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Lecture 12

Announcements

I Office hours: Tuesdays 3:30-4:30 SF 2303B
or schedule meeting; or drop by.

I I have posted the three questions for Assignment 2 which is due this
Friday, October 28. This is now the entire assignment.

I Assignment 1 has been graded. Some statistics:
average 73.9%, median 78.9%, 6 below 50%
One person did not submit via Markus.

Todays agenda
I Concluding comments on Chapter 14
I Chapter 15

F Chapter 15: The single parameter win-lose setting with respect to
social welfare/surplus

F VCG in the single parameter individually rational setting.
F Some examples
F sponsored search; VCG vs GSP
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A concluding comment of Chapter 14

In example 14.11.1, we see that the situation for trying to optimally sell
two items to one Bayesian buyer becomes much more complex than when
optimally selling one item (i.e. by Myerson’s optimal auction).

The setting is as simple as one can imagine for two items. Namely, the
buyer’s valuation function is additive; i.e. if his value is v(1) for item 1
and v(2) for item 2, then if he is allocated both items, his valuation is
v(1) + v(2). Moreover, the prior distribution for each item is the same.

Suppose that Prob[v(j) = 1] = Prob[v(j) = 2] = 1
2 for j = 1, 2.

Then if each item is sold separately, the expected revenue is 1 from each
item and hence total expected revenue 2 for both items.

Alternatively, if the seller just offers a bundle price of 3 for both items,
then the expected revenue is 3 · prob[V (1) + v(2) ≥ 3] = 3 · 34 = 2.25.

In other valuations, it is better not to bundle and in some valuations it
may be best to offer the buyer a choice of individual prices or a bundle.
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Selling multiple items to an additive buyer: a little
good news

There are now a few results within the spirit of “simple (and approximate)
vs optimal auctions”. This is very much a topic within the field of
algorithmic game theory (AGT) given our interest in computationally
efficiency and conceptual simplicity
For those interested I suggest looking at the following:

1 Hart and Nisan (2014) show that if two items are distributed
independently, then selling them separately obtains at least a fraction
1
2 of the optimal revenue. Moreover, if the items are i.i.d., then pricing
individually obtains at least a fraction e

e−1 of the optimal revenue.
2 Hart and Nisan also show that for an arbitrary number of items,

neither pricing separately or as a grand bundle can guarantee a
constant fraction of the optimal revenue.

3 However, in contrast, Babaioff et al (2014) show that the maximum
of separate priceis and grand bundle pricing guarantees a constant
fraction independent of the number of items.
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Begin chapter 15: Social welfare for auctions in the
single parameter setting

In Lecture 9, for definteness, we described a general auction type setting
where we postulated a set of items, and buyers and sellers for those items.
As I remarked then, the text (and other texts such as the AGT book
edited by Nisan, Roughgarden, Tardos and Vazirani) do not mention
“items” but rather frame the outcomes in terms of feasible allocations.
We’ll adopt that viewpoint and terminology now.

What we are assuming throughout our discussions is quasi linear utility,
namely that an agents utility ui (a) for an outcome a having value vi (a) is
ui (a) = vi (a) + m where m is some quantity of (say) money. In our
auctions thus far, m is negative as it represents a payment from the
buyers. In a procurement auction (example 15.1.2 and section 15.4.2), m
is positive representing a payment to the agents who are providers of a
service which has some private intrinsic cost (i.e. the “value” is negative).
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The setting for Chapter 15

Chapetr 14 was concerned with the revenue of a seller/mechanism and we
were mainly focused on the sale of a single item in the Bayesian setting
where the value vi of the item was drawn from a prior distribution.

In contrast, for the most part, the goal of the mechanism in Chapter 15 is
to maximize social welfare/surplus. Moreover, we are not in the Bayesian
setting (i.e. there do no exist prior distributions for the agents). The
chapter concludes with a section on worst case revenue maximization (i.e.
without prior distributions).

The single paramter setting for Chapter 15 (Definition 15.2.1)

There is a set U of agents, and a set L ⊂ 2U of feasible allocations.

We say that agent i is a “winner” in a feasible allocation L ∈ L if
i ∈ L. Each agent i has a single private value vi which is the value for
agent i if i is a winner.

Chapter 16 considers the more general setting where an agent can have
different values for different allocations.
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Social welfare: deterministic and randomized
mechanisms

The social welfare of an allocation L is defined as the sum of the
valuations of the winning agents.

We are considering sealed bid (direct) auctions where each agent i offers a
bid bi and the mechanism uses an allocation rule to determine the winners
and the payment rule for each (winning) agent. We will assume that the
payment of losing agents is 0. We will also assume a finite set U of n
agents.

For a deterministic mechanism, an allocation rule is a mapping α : b→ L.
Equivalently, α : b→ {0, 1}n : αi = α(b)i = 1 iff agent i is a winner.

The payment rule p : b→ Rn determines the payment for each winning
agent where we assume the payment pi = pi (b)i = 0 if agent i is not a
winner.
The utiltiy of agent of agent i with value vi when bidding bi is

ui (b|vi ) = viαi (b)− pi (b)
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Randomized mechanisms

Although the mechanism examples in this chapter are deterministic,
mechanisms can be randomized and that is how the text initially defines
the relevant concepts.

The discussion in the text is not clear but lets say that the randomization
is just in terms of the feasible allocation that the mechanism produces.
This then means that the allocation rule is a vector of probabiities; that is
α(b) = (α1(b), . . . , αn(b)) where αi (b) is the probability that agent i is a
winner.

The utility ui (b|vi ) = viαi (b)− pi (b) is then the expectation over the
randomness of the mechanism.

For randomized mechanisms, we will also have to distinguish between
worst case truthfulness vs truthfulness in the sense of the expectation.
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Some examples

A combinatorial auction CA consists of a set of items M where each
agent i has a value vi (S) for differents desired sets S ⊆ M. In a
sinlge parameter CA, the value vi = vi (S) is the same for each desired
set and we assume that the mechanism knows what particular sets
agent i desires. (S1, . . . ,Sn) with Si ⊆ M is a feasible allocation if
Si ∩ Sj = ∅ for all i 6= j . Here the winners are those agents i such
that Si 6= ∅.

The spectrum auction in Example 15.1.1 would be such an example
where the items might be wavelengths (for transmitting) and agents
want known bands (i.e. intervals) of the spectrum. These intervals
cannot intersect in a feasible allocation. .

The feasible allocations in a single item auction (as in chapter 14) are
those with just one winner.
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More examples

In the shared communcation channel example in Example 15.1.3, the
agents have known bandwidth requirements wi and a feasible
allocation is one in which

∑
i :i is a winner wi ≤ C for some known

capacity C .

These examples are all different in terms of the underlying combinatorial
allocation problem.

As we mentioned before, the allocation problem for a general CA is
the set packing problem, which is NP-hard to approximate to within a

factor min(n,m
1
2
−ε) where m = |M|.

For the special case of the spectrum auction, this is the interval
selection problem which can be optimally solved (for the
single-minded case) by an efficient (greedy) algorithm.
The single item case is a rather trivial allocation problem.
The allocation problem for the shared communication channel is the
knapsack problem which is NP-hard but can be approximately solved
to within any factor (1− ε) by a computationally efficient (dynamic
programming) algorithm.
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The procurement auction in section 15.4.2

In a procurement auction, the mechanism pays the agents for some service
or product.

In the spanning tree auction problem, a service provider (such as Netflix)
needs to build a spanning tree by purchasing edges in a network from
different agents. Assume each edge ei is owned by a different agent i who
has some private cost if that edge is used by the provider.

The feasible solutions are spanning trees and the mechanism is trying to
minimize the cost of the spanning tree it computes. Each agent i is trying
to maximize the price pi it receives minus its (private) cost. This becomes
a social welfare maximization problem when setting vi = −ci .
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The truthful VCG mechanism

THe Vickery Clarke Groves (VCG) mechanism is a deterministic
mechanism that is truthful (ex-post incentive compatible) and individually
rational. In Chapter 16, it is stated and proven to be truthful for the
general case (i.e. not restricted to single parameter auctions) whenever we
have a quasi-linear utiltiy function ui = vi − pi .

The general proof of truthfulness is given in Theorem 16.2.6. The proof is
remarkably simple given the generality of this result.

As the name might suggest, the Vickery auction is VCG applied to the
special case of a single item auction. It is also the special case of the
Vickery auction for the mutli item case when there are k copies of the
same item and the winners are the agents with the top k values and the
price is the k + 1-st value. (Do not just quote result for question 2 of
assignment.)

Since we are considering social welfare (and not revenue), we do not have
to consider reserve prices but as we have mentioned, reserve prices do not
cause a problem for truthfulness.
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The VCG mechanism in a figure
16.2. SOCIAL SURPLUS MAXIMIZATION AND THE GENERAL VCG MECHANISM 295

VCG Mechanism

Figure 16.2. A depiction of the VCG Mechanism for the setting where
V (a) = 0 for all a 2 A. The outcome selected is a⇤(b), and the payment
of agent i is pi(b). Note that Theorem 16.2.6 holds for any choice of
functions hi(b�i), as long as it is independent of bi(·). In Definition
16.2.3, we take hi(b�i) = maxa

P
j 6=i bj(a). This choice guarantees that

ui[vi,b�i|vi] � 0 for all vi.

Definition 16.2.3. The Vickrey-Clarke-Groves (VCG) mechanism, il-
lustrated in Figure 16.2, works as follows: Each agent is asked to report his valua-
tion function vi(·) and submits a function bi(·) (which may or may not equal vi(·)).
Write b = (b1(·), . . . , bn(·)). The outcome selected is

a⇤ := a⇤(b) = argmaxa

0
@X

j

bj(a) + V (a)

1
A ,

breaking ties arbitrarily. The payment pi(b) agent i makes is the loss his presence
causes others (with respect to the reported bids), formally:

pi(b) = max
a

0
@X

j 6=i

bj(a) + V (a)

1
A�

0
@X

j 6=i

bj(a
⇤) + V (a⇤)

1
A . (16.1)

The first term is the total reported value the other agents would obtain if i was
absent, and the term being subtracted is the total reported value the others obtain
when i is present.

Example 16.2.4. Consider the outcome and payments for the VCG mechanism
on Example 16.1.2, assuming that the cities report truthfully. As the social surplus
of each outcome is the sum of the values to each of the participants for that outcome
(the final row in the following table),

Figure : The depiction of VCG for arbitrary function hi (b−i ).

Here A is the set of feasible allocations. VCG is truthful for any hi that
does not depend on bi . To make VCG IR and all payments non-negative,
we use the “Clarke pivot”:

hi (b−i ) = max
a∈A

∑

j 6=i

bj(a)
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VCG in words

VCG is a deterministic sealed bid auction. Each agent i submits their bids
bi (ai ) for each desired outcome ai .

Note: In the single-minded case, the agent has just one desired outcome
but (say) in the general CA, an agent could desire many different sets each
having its own valuation.

The mechanism computes an optimal feasible allocation a∗ with regard to
social welfare. Each agent is allocated whatever is determined by a∗. For
the CA problem, an agent receives a desired subset or does not get
allocated any set. (Ties can be broken arbitrarily.)

Given this optimal allocation a∗, the payment pi (b) for agent i is :

pi (b) = max
a∈A

∑

j 6=i

bj(a)−
∑

j 6=i

bj(a
∗)

That is, agent i is being charged his impact on the social welfare of the
other agents. Be sure you understand this statement!
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