Social and Information Networks

University of Toronto CSC303
Winter/Spring 2019

Week 5: February 3-7 (2020)
Announcements and this weeks agenda

Announcement

- Assignment 1 is now complete and due February 14. Please ask your TA if you are having any trouble using netlogo.
- The midterm is March 4 and March 6 in GB248. On piazza, it was pointed out that the link to the Trem Test said March 1. That is now corrected.

This weeks agenda

- I will finally do the Schelling segregation model.
- We “jump ahead” to Chapter 20 of the text. This chapter concerns what has been popularized as *Six degrees of separation; the small worlds phenomena.*
 It is not clear where best to discuss this chapter and this seems as good a time as any. Or maybe, we should have done this chapter right after chapter 4 and before chapter 5.
- More specifically, here is what we will be discussing
 1. Watts-Strogatz model
 2. Kleinberg’s explanation of navigation in small worlds
 3. Liben-Nowell study
 4. Backstrom et al study
The Small World Phenomenon (Chapter 20)

- We now move from a study of selection, influence, and balance in networks, to the issue of focused or targeted search.

- Popularized in the famous concept of “six degrees of separation”.

- At the start of this course, we briefly discussed the original 1960s Milgram experiment as it was introduced in Chapter 2 of the text.

- Milgram asked 296 randomly chosen people in Omaha to forward a letter to a target person (a stockbroker) living in a Boston suburb.

- Of the 64 chains that succeeded the median length of the letter chain was 6, the motivation for the play and movie that came to popularize the phenomena.
Lengths of the successful letter chains

An image from Milgram’s original article in *Psychology Today*, showing a “composite” of the successful paths converging on the target person.

Each intermediate step is positioned at the average distance of all chains that completed that number of steps.
Two remarkable aspects of experiment

- There are **short paths (of friendship)** between people even though they are seemingly very unrelated.
 - We have also seen this phenomena when we spoke of one’s Erdos number (amongst mathematicians or all scientists) and Bacon number (amongst actors).

- But the even more striking fact is that **the Milgram letter chain succeeded without individuals knowing anything globally about the network structure**.

- That is, without any centralized coordination, individuals were reasonably successful in reaching the target. (They did have geographic and occupational information.)

- Chapter 20 studies how we can better understand this interesting phenomena.
Looking ahead: The punch line of the chapter, text, course

The plots in Figure 20.10, and their follow-ups, are thus the conclusion of a sequence of steps in which we start from an experiment (Milgram’s), build mathematical models based on this experiment (combining local and long-range links), make a prediction based on the models (the value of the exponent controlling the long-range links), and then validate this prediction on real data (from LiveJournal and Facebook, after generalizing the model to use rank-based friendship). This is very much how one would hope for such an interplay of experiments, theories, and measurements to play out. But it is also a bit striking to see the close alignment of theory and measurement in this particular case, since the predictions come from a highly simplified model of the underlying social network, yet these predictions are approximately borne out on data arising from real social networks.

[From E&K Ch.20, p.549]
Two settings for finding someone

- We could ask all of our friends to tell all of their friends to tell all of their friends... (i.e. a traditional chain letter) that I am looking for person X.

- Now say assuming your online social network has a “broadcast to all” feature, this can be done easily but it has its drawbacks. Drawbacks?
Two settings for finding someone

- We could ask all of our friends to tell all of their friends to tell all of their friends... (i.e. a traditional chain letter) that I am looking for person X.

- Now say assuming your online social network has a “broadcast to all” feature, this can be done easily but it has its drawbacks. **Drawbacks?**

- Suppose on the other hand that we want to reach someone and it either costs real money/effort to pass a message (e.g. postal mail) or perhaps I would prefer to not let everyone know that I am looking for person X. And as was pointed out in class, there is also possibly a “social cost” in terms of annoyance to people in the network receiving multiple requests to pass on a message.
Two settings for finding someone

- We could ask all of our friends to tell all of their friends to tell all of their friends... (i.e. a traditional chain letter) that I am looking for person X.

- Now say assuming your online social network has a “broadcast to all” feature, this can be done easily but it has its drawbacks. **Drawbacks?**

- Suppose on the other hand that we want to reach someone and it either costs real money/effort to pass a message (e.g. postal mail) or perhaps I would prefer to not let everyone know that I am looking for person X. And as was pointed out in class, there is also possibly a “social cost” in terms of annoyance to people in the network receiving multiple requestss to pass on a message.

- Clearly if everyone cooperates, the broadcast method ensures the shortest path to the intended target X in the leveled tree/graph of reachable nodes.
Reachable nodes without triadic closure

- If there is no **triadic closure** (i.e. your friends are not mutual friends, etc.), it is easy to see why every path is a shortest path to everyone in the network.

- Consider the number of people that you could reach by a path of length at most t if every person has say at least 5 friends.

Figure: Pure exponential growth produces a small world [Fig 20.1 (a), E&K]
Reachable nodes with triadic closure

- Given that our friends tend to be mostly contained within a few small communities, the number of people reachable will be much smaller.

Figure: Triadic closure reduces the growth rate [Fig 20.1 (b), E&K]
The Watts-Strogatz model

- Is it possible to have extensive triadic closure and still have short paths?

- **Homophily** is consistent with triadic closure especially for strong ties whereas weak ties can connect different communities and thereby provide the kind of branching that yields short paths to many nodes.

- One stylized model to demonstrate the effect of these different kinds of ties is the **Watts-Strogatz model**, which considers nodes lying in a two dimensional grid and then having two types of edges:
 - **Short-range edges** to all nodes within some small distance r. This captures an idealized sense of homophily
 - A small number of **random longer-distance edges** to other nodes in the network; in fact, one needs very few such random edges to achieve the effect of short paths.
Very few random edges are needed

- A \(k \) by \(k \) “town” with probability \(1/k \) that a person has a random weak tie.

- This would be sufficient to establish short paths.

[Fig 20.3, E&K]
But how does this explain the ability to find people in a decentralized manner

- In the Watts-Strogatz type of model, we can use the random edges (in addition to the short grid edges) and the geometric location of nodes to keep trying to reduce the grid distance to a target node.
 - This is analogous to the Milgram experiment where individuals seem to use geographic information to guide the search.
 - However, completely random edges does no reflect real social networks

- Furthermore, having uniformly random edges will not work in general as:
 - Completely random edges (i.e. going to a random node anywhere in the network) are too random.
 - A random edge in an $n \times n$ grid is likely to have grid distance $\Theta(n)$.
 - Without some central guidance, such random edges will essentially just have us bounce around the network causing a substantially longer path to the target than the shortest path.
A modification of the model

- Random edges outside of one’s “close community” are still more likely to reflect some relation to closeness.

- So assume as in the Watts-Strogatz model, from every node \(v \) we have edges to all nodes \(x \) within some grid distance \(r \) from \(v \).

- And now in addition random edges are generated as follows: we (independently) create an edge from \(v \) to \(w \) with probability proportional to \(d(v, w)^{-q} \) where \(d(v, w) \) is the grid distance from \(v \) to \(w \) and \(q \geq 0 \) is called the clustering exponent.

- The smaller \(q \geq 0 \) is, the more completely random is the edge whereas large \(q \geq 0 \) leads to edges which are not sufficiently random and basically keeps edges within or very close to one’s community.

- What is the best choice of \(q \geq 0 \)?
So what is a good or the best choice of the clustering coefficient q?

- It turns out that in this 2-dimensional grid model decentralized search works best when $q = 2$. (This is a result that holds and can be proven for the limiting behaviour, in the limit as the network size increases.)

![Graph showing the relationship between $\ln T$ and q.](Fig 20.6, E&K)

- Simulation of decentralized search in the grid-based model with clustering exponent q.
- Each point is the average of 1000 runs on (a slight variant of) a grid with 400 million nodes.
- The delivery time is best in the vicinity of exponent $q = 2$, as expected.
- But even with this number of nodes, the delivery time is comparable over the range between 1.5 and 2.
More precise statements of Kleinberg’s results on navigation in small worlds

The Milgram-like experiment

- Consider a grid network and construct (local contact) directed edges from each node \(u \) to all nodes \(v \) within grid distance \(d(u, v) = k > 1 \).

- Also probabilistically construct \(m \) (long distance) directed edges where each such edge is chosen with probability proportional to \(d(v, w)^{-q} \) for \(q \geq 0 \).

- We think of \(k \) and \(m \) as constants and consider the impact of the clustering coefficient \(q \) as the network size \(n \) increases.

- We assume that each node knows its location and the location of its adjacent edges and its distance to the location of a target node \(t \).

- The Milgram-like experiment is that each node we tries (without knowing the entire network) to move from a node \(u \) to a node \(v \) that is closest to \(t \) (in grid distance).
Reflection on the Kleinberg-Milgram model

As we said at the start of this topic, the real surprise is that a “short” (but not shortest) path is (probably wrt to the randomly generated network) being found by a decentralized search.

It is true that each node will pursue a “greedy strategy” but this is different than say Dijkstra’s least cost/distance algorithm which entails a centralized search.
Navigation in small worlds results

Theorem

(J. Kleinberg 2000)

(a) For $0 \leq q < 2$, the (expected) delivery time T of any “decentralized algorithm” in the $n \times n$ grid-based model is $\Omega \left(n^{\frac{2-q}{3}} \right)$.

(b) For $q = 2$, there is a decentralized algorithm with delivery time $O(\log n)$.

(c) For $q > 2$, the delivery time of any decentralized algorithm in the grid-based model is $\Omega \left(n^{\frac{q-2}{q-1}} \right)$.

(The lower bounds in (a) and (c) hold even if each node has an arbitrary constant number of long-range contacts, rather than just one.)
End of Monday, February 3 lecture and today's agenda

We ended with a statement of Kleinberg’s theorem. I want to first emphasize the difference between the decentralized search and say Dijkstra’s centralized search.

The rest of Chapter 20 is to better understand the Kleinberg result and how it extends to other networks.
Intuition as to why $q = 2$ is best for grid

- It is instructive to see why this choice of q provides links at the different “scales of resolution” seen in the Milgram experiment.
- That is, if D is the maximum distance to be travelled, then we would like links with distances between d and $2d$ for all $d < \log D$.
- Given that we have a 2-dimensional grid, the number of points with distance say d from a given node v will be $\approx d^2$.
- We are choosing such a node with probability proportional to $1/d^2$ and hence we expect to have a link to some node whose distance from v is between d and $2d$ for all d.

[Fig 20.7, E&K]
More realistic (nonuniformly spread) population data

- In the grid model, the population density is completely uniform which is not what one would expect in real data.
- How can this $1/d^2$ (inverse-square) distribution be modified to account for population densities that are very non-uniform?
- The idea is to replace distance $d(v, w)$ from v to w by the rank of w relative to v.
 - For a fixed v, define the rank(w) to be the number of nodes closer to v than w.
 - In the 2D grid case, when $d(v, w) \sim d$, then rank(w) $\sim d^2$.

[Fig 20.9, E&K]
More realistic geographic data continued

- We can then restate the inverse-square distribution by saying that the probability that v links to w is proportional to $1/rank(w)$.

- Using zip code information, for every pair of nodes (500,000 users on the blogging site LiveJournal) one can assign ranks.

- Liben-Nowell et al did such a study in 2005, and then for different rank values examined the fraction f of edges that are actually friends.

- The theory tells us that this fraction f should be a decreasing function proportional to $1/rank$.

- That is, $f \sim rank^{-1}$. Taking logarithms, $\log f \sim (-1) \log rank$.
More realistic (LiveJournal) friendship data

(a) Rank-based friendship on LiveJournal

(b) Rank-based friendship: East and West coasts

[Fig 20.10, E&K]

- In Figure 20.10 (a), the Lower (upper) line is exponent = \(-1.15\) (resp. \(-1.12\)).

- In Figure 20.10 (b), the Lower (upper) line is exponent = \(-1.05\) (resp. \(-1\)). The red data is East Coast data and the blue data is West Coast data.
Liben-Nowell: practice closely matches theory

Liben-Nowell prove that for “essentially” any population density (i.e. no matter where people are located) if links are randomly constructed so that the probability of a friendship is proportional to $rank^{-1}$, then the resulting network is one that can be efficiently searched in a decentralized manner.

That is, Kleinberg’s result for the grid generalizes. This is a rather exceptional result in that the abstraction from d^{-2} to $rank^{-1}$ is not at all an obvious generalization.

Indeed, we should be surprised that natural populations should locate themselves in this probabilistic manner since there is no centralized organizing mechanism that is causing this phenomena?
Liben-Nowell: practice closely matches theory

Liben-Nowell prove that for “essentially” any population density (i.e. no matter where people are located) if links are randomly constructed so that the probability of a friendship is proportional to $rank^{-1}$, then the resulting network is one that can be efficiently searched in a decentralized manner.

That is, Kleinberg’s result for the grid generalizes. This is a rather exceptional result in that the abstraction from d^{-2} to $rank^{-1}$ is not at all an obvious generalization.

Indeed, we should be surprised that natural populations should locate themselves in this probabilistic manner since there is no centralized organizing mechanism that is causing this phenomena?

The text refers to a 2008 article by Oscar Sandberg who analyzes a network model where decentralized search takes place which in turn causes links to “re-wire” so as to fascilitate more efficient decentralized search.

It remains an intriguing question as to the extent this does happen in social networks and the implicit mechanisms that would cause networks to evolve this way.
The plot in Figure 20.10, and their follow-ups, are thus the conclusion of a sequence of steps in which we start from an experiment (Milgram’s), build mathematical models based on this experiment (combining local and long-range links), make a prediction based on the models (the value of the exponent controlling the long-range links), and then validate this prediction on real data (from LiveJournal and Facebook, after generalizing the model to use rank-based friendship). This is very much how one would hope for such an interplay of experiments, theories, and measurements to play out. But it is also a bit striking to see the close alignment of theory and measurement in this particular case, since the predictions come from a highly simplified model of the underlying social network, yet these predictions are approximately borne out on data arising from real social networks.

And not clear why real friendships are so arranged.
The Backstrom et al rank-based study

- Backstrom et al study US Facebook 2010 geographic user data.
 1. Roughly 100 million users
 2. About 6% of which enter home address info and of that population about 60% can be parsed into longitude and latitude information.
 3. This gave a set of 3.5 million users (of which 2.9 million had at least one friend with a well specified address and each of these 2.9 million users had an average of 10 friends with specified addresses resulting in 30.6 million edges.
 4. Although a small part of facebook, this 2.9 million person “geolocated data set” is sufficiently large and representative for experimental study.

They study probability of friendships vs distance and rank and how those probabilities depend on population densities for where people live. This study provides more evidence as to the power law relation between distance/rank and probability ($\approx rank^{-0.95}$). Furthermore, they utilize this relationship between friends and distance to create an algorithm that will predict the location of an individual from a small set of users with known location. They claim their algorithm can predict geographic locations better than using IP information!
The Backstrom et al rank-based study

- Backstrom et al study US Facebook 2010 geographic user data.
 1. Roughly 100 million users
 2. About 6% of which enter home address info and of that population about 60% can be parsed into longitude and latitude information.
 3. This gave a set of 3.5 million users (of which 2.9 million had at least one friend with a well specified address and each of these 2.9 million users had an average of 10 friends with specified addresses resulting in 30.6 million edges.
 4. Although a small part of Facebook, this 2.9 million person “geolocated data set” is sufficiently large and representative for experimental study.

- They study probability of friendships vs distance and rank and how those probabilities depend on population densities for where people live. This study provides more evidence as to the power law relation between distance/rank and probability ($\approx rank^{-0.95}$) of friendship.
The Backstrom et al rank-based study

- Backstrom et al study US Facebook 2010 geographic user data.
 1. Roughly 100 million users
 2. About 6% of which enter home address info and of that population about 60% can be parsed into longitude and latitude information.
 3. This gave a set of 3.5 million users (of which 2.9 million had at least one friend with a well specified address and each of these 2.9 million users had an average of 10 friends with specified addresses resulting in 30.6 million edges.
 4. Although a small part of facebook, this 2.9 million person “geolocated data set” is sufficiently large and representative for experimental study.

- They study probability of friendships vs distance and rank and how those probabilities depend on population densities for where people live. This study provides more evidence as to the power law relation between distance/rank and probability ($\approx rank^{-0.95}$) of friendship.

- Furthermore, they utilize this relationship between friends and distance to create an algorithm that will predict the location of an individual from a small set of users with known location. They claim their algorithm can predict geographic locations better than using IP information!
Some statistics for geolocated data

<table>
<thead>
<tr>
<th>Table 1: Demographic Statistics of Geolocated Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Male</td>
</tr>
<tr>
<td>% Female</td>
</tr>
<tr>
<td>% Female</td>
</tr>
<tr>
<td>Age, Median</td>
</tr>
<tr>
<td>Age, Mean</td>
</tr>
<tr>
<td>Account Age (days), Median</td>
</tr>
<tr>
<td>Account Age (days), Mean</td>
</tr>
<tr>
<td>Friend Count, Median</td>
</tr>
<tr>
<td>Friend Count, Mean</td>
</tr>
</tbody>
</table>

[Table 1 from Backstrom et al]

- What is noticeable about this data?
Figure 7: Probability of friendship as a function of distance. By computing the number of pairs of individuals at varying distances, along with the number of friends at those distances, we are able to compute the probability of two people at distance d knowing each other. We see here that it is a reasonably good fit to a power-law with exponent near -1.

[Figure 7 from Backstrom et al]
Figure 8: Looking at the people living in low, medium and high density regions separately, we see that if you live in a high density region (a city), you are less likely to know a nearby individual, since there are so many of them. However, you are more likely to have contact with someone far away.
Number of friends wrt. rank

Number of Friends at Different Ranks

[Figure 9 from Backstrom et al]
Predicting locations

Figure 11: Location Prediction Performance. This figure compares external predictions from an IP geolocation service, the same service constrained to users who have recently updated their address, a baseline of randomly choosing the location of a friend, along with three predictions: our algorithm with all links, for users with 16+ friends, and finally for users with 16+ friends constraining to only those with whom they have communicated recently.
From geographic distance to social distance

- What if there is no (reliable) distance information in a social network?

It is, of course, natural that we tend to have more common interests with people who live closer to us (e.g. based on ethnicity, economic status, etc), but clearly there are other notions of social distance that should be considered.

Early in the course we considered social foci (clubs, shared interests, language, etc.) we tend to share a number of focal interests with the same person.

But, of course, belonging to a small group of people in a course, is different than attending the same University, and speaking Mandarin is different than being interested in Esperanto.

So the suggestion is made that we can define social distance $s(v, w)$ between two individuals v, w to be the minimum size of a focus they share.
From geographic distance to social distance

- What if there is no (reliable) distance information in a social network?

- It is, of course, natural that we tend to have more common interests with people who live closer to us (e.g. based on ethnicity, economic status, etc), but clearly there are other notions of social distance that should be considered.
From geographic distance to social distance

- What if there is no (reliable) distance information in a social network?

- It is, of course, natural that we tend to have more common interests with people who live closer to us (e.g. based on ethnicity, economic status, etc), but clearly there are other notions of social distance that should be considered.

- Early in the course we considered social foci (clubs, shared interests, language, etc.) we tend to share a number of focal interests with the same person.

- But, of course, belonging to a small group of people in a course, is different than attending the same University, and speaking Mandarin is different than being interested in Esperanto.
From geographic distance to social distance

- What if there is no (reliable) distance information in a social network?

- It is, of course, natural that we tend to have more common interests with people who live closer to us (e.g. based on ethnicity, economic status, etc), but clearly there are other notions of social distance that should be considered.

- Early in the course we considered social foci (clubs, shared interests, language, etc.) we tend to share a number of focal interests with the same person.

- But, of course, belonging to a small group of people in a course, is different than attending the same University, and speaking Mandarin is different than being interested in Esperanto.

- So the suggestion is made that we can define social distance \(s(v, w) \) between two individuals \(v, w \) to be the minimum size of a focus they share.
Smallest size shared focus as a distance measure

- Kleinberg (2001) gives theoretical results indicating that when friendships follow a distribution proportional to $1/s(v, w)$ then the resulting social network will support efficient decentralized search.

- This is somewhat verified in a study (by Adamic and Adar) of ‘who talks to whom’ friendship data (based on frequency of email exchanges) amongst a small group of HP employees.

- The focal groups are defined by the organizational hierarchy of the company.

- The Adamic and Adar 2005 study shows that the distribution for this friendship relationship is proportional to the inverse of $s(v, w)^{-3/4}$ so that it doesn’t match as closely with the previous geographical rank based results but still observes a power law relation governing how social ties decrease with “distance”.
Probability of email exchanges vs distance in the organizational hierarchy

Fig. 4. Probability of linking as a function of the separation in the organizational hierarchy. The exponential parameter $\alpha = 0.94$, is in the searchable range of the Watts model (Watts et al., 2002).

Fig. 5. Probability of two individuals corresponding by email as a function of the size of the smallest organizational unit they both belong to. The optimum relationship derived in (Kleinberg, 2001) is $p \sim g^{-1}$, g being the group size. The observed relationship is $p \sim g^{-3/4}$.

[Figure 4 from Adamic and Adar]
Probability of email exchanges vs size of smallest common organizational unit

Figure 5: Probability of two individuals corresponding by email as a function of the size of the smallest organizational unit they both belong to. The optimum relationship derived in [7] is $p \sim g^{-1}$, g being the group size. The observed relationship is $p \sim g^{-3/4}$.

[Figure 5 from Adamic and Adar]
Final observations in chapter

The text suggests viewing the Milgram experiment as an example of decentralized problem solving (in this case solving a shortest path problem). An advertisement for distributed systems course.

The text asks what other problem solving tasks might be amenable to such decentralized problem solving and how to analyze what can be done especially in large online networks.

Finally the text briefly suggests the role of social status in determining the effectiveness of reaching a given target.

- An email forwarding Milgram type 2003 study by Dodds et al shows that completion rates to all targets were low but were highest for “high status” targets and particularly small for “low status” targets.

In section 12.6, the text speculates on structural reasons for the impact of status. This discussion leaves me with the sense that we are far from having any comprehensive understanding of such phenomena.
While we are far from a thorough understanding of these issues related to decentralized search, I still find the results very insightful. And so I will requote the comment in the text now for the third time.

The plots in Figure 20.10, and their follow-ups, are thus the conclusion of a sequence of steps in which we start from an experiment (Milgram’s), build mathematical models based on this experiment (combining local and long-range links), make a prediction based on the models (the value of the exponent controlling the long-range links), and then validate this prediction on real data (from LiveJournal and Facebook, after generalizing the model to use rank-based friendship). This is very much how one would hope for such an interplay of experiments, theories, and measurements to play out. But it is also a bit striking to see the close alignment of theory and measurement in this particular case, since the predict predictions come from a highly simplified model of the underlying social network, yet these predictions are approximately borne out on data arising from real social networks.
Chapter 20 started off with a discussion of the small worlds phenomena and an insightful understanding of how decentralized search can work.

We have seen earlier (Chapters 3 and 4) how selection (i.e. homophily in the sense of "birds of a feather flock together") causes friendship links.

In the process of understanding decentralize search, we are led to the observation that geographical distance (or social distance) correlates with friendship in the sense that $\text{Prob}[v \text{ is a friend of } u] \approx [\text{rank}_u(v)]^{-1}$.

We even saw a claim (by Oscar Sandberg) that decentralized search might implicitly be a partial explanation of network dynamics and structure although (from my sense of how the chapter reads), it is left as an intriguing question as to how network structure evolves to have this friendship power law distribution.

Furthermore, (again as I read the chapter) the sense is that long distance friendships are “rare”.
Power law distributions

A *power law distribution* for discrete random variable X satisfies

$\text{Prob}[X = k] \approx \frac{a}{k^c}$ for some constants a and c. (We often just focus on the exponent c.)

Chapter 18 calls attention to the fact that power law distributions often occur in network and natural phenomena. Moreover, power law distributions in social and information networks arise from coupled or correlated individual decisions and events what may at first glance may seem extremely rare are not so rare. For example, the popularity of certain books, occurrences of specific words in a natural language, etc. More specifically, the text considers the frequency of in-links to web sites. That is, in the study of the web network (i.e. in an information network), the probability that a site will have k in-links is proportional to k^{-2}. (More precisely, proportional to $k^{-2+\epsilon}$ for some $\epsilon > 0$.

And here is a main message of chapter 18; such events (i.e., for a site to have so many in-links) are not so rare when compared with what would be predicted by independent decisions.
Power law distributions

A power law distribution for discrete random variable X satisfies $\text{Prob}[X = k] \approx \frac{a}{k^c}$ for some constants a and c. (We often just focus on on the exponent c.)

Chapter 18 calls attention to the fact that power law distributions often occur in network and natural phenomena. Moreover, power law distributions in social and information networks arise from coupled or correlated individual decisions and events what may at first glance may seem extremely rare are not so rare. For example, the popularity of certain books, occurrences of specific words in a natural language, etc. More specifically, the text considers the frequency of in-links to web sites.

That is, in the study of the web network (i.e. in an information network), the probability that a site will have k in-links is proportional to k^{-2}. (More precisely, proportional to $k^{-(2+\epsilon)}$ for some $\epsilon > 0$.)

39 / 42
Power law distributions

A power law distribution for discrete random variable X satisfies
$\text{Prob}[X = k] \approx \frac{a}{k^c}$ for some constants a and c. (We often just focus on the exponent c.)

Chapter 18 calls attention to the fact that power law distributions often occur in network and natural phenomena. Moreover, power law distributions in social and information networks arise from coupled or correlated individual decisions and events what may at first glance may seem extremely rare are not so rare. For example, the popularity of certain books, occurrences of specific words in a natural language, etc. More specifically, the text considers the frequency of in-links to web sites.

That is, in the study of the web network (i.e. in an information network), the probability that a site will have k in-links is proportional to k^{-2}. (More precisely, proportional to $k^{-(2+\epsilon)}$ for some $\epsilon > 0$.

And here is a main message of chapter 18; such events (i.e., for a site to have so many in-links) are not so rare when compared with what would be predicted by independent decisions.
How rare is rare when compared with averages over independent actions?

- What if people chose friends independent of where they lived or what interests they had, what would be (the distribution for) the number of friends we would each have?
- What if we all independently chose to read books not dependent on current events or what friends (or an online system) recommended, how rare would it be to have a huge best seller?
- What, if each web site chose their out-links independently and without some underlying dynamics to guide the process?

As is well understood, the **Central Limit Theorem** tells us that “a quantity that can be viewed as the sum (or average) of many small independent random effects will be well-approximated” by a *normal distribution.*
The normal distribution

The normal or Gaussian distribution has the following probability density function:

\[f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

As we know, normal distributions have a bell shaped curve.

From: http://www.answers.com/topic/normal-distribution
So how rare is rare?

For a normal distribution, the probability that an outlier (i.e. an exceptional event) will occur decreases exponentially (with distance from the mean). In particular, if say in-links followed a normal distribution, then the probability that a given site would have k links would decrease exponentially in k. Very small or large “outliers” would be highly improbable.
So how rare is rare?

For a normal distribution, the probability that an outlier (i.e. an exceptional event) will occur decreases exponentially (with distance from the mean). In particular, if say in-links followed a normal distribution, then the probability that a given site would have \(k\) links would decrease \textit{exponentially} in \(k\). Very small or large “outliers” would be highly improbable.

So how rare is rare when for example we compare \(\text{Prob}[k \text{ in-links}] \approx k^{-2}\) in comparison to \(\text{Prob}[k \text{ in-links}] \approx 2^{-k}\)?

For say \(k = 30\), \(2^{30} \approx 10^9\) where as \((30)^2 = 900\). One in a billion vs better than 1 in a 1000.
So where are we going?

As we have mentioned before, one of the most fundamental questions for social networks concerns how they involve. What is the interplay between selection and influence?

Perhaps, information networks (albeit still created by individuals) can be better understood than the dynamics of friendships, political affiliations, opinion formation, etc.

Chapter 18 suggests a network dynamics that will lead to a power law distribution.