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Announcements and agenda

Announcements

@ If you submitted a proposal for your critical review and it was not
acknowledged please resend. The due date for the critical review is
Monday, March 18. | understand from Tyrone that there are
questions regarding the critical report assignment. Please ask!

@ | have posted the first four questions for the final assignment which is

due March 29.
Todays agenda.

Q@ We will first finish up the discussion of how to choose an initial set of
adopters in a network.

© Knowledge and common knowledge

© Competitive influence spread

@ Begin Chapter 21: The spread of disease in a contact network
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Linear threshold model

@ We have an edge weighted (undirected or directed) network where
weight w(u, v) represents the relative influence (e.g. quantitative
version of weak and strong ties) of node u on node v.

@ Now each nodes threshold g(v) is chosen randomly in [0, 1] to model
lack of knowledge as to how easy it is to influence a given individual.

@ A node v adopts A if the sum of all edge weights into v exceeds the
randomly chosen g(v).

@ Goal: find an initial set of k adopters so as to maximize the expected
number (or benefit) of eventual adopters. (This is a stochasitic
process so that we are trying to optimize the expected value of the
process. )

o Aside: We often use the language of disease spread and say “infected
nodes” rather than “already influenced nodes”.



The linear threshold model

@ Each node v chooses a threshold t, randomly from [0, 1].

@ Each edge (u, v) has assigned weight w,, from [0, 1] such that

ZWUVS 1.

u—v

@ In each step t, a node v is infected if the weighted sum of incident
edges coming from infected neighbors exceeds threshold.

(v)t=1/2

1/4 1/3
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Independent cascade influence model

We again have an edge weighted network (as in threshold model) but
now the weights p(u, v) < 1 represent the probability that node v will
influence node v given one and only one chance to do so.

That is, if node u adopts A at time t, then with probability p(u, v),
node v will adopt v at time t + 1.

After this, node u will not have another opportunity to influence v.

Goal for both threshold and cascade models: to find initial set of
adopters to maximize the expected number of eventual adopters.

Threshold and (especially) cascade processes are motivated by models
for the contagious spread of disease. Should disease spread and
influence spread should be governed by similar processes?
» See http://www.economist.com/blogs/babbage/2012/04/
social-contagion


http://www.economist.com/blogs/babbage/2012/04/social-contagion
http://www.economist.com/blogs/babbage/2012/04/social-contagion

The Independent Cascade Process

@ Each edge (u, v) has an associated probability p,, .

@ In each step t, nodes that adopted technology at step t — 1 “infect”

each of their uninfected neighbors with probability p,, .
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The Independent Cascade Process

@ Each edge (u, v) has an associated probability p,, .

@ In each step t, nodes that adopted technology at step t — 1 “infect”
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RNz

6

45



The Independent Cascade Process

@ Each edge (u, v) has an associated probability p,, .

@ In each step t, nodes that adopted technology at step t — 1 “infect”

each of their uninfected neighbors with probability p,, .
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How to select a good set of initial adopters

@ For an initial set S of adopters, let 7(S) be the expected number of
eventual adopters. While in general it is computationally hard to find
an optimal set S of initial adopters, for the stochastic linear threshold
and independent cascade models, f(S) is a nomalized, monotone,
submodular function.

@ This allows for a very simple “greedy” algorithm that (provably)
selects a set S such that f(S) is at least within a factor (1 — 1) ~ .63
of optimality.

@ The greedy strategy is to iteratively add (to whatever nodes S have
already been selected) one new initial adopter v so as to maximize
the expected marginal gain f(S + v) — (S).

@ We need to simulate the stochastic process for sufficiently many trials
to determine the next node to add. (When different nodes to have
different utility values, accurate simulation requires that the ratio of
such values is reasonably bounded.)



An experimental study comparing methods: Kempe,
Kleinberg, Tardos

@ To test the usefulness of the models being studied, Kempe et al.
compare the greedy by best expected marginal gain algorithm with
three other simple (all adding one initial node at a time) methods
that do not require simulating the process.

@ Namely, they compare against:

> Greedy by highest degree first
» Greedy by centrality, i.e. by best average path length
» Random choice of adopters

@ The experimental data set is an undirected multi-graph based on
jointly authored papers by physicists.

@ Here we have r edges between u and v if they have been co-authors
on r papers.

> In the threshold model, weights w(u, v) are chosen proportional to the
multiplicity of edges between u and v.
> In the weighted cascade model, probabilities are set proportionally.
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Some lessons to be learned about influence in a
social network (Chapter 19)

@ In population-level effects, it can be relatively difficult for a new
technology/product/idea to get past a tipping point

@ In contrast in social networks, new products/ideas (rumours) can
spread extensively and quickly.

@ But tightly knit communities (clusters) can stall the spread.

@ We saw in the early part of the course that weak ties are often bridges
or local bridges between different communities.

@ Hence such weak ties may convey some degree of awareness to
another community but not likely to change behaviour especially if
that change has risks as in political movements and high stakes
economic decisions.
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Further considerations (collective action)

@ Section 19.6 almost seems to have been (but was not) written after
events in the mideast (the Arab Spring starting in late 2010), Hong
Kong (protests in 2014) , and even what is recently taking place in
Venezuela (March 4, 2019).

@ The discussion here begins to combine aspects of social network
interaction (e.g. transmitting information) with direct benefit
population effects (being part of a large demonstration).

@ In particular, the organization for demonstrations against a regime
can begin with discussions within a community but for someone to
participate, it usually takes some knowledge that there will be a
sufficiently large population wide participation.

@ On a smaller scale, when challenging a mayor or a CEO, the same
phenomena may be operating.
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Knowledge and common knowledge

@ Our first example of a tightly knit community blocking a complete cascade occurred even
when everyone knew the common threshold g.

@ A uniform threshold is not that realistic in any reasonable size social network.
» We might have a sense of the thresholds for our friends but not of all their friends (and their
friends friends, etc.)

@ The example in Figure 19.14 illustrates the impact of limited knowledge even when
everyone knows the entire network but only knows their friends and their own absolute
(i.e. not fractional in this example) thresholds.

@ Here threshold k means that the node (being me) will participate if at least k people
(including myself) will do so.

3 3 3
(a) An uprising will not occur (b) An uprising will not occur (¢) An uprising can occur
[Fig 19.14, E&K]
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Further considerations: competitive influence spread

@ In many economic, social, and political settings the spread of
influence is a competitive process.

@ It may be that both technologies (political factions, etc.) A and B are
competing for new adopters in a social network by promotion via an
initial set of adopters (people with vested interests, etc.).

@ There are many models for how such competition is resolved.

@ One possibility is to use the stochastic independent cascade model
and then the first technology (political faction, etc.) to have a “path
of adoption” succeeds (breaking ties in some manner).

@ That is, after the edge probabilities are instantiated, we consider the
shortest paths to a node (if any exist) from the initial adopters (party
faithful, etc.) to the initially uncommitted.
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The Wave Propagation Process

@ Two technologies A and B with their sets of initial adopters /4 and /.

@ Technology spreads according to the Independent Cascade process.
o If a node is successfully infected at the same step t by both

» set of nodes V, that adopt technology A
» set of nodes Vg that adopt technology B

|Val

it will adopt technology A with probability Val+ Vsl
A B

Example
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The Wave Propagation Process

@ Two technologies A and B with their sets of initial adopters /4 and /.
@ Technology spreads according to the Independent Cascade process
o If a node is successfully infected at the same step t by both

» set of nodes V, that adopt technology A
» set of nodes Vg that adopt technology B
| Val

it will adopt technology A with probability Val + | Val
A B

1, @
.5
Example

1 5
@ @ @ Pr[v adopts A| x, z reached v] = %
@ Pr[v adopts A|x,y, z reached v] = %
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Further considerations: the “bilingual option”

@ In the advanced material (Section 19.7C), the possibility of a third
option is considered.

@ Here the model allows an individual to maintain both technologies
(languages, ideologies, cultural practices) but at a cost c.

@ Every individual now can choose to be unilingual (adopting just A or
just B) or to be bilingual adopting both (denoted AB).

@ Ignoring the cost, the coordination benefit (for each edge) is
represented in Figure 19.18.

w
A B AB
A a,a 0,0 a,a
v B 0,0 b, b b,b
AB a,a b,b (a,b)", (a,b)"

Figure: A Coordination Game with a bilingual option. Here the notation (a, b)™
denotes the larger of a and b. [Fig 19.18, E&K]
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A concluding comment for chapter 19

@ The last sentence of the chapter makes the final comment:

Even small extensions such as the one considered here (the
bilingual option) can introduce significant new sources of
complexity, and the development of even richer extensions is
an open area of research.

@ Indeed such analytic studies of influence spread in more complex
networks is an emerging field of significant research interest impacting
computer science, sociology, economics, and political science.
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Chapter 21: Epedemics and the spread of disease in
a contact network

@ The chapter first considers some simple models for how disease can
spread in a contact network that is, the social network (because the
nodes are still people) where the links links represent some form of
contact between two people.

@ The spread of a disease and the dynamics of an epidemic clearly
depend on the nature of the disease (e.g. how infectious, periods of
incubation, periods of contagion, immunization, permanent vs
recurring infection).

@ But the spread process also depends on the contact network within
which the process is unfolding. Of course, our interest here is in the
way in which we model these dynamics and how the network
characteristics impact the process.



How does social /information spread differ from
disease contagion?

@ Chapter 19 considered deterministic models of spread (e.g. if a
threshold of your friends adopted a new technology, then you did
also). Chapter 21 considers contact networks where the spread
process is also stochastic (i.e. the spread is controlled by a
probabilistic process).

@ We already moved to such a stochastic view when we considered the
independent cascade and randomized threshold models as discussed in
the context of selecting an initiual set of influential adopters. Later in
chapter 21, the text also notes that social contagion is also often best
viewed as a stochastic process.

@ An intrinsic difference in these studies is that in contact networks (for
disease spread), the links are often considered to be transient (i.e.
only lasting for some period of time) whereas our study of social
spread, small worlds and decentralized search were discussed in the
context of permanent relationships (i.e.a static network).
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Pure branching processes

@ For simplicity (as we did in Chapter 20 and the study of decentralized
search), we start off with a tree network (i.e. assuming no triadic
closure). Here we will assume that every individual v at time t comes
in contact with k new individuals and if v is infectious, then with
some probability p, v will iindpendently pass on the disease to each of
these new contacts by time t + 1.

@ That is, if a given (root) individual initially (at time t = 0) is
infectious, then at time 1, there will be k people, each of which will
independently contract the disease with probability p and become
infectious. Then any of these (say k) newly infected individuals are
potentially passing on the disease to some of the kk individuals who
have indirectly come in contact by time 2, etc.
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The tree network at time t =0

Figure: At time t = 0, only the root is infected. [Fig 21.1(a), E&K]
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When will a disease die out in a pure branching
process?

@ Define Ry (the basic reproductive number) to be the expected
number of new cases of the disease caused by a single (infectious)
individual at any time. In this simple branching process, Ry = p - k.

@ It is intuitively clear than when Ry < 1, the disease will eventually die
out since each individual is not in some sense able to sufficiently
replenish the disease (even if by the randomization of the process the
number of new infections fluctuates for a while).

@ And when Ry > 1, unless the disease gets unlucky (and society gets
lucky), the disease is likely to persist and continue to witness new
infections at every time step and indeed the infection will likely be
wide spread.
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Ry > 1: likely that disease spreads widely

000000000 DLD

Figure: High reproductive number. [Fig 21.1(b), E&K]
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Ry < 1: likely that disease dies out
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Figure: High reproductive number. [Fig 21.1(c), E&K]
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A simple conclusion from a simple model

Given that we are starting with such a simple model, we cant expect
to draw many conclusions. But one conclusion is as follows. When
the basic reproductive number Ry exceeds 1, there is a huge societal
benefit in trying to reduce k or p so as to lower Ry. How?
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A simple conclusion from a simple model

Given that we are starting with such a simple model, we cant expect
to draw many conclusions. But one conclusion is as follows. When
the basic reproductive number Ry exceeds 1, there is a huge societal
benefit in trying to reduce k or p so as to lower Ry. How?

Quarantining infected individuals reduces the degree of contact k,
and better health care practices reduce the individual probability p of
infecting a new contact.
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Networks and the SIR model

We now consider an arbitrary network structure in which individuals can

be in three states during the infectious disease spread process.
The SIR model.

@ S: The susceptible state where we consider any individual can
contract the disease

@ I: The infectious state when an individual has caught the disease and
now is infectious with some probability of spreading the disease.

@ R:The removed state when an individual is no longer infectious and is
removed from further consideration. Obviously there are good
(recovered and living) and bad ways to be removed. That is, in this
model, once someone has had the disease, we assume that they are
immune in the future. (Soon, we will consider an extended model
where people can become infected again.)
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End of Wednesday, March 13 Lecture

We ended at slide 25. The Friday lecture will be dvoted to Chapter 21.

In particular, we will discuss:
@ the SIR, SIS and SISR models of disease spread
@ Disease oscillations
@ The impact of concurrency in disease spread.

@ Genetic inheritance and Mitochondrial Eve

26
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The SIR Process

@ Initially, some nodes are in the infectious state /, and all others are in
the susceptible state S. This is, of course, the same as considering the
I nodes as the initial adopters in the cascade social spread process.

@ Each node v that enters the infectious state stays infectious for a
fixed number of steps t; in the cascade model, we assumed t; = 1.

@ During each of these t; steps, each infectious v has a probability p of
infecting each of its susceptible neighbours. In the cascade model, we
allowed a different probability for each edge (v, w).
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Many possible extensions to the SIR Process

@ As in the cascade model we can have a different probability p(v,w) of
infection spread for each edge.

@ The length of the infectious stage can be stochastic with periods t; of
being infectious drawn from some distribution D; or even being drawn
from some distribution D(/, v) depending on node v as well as the
nature of the disease. Or more simply a node has probability g (resp.
q(v)) of recovering in each step while being infectious.

@ The infectious state can be partitioned in sub-stages (e.g. early,
middle, late stages of infection) with different contagion probabilities.

@ The disease itself mutates during an outbreak or epidemic which then
continues to dynamically change the process.
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The course of an SIR contagion spread with t; =1

Figure 21.2: The course of an SIR epidemic in which each node remains infectious for a
number of steps equal to t; = 1. Starting with nodes y and z initially infected, the epidemic
spreads to some but not all of the remaining nodes. In each step, shaded nodes with dark
borders are in the Infectious (I) state and shaded nodes with thin borders are in the Removed
(R) state.
29 /45



An alternative view of an SIR contagion spread

Conceptually we think of the SIR process being dynamic taking place over
time. There is an alternative view (mentioned in study of cascade social
influence spread and competitive spread processes) that may help explain
who eventually gets infected. Namely, we think of all these edge
probabilities being instantiated initially (each instantiation now coming
from the joint distribution). Each such instantiation results in some edges
being “open” and some “blocked”. The following figure clearly shows who
is being infected, namely the nodes reachable by open edges. In the figure,
nodes s,t,u,w will not become infected in the instantiation depicted by the
bold open edges. The other nodes will become infected at some time.
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Alternative view of the previous specific instantiation

Figure 21.4: An equivalent way to view an SIR epidemic is in terms of percolation, where
we decide in advance which edges will transmit infection (should the opportunity arise) and
which will not.
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Roadblocks to contagion spread

@ In the context of social influence spread, we saw that tightly knit
communities can be isolated against the adoption of a new
technology. Similarly, once we move away from the pure branching
process, the basic reproductive number Ry no longer completely
determines the extent of contagion.

@ Consider the following simple network, and assume p = % and hence
Ry = %. However, the disease would have to continue to pass through
a narrow channel where there is a probability g = (%)4 that all four
edges in some stage of this network will fail to transmit and hence the
disease will be wiped out.
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The basic SIS model

The SIR model assumes that once a person has been infected and the
infection has run its course, then the person is no longer susceptible
(and is effectively removed from the network).

But certain diseases and infections (the FLU) can and will reoccur.
The SIS model no longer has a removed state R but rather after the
infection has run its course, the individual returns to the susceptible
state S (and hence the acronym).

Initially, some nodes are in the infectious / state; other nodes are in
the susceptible S state.

Each node v that enters the infectious state stays infectious for a
fixed number of steps t;.

During each of these t; steps, each infectious v has a probability p of
infecting each of its susceptible neighbours.

After t; steps, node v is no longer infectious and returns to the
susceptible state S.
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Representing an SIS process as a sequence of SIR
iterations

Figure: A SIS process (with t; = 1) depicted as a sequence of SIR steps. [Fig
21-6(b), E&K]
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Extensions of the SIS model

@ The basic SIS model can be extended in many ways. For example:

» As in the SIR model, there can be different probabilities p(,,.)
associated with each network edge (u, v).

» An individual only returns to the susceptible state S with some
probability g.

» There can be multiple stages of an infection with each stage having
different contagion properties.

@ An interesting modification is the following SIRS model which
provides insight into why some diseases seem to show a time
oscillating behaviour in terms of the extent of infection in given
populations.
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The SIRS model

@ As in the previous models, initially some nodes are in the infectious /
state; all others are in the susceptible S state.

@ Each node v that enters the infectious state stays infectious for some
t; steps.

@ During each of these t; steps, each infectious v has a probability p of
infecting each of its susceptible neighbours.

@ After t; steps, the infectious node v enters the R (i.e., a period of
immunity) state for some tg steps. After these tg steps, the node

returns to the S state. Either or both t; and tg can be random
variables.

36 /45



Disease oscillations

The presense of periods of immunity in the SIRS model induced by the t
parameter can produce oscillations in localized parts of a network. It is
also the case that we sometimes observe seemingly coordinated outbreaks
of a disease in different parts of the network. To explain how this can
occur, consider a network that has long range edges in addition to edges
within small neighbourhoods.

This is, of course, reminiscent of the network structure that provided an
explanation for the small world phenomena.

Indeed, Kuperman and Abrahamson consider a network model following
the original network model of Watts and Strogatz.

More specifically, we have a network with edges connecting (graph
theoretically) nearby nodes augmented with some edges chosen uniformly
at ramdom. (Here the random edges do not probabilistiocally depend on
distance as in the model used to explain decentralized search and the small
worlds phenomena in Chapter 20.)
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The Kuperman and Abrahamson model

Furthermore, Kuperman and Abrahamson consder a one dimensional
model contructed as follows:

@ Nodes are arranged in a ring (i.e. a cycle) with edges between nodes
within some small diostance of each other.

@ Then with some probability ¢, an edge is redirected randomly to a
node chosen uniformly at random.

@ They then study the SIRS contagion model for such a stochastic
network.

@ As we might expect the behaviour of disease occurence in such a
network will depened on the probability ¢ of redirecting an edge even
when fixing p (the probability of transitting the disease), t; (the
duration for being infectious,, and tg (the period of immunity).
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Simulations from Kuperman and Abrahamson
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Figure: The plots depict the number nj,r(t) (at time t) of infected people in an

SIRS contagion spread. Figure and results are due to Kueprman and Abrahamson.
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Reflections on the Kuperman and Abrahamson
study for a syntactic network, and empirical findings

As always the text cautions us about the significance of models, and in
this case, the simplified network model. Still, it is interesting to observe
how different the results are for diferent settings of the random redirection
probability c.

In the small worlds phenomena, the theoretical model and results seem to
match well with real world data. Here we do not have theoretical results
but rather simulations on synthetically constructed networks. (The text
indicates that this is a good research topic.)

However, there is some real workd findings for which the SIRS model
provides some insight (into observed oscillations in disease outbreaks).

Grassly, Fraser and Garnett compared the differences in the occurence of
two STDs, namely syphillis and gonorrhea. Namely syphilis exhibits
oscilllations on an 8-11 year cycle whereas gonorrhea does not exhibit any
substantial periodic behavior.
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How to explain the differences in the spread of two
different STDs?

This difference in oscillating behviour is, at first thought, surprising since
the method of contagion spread is the same and the underlying network
for social relations is also the same. What is a plausible explanation?
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How to explain the differences in the spread of two
different STDs?

This difference in oscillating behviour is, at first thought, surprising since
the method of contagion spread is the same and the underlying network
for social relations is also the same. What is a plausible explanation?

It turns out the syphilis has limited periods of temporary immunity after
infection whereas gonnorrhea does not. The osciallation peiods for syphilis
seem to correlate well with the timing (i.e., the t; parameter) of immunity.

Moreover, the extent to which the outbreaks of syphilis are synchronized in
the U.S. has been increasing over the second half of the 20th century
which can be explained by increasing levels (i.e. the redirection parameter
c) of cross-country contacts.
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The transient nature of contacts

In our introduction of contact networks and models for disease spread, we
noted that there is a dynamic aspect to such models. This manifested
itself in the duration for being contagious. However, the underlying
network itself was static. This is not a bad assumption for infections that
spread quickly at a faster pace than the creation and ending of contacts.

In other disease scenarios, the spread of an infection may be very
dependent on the transient behaviour of contacts. This can be especially
true of diseases that are spread by sexual relations.

Aside: It is perhaps interesting to note how many studies are motivated by
romantic or sexual contacts. Recall, in the first lecture, the nature of the
network induced by high school romantic relations in an 18 month period.

We can extend the contact network models to reflect very transient
contacts, by specifying (on the edges) the time period when individuals are
in contact with each other and can transmit the disease.
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The transient nature of contacts continued:
concurrency maters

It should not be surprising that the more contacts occur simulataneously,
the more extensive will be the spread of a disease.

And as the text points out, this transient behaviour of contacts can apply
to settings outside of disease spread such as information spread.

The following example illustrates the impact of concurrency while keeping
the duration t; of infection fixed. In these examples, t; = 5. In addition,
each edge e = (k,{) is labelled by an interval [se, f.] indicating that
individuals k and ¢ were in contact starting at time s, and ending at time
fe. (In these examples, the number n, of time steps of contact has been
set to n. = b5 for all edges. It is an unfortunate choice that no = t; =5 as
this is not mandated by the model.)

The assumption is that if individual k becomes infected at some time
t € [Se, fe], then £ can possibily be infected at some time step t’ with
t+1<t <min{fe+1,t+t;+1}.
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The impact of concurrency

Figure 21.10 the text provides an example of how a “small” change in the
period of contact between nodes v and w will result in very different
possibilitiies. (Here we are ignoring the probability of becoming infecting
and just looking at what is possible.)

In the network on the left side, we can initially infect any single node at
any time and the infection spread will be contained. In contrast, in the
right hand network, the periods of contact between v and w between w
and y have been changed. And now there any single infected node could
possibly infect the entire network.

Another eaxmple is provided in Figure 12.8 of the text where the only
change in the network if that the period of contact between v and w has
been switched with the period of contact between w and Y. In the
network on the right, node x cannot become infected. In contrast, in the
network on the left, all nodes could become infected at some time if u is
initially infected say at time step t = 5.
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The impact of concurrency continued: The example
in Figure 12.8

45 /45



The impact of concurrency continued: The example
in Figure 12.10
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