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Lecture 15

Announcements
I Office hours: Tuesdays 3:30-4:30 SF 2303B; or schedule meeting; or

drop by. But next week is the fall break so check first.
I Term test will take place on Friday, November 4. Aids: One sheet of

handwritten notes, both sides.
I Nature and scope of term test:

F The test is long but many parts can be answered quickly.
F Any topic relating to questions that were asked in the first two

assignments. Basic game theory, pure and mixed NE, network
congestion and Braess paradox, Bayesian mechanism design; Myerson
auction.

F Material covered in lectures 12,13, 14 and start of today on
mechanisms VCG and GSP for sponsored search.

I No class on Monday, November 7 (fall break)

Todays agenda
I Quick review of GSP for sponsored search
I The public project problem continued.
I Example of VCG for a combinatorial auction
I General comments about truthful mechanism design (not on test)
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Review: GSP equlibria with more and less revenue

For some instances of sponsored search, there can be a NE that achieves
more revenue and another NE achieving less revenue than VCG.

Consider the instance v1 = 7, v2 = 6 and v3 = 1, with 2 slots having CTRs
c1 = 10, c2 = 4. (I am making the CTRs integers for convenience.)

1 With bidder 1 being present, the expected social welfare of the
remaining two bidders is c2 · 6 + 0 = 24.

If bidder 1 were not present, then the the expected social welfare for
the two remaining bidders would be c1 · 6 + c2 · 1 = 64. So bidder 1
has caused them a loss of social welfare of 64− 24 = 40 and that is
the expected revenue generated from bidder 1.

2 With bidder 2 present, the expected social welfare for bidders 1,3 is
c1 · 7 + 0 = 70

If bidder 2 were not present then the social welfare for the two
remaining bidders would be c1 · 7 + c2 · 1 = 74. So bidder 2 has
caused them an expected loss of social welfare of 74− 70 = 4.

Hence the total expected revenue generated by VCG is 40 + 4 = 44
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GSP with more and less that the expected VCG
revenue

We have just seen that VCG generates expected revenue 44.
We now provide two other NE for this instance, one with more revenue
and one with less.

Bidding (b1, b2, b3) = (5, 4, 2) is a GSP equilibrium. It clearly
achieves the same social optimal allocation but now with greater
revenue 4 · 10 + 2 · 4 = 48 than VCG.

Bidding (b1, b2, b3) = (3, 5, 2) is a GSP equilibrium. It clearly does
not achieve the same social optimal allocation and obtains less
revenue 3 · 10 + 2 · 4 = 38 than VCG.
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GSP with more and less revenue at equilibria

What didn’t we show last time?

While we computed the expected revenues, we still have to show that
these bids (5, 4, 2) and (3, 5, 2) are equilibria. Lets just verify that (3, 5, 2)
is a NE. We will still refer to advertiser i as the agent with the highest
valuation per click.

Advertiser 1 (with v1 = 7 per click) is bidding 3 and and will
therefore, obtain expected utility 4(7− 2) = 20. Ignoring ties, nothing
changes if the bid b1 is modified so that 2 < b1 < 5. This advertiser

could move back up to the first slot, say bidding 6 and then obtain
utility 10(7− 5) = 20 so no advantage in doing that. The advertiser

could bid below bidder 3, and then obtain no utility.
Advertiser 2 (with v2 = 6 per click ) is bidding 5 and and will
therefore, obtain expected utility 10(6− 3) = 30. This advertiser
could move back to the second slot, say bidding 2.5 and then obtain
utility 4(6− 2) = 16 so no advantage in doing that. The advertiser
could bid below bidder 3, and then obtain no utility.
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A complexity comment on the combinatorial public
projects problem (CPPP) problem

A problem that has been formulated with the AGT community is the
CPPP optimization problem. (Initially studied by Papadimiriou, Schapira,
Singer [2008]).
As mentioned last lecture, in the CPPP, the government wants to
undertake a set of k projects from a relatively large set P of potential
projects. Each individual i (1 ≤ i ≤ n) has a valuation function
vi : 2P → R for each possible subset S ⊂ P of projects. The mechanism
needs to choose a subset S so as to maximize

∑n
i vi (S).

Without any structure to the space of valuations, this would be difficult to
optimize even if every agent was truthful.

One reasonable assumption is that the valuation function vi of every agent
is a monotone submodular set function and this is the CPPP problem that
has been studied. (Tyrone spoke about submodular fucntions in his lecture
but we will repeat the defintions.)
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CPPP with submodular valuations

Monotone submodular set functions

Let f : 2P → R be a set function.

f is monotone if f (S) ≤ f (T ) for all S ⊆ T .

f is submodular if f (S) + f (T ) ≥ f (S ∪T ) + f (S ∩T ) for all subsets
S and T .

Equivalently, f is submodular if it satisifies the following diminishing
marginal gains property:

f (S ∪ {x})− f (S) ≥ f (T ∪ {x})− f (T ) for all S ⊂ T .

Submodular functions and especially monotone submodular functions play
an important role in many areas of optimization. In particular, for
auctions, a monotone submodular function represents in some sense that
some items are (partial) substitutes for eah other. For example, an iPAD
would probably be worth more to me if I just have a cell phone than it
would be worth to me if I have a cell phone and a lab top.
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Submodular CPPP continued

The sum of submodular set functions is a submodular function. The
underlying allocation problem of the submodular CPPP is to maximize a
monotone submodular function subject to a cardinality constraint. This
problem is hard to approximate to a factor better than 1− 1

e . This
approximation can be achieved by a simple greedy algorithm. What is the
algorithm?

This hardness is in terms of needing exponentially many value oracle calls
to beat this approximation ratio or to beat this approximation under a
standard complexity assumption. (Of course, some specific submodular
functions (e,g. modular or linear function) are easy to optimize.

Moreover, as a game theory auction problem, agents may not be truthful.

An important AGT result is that no truthful mechanism can achieve an
approximation ratio better than 1

n
1
2−ε

for any ε > 0.
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Combinatorial auctions and VCG

Lets return to VCG as applied to CAs. Lets recall the general defnition of
a CA. A general CA consists of :

A set N of n agents, and a set M of m items. We can view the items
as being distinct. (A multi-init CA allows for having multiple copies of
some items.)

A feasible allocation is one in which no item is give to more than one
person.

Each agent has a valuation function vi : 2M → R≥ 0. The utility of
an agent is vi (S)− pi (S) where pi (S) is the price that agent i pays if
allocated set S

We usually assume free disposal vi (S) ≤ vi (T ) for S ⊆ T and insure
individual rationality (IR) by assuming pi (∅) = 0.

A mechanism consist of a feasible allocation algorithm and a pricing
algorithm. Mechanisms can be deterministic or randomized.

9 / 14



An example of VCG applied to a simple CA

Suppose we have three agents going to Tim Horton’s shop at the end of
the day. They have left one cup of coffee c and one donut d . Three
customers arrive with single minded declarations:
v1(c , d) = $11, v2(d) = $10, v3(c) = $2. (Obviously a very good donut.)

The salesperson wants to award the items so as to achieve maximum
social welfare but of course dosn’t know the valuations. Fortunately, the
cash register is a VCG mechaanism cash register that takes bids for the
items and then sets prices. Who gets what items and at what prices?

The customers know that VCG is truthful and hence bid truthfully. VCG
then optimizes the allocation by giving the donut to the second customer
and the coffee to the third customer and the first customer will go away
hungry and thirsty.

The VCG prices are v2 = $8 and v3 = $0. (There can be free coffee unless
the coffee shop sets a reserve price.) What happens if the coffee shop has
a minimum purchase policy of $3?
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Comments about truthful CAs

As we remarked when we began discussing auctions, the CA problem is an
interesting AGT problem because in its generality the underlying allocation
problem (i.e. set packing) is NP-hard to 1

m
1
2−ε

approximate. So in the

worst case setting) we cannot use VCG.

For a single-minded auction we can use a greedy algorithm (say, sorting
bids by highest bid first) to approximate any sCA when s is small.

But as we have indicated before, we cannot use such a simple greedy
allocation when bidders are not single-minded (i.e. cannot obtain
truthfulness in the worst case setting).

Recently, it was shown that for submodular CAs, (where greedy can
provide an approximation within a factor of 2 for the allocation problem),
we cannot have a truthful mechanism that achieves better than a factor
min(n,

√
m) approximation. Dobzinski et al [2006] show how to achieve

this approximation ratio for all CAs by a universally truthful randomized
mechanism. It is not known if there is any deterministic truthful
mechanism that achieves say an 1

m1−ε approximation for any ε > 0.
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More general comments about IC mechanism design

What do we know about computationally efficient, truthful (i.e. incentive
compatible IC) mechanisms that can essentially achieve the best known
approximations for the underlying allocation problem?. Here we are asking
this question for auctions in general with quasi-linear utilities.

This question can be asked for the objectives of social welfare or revenue
maximization. For now, we are still considering social welfare.

There are many interesting special cases of auctions where one can achieve
good approximations by IC auctions.

There are also some more general approaches that consider special classes
of algorithms and show how they can lead to IC mechanisms with good
approximations.
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IC mechanism design comments continued

These results consider restricted classes of allocation algorithms and
convert such allocation algorithms for a given problem into an IC
mechanism (i.e. allocation plus revenue) for the given problem while
essentially preserving the approximation ratio.

An important early example (due to Lavi and Swamy [2005]) considers
linear programming LP for arbitrary packing problems. If the LP has a
“verifiable integrality gap” then the LP can be used to derive a
randomized truthful in expectation mechanism while preserving the social
welfare apporoximation.

For quite general problems, Briest et al [2005] and Dughmi and
Roughgarden [2010] show how to provide black box reductions when given
a PTAS algorithm for the underlying allocation.
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Bayesian IC mechanisms

Although there are many important special cases of auction design
problems and special cases of algorithmic paradigms, there is a basic
incompatabiility between the desire for truthfulness and the computational
necessity to sometimes settle for approximate algorithms.

Theoretical computer science is perhaps overly focused on worst case
analysis. Economists are much more interested in the Bayesian framework.

The very good news is that we do not have to focus entirely on worst case
results.

Results by Hartline and Lucier [2010] (for single parameter problems) and
Hartline, Kleinberg and Malekian [2015] (for multi-paramter problems)
show that for any allocation algorithm A for any auction problem, a
Bayesian incentive compatible (BIC) mechanism for that problem can be
obtained by a black box reduction to the underlying allocation algorithm
A. This reduction essentially preserves the approximation ratio of A.

By BIC, we mean that the expected utility (with respect to the agent
distributions) of an agent is maximized by bidding truthfully.
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