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Lecture 13

Announcements

I Office hours: Tuesdays 3:30-4:30 SF 2303B
or schedule meeting; or drop by.

I I have posted the three questions for Assignment 2 which is due this
Friday, October 28. This is now the entire assignment. Assignment
must be submitted by the start of the class (i.e. tutorial).

I Term test will take place on Friday, November 4. There was a typo in
the course information sheet where it said that the term test was
Friday, November 5. I also indicated that I would give three weeks
notice but forgot to do that. I can delay the term test by a week or
leave the date as November 4.

I No class on Monday, November (fall break)

Todays agenda
I Continue discussion of Chapters 15 and perhaps 16

F The proof of VCG trutfulness
F The good and bad aspects of VCG
F Sponsored search; VCG vs GSP
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The truthful VCG mechanism

THe Vickery Clarke Groves (VCG) mechanism is a deterministic
mechanism that is truthful (ex-post incentive compatible) and individually
rational. In Chapter 16, it is stated and proven to be truthful for the
general case (i.e. not restricted to single parameter auctions) whenever we
have a quasi-linear utiltiy function ui = vi − pi .

The general proof of truthfulness is given in Theorem 16.2.6. The proof is
remarkably simple given the generality of this result.

As the name might suggest, the Vickery auction is VCG applied to the
special case of a single item auction. It is also the special case of the
Vickery auction for the mutli item case when there are k copies of the
same item and the winners are the agents with the top k values and the
price is the k + 1-st value. (Do not just quote result for question 2 of
assignment.)

Since we are considering social welfare (and not revenue), we do not have
to consider reserve prices but as we have mentioned, reserve prices do not
cause a problem for truthfulness.
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The VCG mechanism in a figure
16.2. SOCIAL SURPLUS MAXIMIZATION AND THE GENERAL VCG MECHANISM 295

VCG Mechanism

Figure 16.2. A depiction of the VCG Mechanism for the setting where
V (a) = 0 for all a 2 A. The outcome selected is a⇤(b), and the payment
of agent i is pi(b). Note that Theorem 16.2.6 holds for any choice of
functions hi(b�i), as long as it is independent of bi(·). In Definition
16.2.3, we take hi(b�i) = maxa

P
j 6=i bj(a). This choice guarantees that

ui[vi,b�i|vi] � 0 for all vi.

Definition 16.2.3. The Vickrey-Clarke-Groves (VCG) mechanism, il-
lustrated in Figure 16.2, works as follows: Each agent is asked to report his valua-
tion function vi(·) and submits a function bi(·) (which may or may not equal vi(·)).
Write b = (b1(·), . . . , bn(·)). The outcome selected is

a⇤ := a⇤(b) = argmaxa

0
@X

j

bj(a) + V (a)

1
A ,

breaking ties arbitrarily. The payment pi(b) agent i makes is the loss his presence
causes others (with respect to the reported bids), formally:

pi(b) = max
a

0
@X

j 6=i

bj(a) + V (a)

1
A�

0
@X

j 6=i

bj(a
⇤) + V (a⇤)

1
A . (16.1)

The first term is the total reported value the other agents would obtain if i was
absent, and the term being subtracted is the total reported value the others obtain
when i is present.

Example 16.2.4. Consider the outcome and payments for the VCG mechanism
on Example 16.1.2, assuming that the cities report truthfully. As the social surplus
of each outcome is the sum of the values to each of the participants for that outcome
(the final row in the following table),

Figure: The depiction of VCG for arbitrary function hi (b−i ).

Here A is the set of feasible allocations. VCG is truthful for any hi that
does not depend on bi . To make VCG IR and all payments non-negative,
we use the “Clarke pivot”:

hi (b−i ) = max
a∈A

∑

j 6=i

bj(a)
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VCG in words

VCG is a deterministic sealed bid auction. Each agent i submits their bids
bi (ai ) for each desired outcome ai .

Note: In the single-minded case, the agent has just one desired outcome
but (say) in the general CA, an agent could desire many different sets each
having its own valuation.

The mechanism computes an optimal feasible allocation a∗ with regard to
social welfare. Each agent is allocated whatever is determined by a∗. For
the CA problem, an agent receives a desired subset or does not get
allocated any set. (Ties can be broken arbitrarily.)

Given this optimal allocation a∗, the payment pi (b) for agent i is :

pi (b) = max
a∈A

∑

j 6=i

bj(a)−
∑

j 6=i

bj(a
∗)

That is, agent i is being charged his impact on the social welfare of the
other agents. Be sure you understand this statement!
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VCG is truthful

By definition, VCG is optimal with respect to social welfare if we assume
eveyone bids truthfully. We now prove that VCG is truthful so that we can
assume everyone does bid truthfully.

Proof of VCG truthfulness

pi (b) = maxa∈A
∑

j 6=i bj(a)−∑
j 6=i bj(a

∗) = C −∑
j 6=i bj(a

∗)
where we use C (= h(b−i ) in the figure) to denote that the first term does
not depend on the bid of agent i .
Then ui (b|vi ) = vi (a

∗)− pi (b) = vi (a
∗) +

∑
j 6=i bj(a

∗)− C
Reporting his true value, the outcome would be some allocation
a
′

= argmaxa(vi (a) +
∑

j 6=i bj(a)) which maximizes social welfare given
(vi ,b−i ) as the input to the optimal allocation algorithm.
Thus ui (vi ,b−i |vi ) = vi (a

′
) +

∑
j 6=i bj(a

′
)− C

≥ vi (a
∗) +

∑
j 6=i bj(a

∗)− C = ui (b|vi )
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The difficiencies of VCG

There is an interesting article by Ausubel and Milgrom (2006) entitled
“The Lovely by Lonely Vickrey Auction” describing VCG and its virtues
but also some of the reasons why VCG is generally not used in practice.
For some reasons why VCG is problematic, see Example 16.2.7 ; namely,

The auctioneer may receive no payment.

The auction is open to collusion

In addition,

Agents may not understand VCG and then perhaps still want to
strategize in their bidding.

As we have mentioned before , VCG requires an optimal allocation in
order to guarantee truthfulness. An approximation allocation
algorithm coupled with the VCG payment rule may not be truthful.
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Returning to single parameter problems: Chapter 15

Recall the meaning of a single parameter mechanism design problem.

We mean that each agent has the same value for any allocation in which it
is a winner. Recall that L = the collection of all feasible sets of winners.

For single parameter problems (but still quasi linear utltilies), the VCG
pricing has what may appear to be a perhaps more intuitive description.

Consider an auction where we are trying to maximize the social welfare
and each agent i is trying to maximize their utitility ui = vi − pi . Once we
have found an optimum solution (i.e. an optimum set of winners), we set
the VCG prices where each winner pays his threshold price:

pi = max
L∈L〉−

b(L)− max
L∈L〉+

b(L)

where L−i = {L ∈ L|i /∈ L} and L+i = {S |S ∪ {i} ∈ L|i /∈ S}
This is not the same as the critical price that we will mention with regard
to combinatorial auctions (CAs).
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VCG and some single parameter examples in
Chapter 15

shared communication channel.

274 15. TRUTHFUL AUCTIONS IN WIN/LOSE SETTINGS

Proof. Fix any set of bids b�i of all bidders but i and note that pi is deter-
mined by b�i. Whatever bi is, player i’s utility is at most vi � pi if vi > pi and at
most 0 if vi  pi. Bidding truthfully guarantees a bidder i this maximum utility of
max(0, vi � pi) � 0.

⇤

Remark. Note that if payments were instead equal to p0i = pi + hi(b�i), for
any function hi(·), the mechanism would still be truthful. However, it would no
longer be true that each bidder would be guaranteed nonnegative utility.

Exercise 15.3.3. Check that the Vickrey second price auction and the Vickrey
k-unit auction are both special cases of the VCG mechanism.

Remark. Since the VCG auction incentivizes truth-telling in dominant strate-
gies, henceforth we assume that bidders bid truthfully. Therefore, we will not refer
to the bids using the notation b = (b1, . . . , bn), but rather will assume they are
v = (v1, . . . , vn).

15.4. Applications

15.4.1. Shared communication channel, revisited. See Figure 15.2 for an
example of the application of VCG to choosing a feasible winning set of maximum
total value.

Bidder#
1
2
3

0.4 1 2.1 - 2 = 0.1
2 2.1 - 1 = 1.10.5

0.8

1
2

2.1

Bandwithrequirement w(public)

Input to VCG auction Output of VCG auctioncapacity 1
communicationchannel

Value v(private) PaymentsWinners

Figure 15.2. This figure illustrates the execution of the VCG algorithm
on Example 15.1.3 (a shared communication channel) when C = 1, and
there are three bidders with the given values and weights. In this ex-
ample, L = {{1, 2}, {1}, {2}, {3}, ;}. With the given values, the winning
set selected is {1, 2}. To compute, for example, bidder 1’s payment, we
observe that without bidder 1, the winning set is {3} for a value of 2.1.
Therefore the loss of value to other bidders due to bidder 1’s presence
is 2.1 - 2.

15.4.2. Spanning tree auctions. Netflix wishes to set up a distribution net-
work for its streaming video. The links that can be used for streaming form a graph,
and each link is owned by a di↵erent service provider. Netflix must purchase the
use of a set of links that will enable it to reach all nodes in the graph. For each
link `, the owner incurs a private cost c` 2 [0, C] for transmitting the Netflix data.

Figure: Figure 15.2: VCG for a small communication channel example

The optimal allocation is to allocate to agents 1 and 2. Without agent 1,
the social welfare for the other agents is v3 = 2.1 and the social welfare for
the other agents with agent 1 is 2 so that agent 1 pays 2.1-2 = 0.1 ;
similarly, agent 2 pays 2.1-1 = 1.1.
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Some comments on the shared communication
channel problem

As we noted, the underyling allocation problem is the knapsack problem
which is a (weakly) NP-hard problem.

Assuming all values are fractional, we can scale all the inputs so that they
are integers. If, after scaling, the capacity C , or all the weights {wi}, or all
the values {vi} are bounded by a polynomial (in n), then there is an
optimal polynomial time algorithm.

There is also an FPTAS algorithm for the knapsack problem and by a
result of Briest, Krysta and Vöcking (2005), there is a monotone (in each
vi ) FPTAS for this problem and this implies that this can be made into a
truthful mechanism.
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The s-CA example

An s-CA is a CA in which each agent only desires sets of size at most s.
However, we assume “free disposal” in the sense that vi (S) ≤ vi (T ) for
any S ⊆ T .

If each agent i only desires a single set Si , this is called the “single-minded
case”.

The underlying allocation problem (i.e. set packing) is NP-hard for s ≥ 3.
However, there is are simple greedy algorithms that provide an
s-approximation. Namely, one can either sort bids so that b1 ≥ b2 . . . ≥ bn
or so that b1/s1 ≥ b2/s2 . . . ≥ bn/sn where si is the size of the set Si
desired by agent i . The algorithm then just accepts each bid “greedily”;
i.e. if the desired subset doesn’t conflict with a previously accepted set.

This greedy algorithm is monotone (in each vi ) and monotone in each Si
in the sense that if (vi ,Si ) is a winner (given the other bids), then it
remains a winner for (v ′i , S

′
i ) if v ′i ≥ vi and/or if S ′i ⊆ Si .
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The good and bad new for s-CAS and CAs

For an arbitrary CA, these monotone greedy algorithms will (in the worst
case) only achieve the “naive” approximation factor min(n,m).

Somewhat surprisingly, Gonen and Lehman (2000) show that by sorting so
that b1/

√
s1 ≥ b2/

√
s2 . . . ≥ bn/

√
sn, and accepting greedily, the

approximation factor is min(n, 2
√
m).

Mu’alem and Nisan (2008) showed that in the single minded case, any
such monotone greedy approximation algorithm can be made into a
truthful mechanism (preserving the approximation factor) by using critical
prices (i.e. smallest price for a winner to remain a winner when other bids
are not changed) even if the both vi and Si are private information.

In the multi minded case, with just 2 agents and s ≥ 3, the same greedy
algorithm becomes an s + 1 approximation. However, now this algorithm
cannot be made into a truthful mechanism. In fact, for a wide class of
greedy algorithms, Borodin and Lucier (2016) show that any greedy
truthful mechanism (for this muiti minded case) can be at best an Ω(n,m)
approximation for n agents and a universe of m items.
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Sponsored search auctions

Section 15.5 presents a simplified but still insightful view of sponsored
advertisements as occurs in a search engine.

Here given a search request, agents (advertisers who think this search
request will be by someone who might be interested in their product) bid
(online) for one of say k sponsored slots.

It is assumed that slots are listed so that c1 ≥ c2 . . . ≥ ck where cj is the
clickthrough rate of slot j . This means that someone making the given
search request, will click on the jth slot with probability cj .

If the ith bidder (advertiser) has value vi for someone clicking on their
advertisement, then the value for agent i obtaining slot j is vi · cj .
Each advertiser will offer a bid of bi per click. If the ith advertiser is
successful in obtaining one of the k slots, she will pay a price per click
(PPC) pi (b). How should a search engine assign slots and set pi (b)?
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The VCG and GSP mechanisms for the sponsored
search problem

Of course, we cannot be sure of what mechanism any search engine (e.g.
Google) might use, but Facebook states that it uses VCG and Google
states that it uses a mechanism called Generalized Second Price. Both
mechanisms allocate the ith most valuable slot to the i th highest bidder.

If bidders are truthful, then both VCG and GSP maximize social welfare.
We know that VCG is a truthful mechanism so lets first consider VCG for
the sponsored search problem.

15.5. SPONSORED SEARCH AUCTIONS, GSP AND VCG 279

engine, based on these bids, decides which ad to place in each slot and what price
to charge the associated advertiser in the event of a user click.

Suppose there are k ad slots7, with publicly-known clickthrough rates c1 �
c2 � . . . � ck � 0. The clickthrough rate of a slot is the probability that a user
viewing the web page will click on an ad in that slot. If bidder i has value vi per
click, then the expected value he obtains from having his ad assigned to slot j is
vicj . In this setting, the social surplus of the allocation which assigns slot j to

bidder ⇡j is
Pk

j=1 v⇡j
cj .

This is not formally a win/lose auction (because of the clickthrough rates), but
the VCG mechanism readily extends to this case: the social surplus maximizing
allocation is selected, and the price a bidder pays is the externality his presence
imposes on other. Specifically:

Advertisers
2 Slots

Bidder 1
Slot 1

CTR
c1 = 1

CTR
c2 = 0.5

Slot 2Bidder 2

Bidder 3

Truthful 
bidding

VCG
v3 = 1

v1 = 7 expected paymentc1p1 = 6 • 1 + 1 • 0.5 - 6 • 0.5

expected utility = c1(v1 - p1) = 1 • (7 - 3.5)

PPC p1 = 3.5
Bidder 1v2 = 6

b3 = 1

b1 = 7

b2 = 6

Bidder 2

expected paymentc2p2 = 7 • 1 + 1 • 0.5 - 7 • 1

expected utility = c2(v2 - p2) = 0.5 • (6 - 1)

PPC p2 = 1

Figure 15.7. VCG on sponsored search example: An advertiser’s ex-
pected value for a slot is her value per click times the click through rate
of the slot. For example, the bidder 2 (the blue) advertiser’s expected
value for slot 1 is 6, and her expected value for slot 2 is 6 · 0.5 = 3. Her
expected payment is the value other players obtain if she wasn’t there
(7·1+1·0.5) (since the bidder 3 would get the second slot in her absence)
minus the value the other players get when she is present (7 · 1). Her
expected payment is the price-per-click (PPC) times the clickthrough

rate.

• Each bidder is asked to submit a bid bi representing the maximum he is
willing to pay per click.

• The bidders are reordered so that their bids satisfy b1 � b2 � . . ., and slot
i is allocated to bidder i for 1  i  k.

• The participation of bidder i pushes each bidder j > i from slot j � 1 to
slot j (with the convention that ck+1 = 0). Thus, i’s participation imposes
an expected cost of bj(cj�1� cj) on bidder j in one search (assuming that
bj is j’s value for a click). The auctioneer then charges bidder i a price of

7 The model we consider here greatly simplifies reality.

Figure: The depiction of VCG for an example of sponsored search
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VCG for sponsored search

Suppose we have k slots and we reorder bids (and bidders) so that
b1 ≥ b2 . . . ≥ bn. The bidder i ≤ k gets slot i .

Recall that slots are ordered so that c1 ≥ c2 . . . ck > ck+1 = 0.

Consider the price for the advertiser winning the ith slot for i ≤ k . The
impact on the social welfare by the ith advertiser is to push advertisers
j > i down one slot. That is, he imposes an (expected) cost to the jth
advertiser of bj(cj−1 − cj) for a total impact of

∑k+1
j=i+1 bj(cj−1 − cj).

Hence we want to charge the ith advertiser a per click bid pi (b) so that
his expected cost is equal to the impact on the other advertisers; that is,

cipi (b) =
k+1∑

j=i+1

bj(cj−1 − cj) so that

pi (b) =
k+1∑

j=i+1

bj
(cj−1 − cj)

ci
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What if all slots had the same click through rate?

If all slots had the same click through rate then say
c = c1 = c2 . . . = ck > ck+1 = 0.

Using VCG pricing, the per click pricing becomes

pi (b) =
k+1∑

j=i+1

bj
(cj−1 − cj)

ci
=

k∑

j=i+1

bj
(c − c)

c
+ bk+1

c − 0

c
= bk+1

Does this look familiar?

When all slots have the same click through rate, this is just a multi-unit
auction for a given item (i.e. selling k identical items).
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