases by at least 1. Why?

Conclusion: The auction must terminate and a perfect matching in the
resulting demand graph provides a socially optimal allocation. Why?

S
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Price Utility Values
Increase Price of C1

An example of the ascending auction

@D
6
Price Utility Values

Increase Price of C1 (or C1, C2)

Price Utility Values

Increase Price of C1, C2

@
@D

Price Utility Values

12,4,2

Market Clears

Figure: Example of the ascending auction
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One not so subtle problem with the ascending
auction

As stated, a buyer could be assigned to an item and receive negative
utility. And we are assuming individual rationality since there is usually no
reason a buyer will willingly accept an allocation resulting in negative
utility. (Here we want ex-post IR since we are not in the Bayesian setting.)
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One not so subtle problem with the ascending
auction

As stated, a buyer could be assigned to an item and receive negative
utility. And we are assuming individual rationality since there is usually no
reason a buyer will willingly accept an allocation resulting in negative
utility. (Here we want ex-post IR since we are not in the Bayesian setting.)

However, there is an easy way around this problem. Note that the demand
graph D(p) does not change if we uniformly raise or lower the price of
each item by the same amount.

As stated in Easley and Kleinberg, at the end of each iteration we can
reduce prices so that the lowest price is 0. Alternatively, at the end of the
ascending auction we can eliminate any “sale” that resulted in negative
utility. (By convention, we have been allowing sales having 0 utility.)
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How to find a maximum matching or a constricted
set

The Marriage theorem (also called the Matching Theorem) tells is that in
a n X n bipartite graph, either there is a perfect matching or there is a
constricted set. We will now sketch an algorithm that will find a perfect
matching or find a constricted set; in doing so we are constructively
proving the Hall Marriage Theorem.

| am going to follow the proof in the Easley and Kleinberg text “Networks,
Crowds, and Markets". Their text can also be found online. Note that
they refer to the demand graph as the prefered seller graph (PSG) but |
think demand graph is more accepted.

The main concept in this proof is that of an an augmenting path.
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Augmenting paths

Let M be a matching in a bipartite graph G = (V/, E) that is not of
maximum size. Let V = X x Y. Think of the Y nodes as representing
buyers.

Augmenting Paths

An augmenting path is a simple path in G that starts at an unmatched
node in Y and ends at a node in X. The path alternates between edges
not in the matching and edges in the matchingr; i.e. the path starts with
an edge not in the matching, then an edge in the matching, and then an
edge not in the matching, ..., and ending in an edge not in the matching.

When do we have or not have an augmenting path?

Theorem: A matching is maximum if and only if there is no augmenting
path.

If there is an augmenting path, then that path must contain exactly one
more edge not in the matching than the number of edges in the matching.
So we replace all the matched edges by unmatched edges increasing thep .

-~ 1 1



Augmenting path example from Chapter 10 of
Easley-Kleinberg

0000
GOGO
e oo ot

Figure: A simple example of an augmenting path leading to improved matching
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Second augmenting path example from Chapter 10
of Easley-Kleinberg

(b) An augmenting path () A larger (perfect) matching

Figure: A somewhat more complicated example. Note than starting with the
edge (W, A) does not yield an augmenting path whereas starting with edge
(W, B) does lead to an augmenting path.
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Finding a constricted set

Clearly, if there is an augmenting path, the matching is not a maximum
matching. But what if we do not find an augmenting path?

% o

‘o

Figure: An example when there is no augmenting path thus yielding a constricted
set

15/21



Using an “alternating breadth first search” to find
an augmenting path or a constricted set

The last figure shows how a breadth first search (never repeating nodes
already found) using alternating edges from a node W (not in the match)
and ending with edges in the matching. This yielded a constricted set;
namely the nodes at all the even levels (in this case, just the root W and
the leaves A and B).

When we go from an odd numbered level (say level 2i — 1) for i > 1 to an
even numbered level (2/), we have the same number of nodes at these two
levels since we have matching between these two levels.

On the other hand if a node at an odd level cannot be continued (via an
edge in the matching) then we have found an augmenting path.
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Using an alternating breadth first search to find an
augmenting path or a constricted set continued

Summarizing, from each unmatched node W in Y (e.g. the nodes
representing buyers), we can run an “alternating breadth first search”
starting at W. (If all nodes are matched, then there is nothing more to
do.)

Clearly this breadth first search must terminate. If an augmenting path is
not found then all the leaves are Y nodes. The constricted set consists of
all nodes at even levels (including the root node W at level 0). (In our
application, these are all nodes representing buyers.)
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Using an alternating breadth first search to find an
augmenting path or a constricted set continued

Summarizing, from each unmatched node W in Y (e.g. the nodes
representing buyers), we can run an “alternating breadth first search”
starting at W. (If all nodes are matched, then there is nothing more to
do.)

Clearly this breadth first search must terminate. If an augmenting path is
not found then all the leaves are Y nodes. The constricted set consists of
all nodes at even levels (including the root node W at level 0). (In our
application, these are all nodes representing buyers.)

The next figure presents a generic example of how a constricted set is
found by an alternating breadth first search when the search failed to find
an augmenting path.

Aside: For those familiar with the Ford Fulkerson method for the max
flow problem, the maximum size bipartite problem reduces to max flow
and augmenting paths correspond to paths in the residual graph.
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A generic alternating breadth first search that failed
to find an augmenting path

Layer 0 w
Layer 1
equal numbers
of nodes
Layer 2
Layer 3
equal numbers
of nodes

Layer 4 O

Figure: A generic example when there is no augmenting path thus yielding a
constricted set
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Returning to our matching markets application

We recall that in our application, we kept raising prices (for items
corresponding to a constructed set of agents until we know that a perfect
matching exists (and has been found by iteratively finding augmenting

paths in the demand graph until no such augmenting path exists and a
perfect matching has thus been found.
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Returning to our matching markets application

We recall that in our application, we kept raising prices (for items
corresponding to a constructed set of agents until we know that a perfect
matching exists (and has been found by iteratively finding augmenting
paths in the demand graph until no such augmenting path exists and a
perfect matching has thus been found.

There need not be a unique perfect matching although any perfect
matching gives buyers an item in their demand set.

The prices that are derived are market clearing in that every item is sold
(albeit perhaps at price 0) to a unique buyer . How much can we
uniformly raise prices and still maintain the same demand graph.?

Sellers can also set reserve prices (r1,. .., r,) for their items. This reduces
to the case of no reserve prices by changing the valuations to

w;j = max(v;j — rj,0) and treating a negative utility v; ; < r; for a match
between agent i and item j as not letting that transaction take place.
Alternatively, we can start with initial prices equal to reserve prices and
again removing sales having negative utility for the buyer.

19/21



Some concluding comments about such market
clearing prices

The matching provides a permutation 7 between buyers and items such

that buyer i is matched with item j = 7(/i) with j in buyer i's demand set.
Hence the allocation is envy free.
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Some concluding comments about such market
clearing prices

The matching provides a permutation 7 between buyers and items such
that buyer i is matched with item j = 7(/i) with j in buyer i's demand set.
Hence the allocation is envy free.

The resulting allocation is socially optimal. This follows as the allocation
is maximizing > ;[v(i, 7(i)) — rz(i)] which is equivalent to maximizing
> (i, m(i)

If one chooses the minimum envy free price vector, the allocation is still

optimal (with respect to social welfare), and the resulting prices are VCG
prices.

As stated in Lemmas 17.2.4, 17.2.5, and Theorem 17.2.6, the set of envy
free price vectors forms a lattice in which the minimum envy free prices are
the prices charged by the VCG mechanism.
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Concluding remarks contnued

The observation about VCG being optimal for the sponsored search

problem is actually a special case of the fact that VCG is optimal for the
matching markets problem.
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Concluding remarks contnued

The observation about VCG being optimal for the sponsored search

problem is actually a special case of the fact that VCG is optimal for the
matching markets problem.

But note that there are instances of CAs where VCG is not envy free.
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