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Announcements and agenda
Announcements

The lecture and tutorial schedule for this week and next week.
I Lectures today and Wednesday as usual
I No tutorial this Friday
I Tutorial on Monday, March 11
I Lectures on Wednesday and Friday, March 13 and 15.

So far only about 20 proposals for critical review assignment. If you
submitted a proposal and it was not acknowledged please resend.

I repeat the regrading policy: Requests for regrading must be done
within a week of the assignment being returned. For Assignment 1,
we will accept requests up to this Wednesday, March 6 (11:59PM).

Todays agenda.

1 We will first review the direct benefits model up to where we left off
last week. .

2 Discrete step dynamics to reach an equilibrium
3 Chapter 19: Cascades in a network
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Market with large number of producers and quick
review of the direct benefit effect model

The model assumes that there is some (say industry wide) cost p∗ at
which a unit of the good can be produced.

I Perhaps to make this more realistic, assume this cost includes an
industry wide small profit/unit

I In any case we are assuming that no producer is willing to supply the
good at price below p∗ per unit of good.

Another (more substantial) assumption:

There are enough producers capable of producing an unlimited supply of
the good and no single producer can change the market. Implicitly the

goods are identical, independent of the producer.

Thus in aggregate these producers can supply as much of the good as
desired at price p∗ per unit but will not produce any of the good at
price below p∗ per unit.

This also fixes the price at p∗ since by assumption competition will
not allow any producer to ask for more than p∗ per unit.
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Intrinsic value function and direct benefits function

r(x) is the intrinsic value that consumer x has for the good and we
are assuming r(x) is decreasing and continuous in x ∈ [0, 1] and
r(1) = 0.

We are assuming that the reservation price of consumer x is r(x)f (z)
when there is a fraction z of existing users of the good where f (z) is
increasing and continuous in z ∈ [0, 1]. And (for now) assume
f (0) = 0.

So now a consumer x is willing to buy a unit of the good at price p∗

if x believes a fraction z of users will also be using the good and
r(x)f (z) is at least p∗.
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What if everyone makes a perfect (shared)
prediction?
Self-fulfilling expectations equilibrium

If everyone makes the same prediction about the fraction z buying the
good, and then every consumer x acts on this assumption and decides to
buy based on whether or not r(x)f (z) is at least p∗, then (eventually) the
fraction of adopters will actually be this z .

This z is called a self-fulfilling expectations equilibrium for the
quantity z (at price p∗ > 0).
For a fixed z , as x increases, r(x)f (z) decreases, so we have:

Fact

If p∗ > 0 and z in (0, 1) is a self fulfilling expectations equilibrium at p∗,
then p∗ = r(z)f (z). Why? By the assumption that f (0) = 0, z = 0 is also
a self-fulfilling expectations equilibrium.

This is a more complex (and more interesting) situation than without
direct benefits in which case high prices simply imply low demand.
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The concrete case of r(x) = 1− x and f (z) = z
As an example of the model, the text considers the decreasing reserve
price (intrinsic value) function r(x) = 1− x and the increasing direct
benefit function f (z) = z .
Then in addition to z = 0, a self-fulfilling expectations equilibrium
z > 0 must satisfy p∗ = (1− z)z .
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Figure 17.3: Suppose there are network effects and f(0) = 0, so that the good has no value to
people when no one is using it. In this case, there can be multiple self-fulfilling expectations
equilibria: at z = 0, and also at the points where the curve r(z)f(z) crosses the horizontal
line at height p∗.

If the price p∗ > 0 together with the quantity z (strictly between 0 and 1) form a

self-fulfilling expectations equilibrium, then p∗ = r(z)f(z).

This highlights a clear contrast with the model of the previous section, in which network

effects were not present. There, we saw that in order to have more of the good sold, the price

has to be lowered — or equivalently, at high prices the number of units of the good that

can be sold is smaller. This follows directly from the fact that the equilibrium quantity x∗

without network effects is governed by p∗ = r(x∗), and r(x) is decreasing in x. The market

for a good with network effects is more complicated, since the amount of the good demanded

by consumers depends on how much they expect to be demanded — this leads to the more

complex equation p∗ = r(z)f(z) for the equilibrium quantity z. Under our assumption that

f(0) = 0, we’ve seen that one equilibrium with network effects occurs at price p∗ and z = 0:

Producers are willing to supply a zero quantity of the good, and since no one expects the

good to be used, none of it is demanded either.

A Concrete Example. To find whether other equilibria exist, we need to know the form

of the functions r(·) and f(·) in order to analyze the equation p∗ = r(z)f(z). To show how

this works, let’s consider a concrete example in which r(x) = 1 − x and f(z) = z. In this

case, r(z)f(z) = z(1 − z), which has a parabolic shape as shown in Figure 17.3: it is 0 at

z = 0 and z = 1, and it has a maximum at z = 1
2
, when it takes the value 1

4
. Of course, in

[Fig 17.3, E&K]
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What are the equilibria for this example?
By taking the derivative of h(z) = r(z)f (z), we see that h(z) has
maximum value at z = 1

2 (and hence h(z) = 1
4) so that for p∗ > 1

4
there is no (real valued) solution to p∗ = r(z)f (z)
The case p∗ = 0 is not interesting; we will soon consider the special
case p∗ = 1

4 .
For any p∗ in (0, 14), there are exactly two distinct zeros z ′, z ′′ and at
the points z = 0, z ′, z ′′, if everyone believes exactly a z fraction will
be buying according to the reservation price, then precisely this
fraction will do so. .
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Why can’t there be other equilibria?

What happens when the demand z is not one of these equilibria
points z ′, z ′′ (for a price p∗ < 1

4)?

Three cases:
1 If 0 < z < z ′, then r(z)f (z) < p∗ and there is downward pressure on

the demand since the reservation price is less than p∗.
2 If z ′ < z < z ′′, then there is upward pressure on demand since

r(z)f (z) > p∗ and more purchasers are willing to buy.
3 If z ′′ < z then we again have r(z)f (z) < p∗ causing downward

pressure on the demand.

Note the qualitative difference between z ′ and z ′′.
I Values of z near z ′′ will push the demand toward z ′′. That is, z ′′ is a

very stable equilibrium.
I In contrast, demand predictions around z ′ are very unstable in that the

demand pressure can go either way.
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More qualitative comments re equilibria

The unstable equilibrium point z ′ is called a critical or tipping point.
It is indeed critical for the producers to get past this tipping point in
the demand.

As the price p∗ is lowered, the critical point z ′ (in this reasonably
illustrative example) gets lowered and the eventual demand gets larger
moving toward demand z ′′. This is why it is often in the interest of a
company to lower initial prices to get past the tipping point.

We now return to the special case of p∗ = 1
4 . Now there is just one

non zero equilibrium at z = 1
2 . Following the reasoning for the case of

0 < z < z ′, any deviation from z = 1
2 will result in downward pressure

so that this equilibrium is highly unstable.
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What if everyone does not make a perfect (shared)
prediction?

We are now changing the story as to perfect shared predictions (but
not the model). Assume that we are now tracking participation in a
given activity, say a large online social network, or television series, or
involvement in a political movement.

I We view such participation as being more fluid than buying an object
unless the cost for the object is minor.

I In the case of participation there are maximum costs p∗ (monetary or
effort or reputation etc which can all be seen to be ultimately “costs”)
that a person will pay.

We maintain the same model that x will participate if and only if
r(x)f (z) is at least p∗.
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Discrete step dynamics

We will assume that at some initial time t = 0, the observable
demand level is z0. This will cause the demand to change to some z1
at time t = 1 and similarly the demand then changes to z2 at time
t = 2, etc.

That is, if everyone observes demand z at some point of time, then
the set of people participating at the next time step will be all those
people x in (0, ẑ ] where ẑ satisfies r(ẑ)f (z) = p∗. (Recall that r(x) is
continuous and decreasing in x .)

That is, the next demand level will be the ẑ satisfying:

ẑ = g(z) = r−1
(

p∗

f (z)

)

Since r() is continuous and decreasing, such a solution will exist as
long as p∗/f (z) is at most r(0). Otherwise g(z) = 0.
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The same specific case of r(x) = 1− x , f (z) = z

For definiteness we will again take the specific case of r(x) = 1− x
and f (z) = z . Hence r(0) = 1 and p∗/f (z) = p∗/z . So we want the
shared demand observation z to satisfy p∗/z = p∗/f (z) ≤ r(0) = 1 or
equivalently that z is at least p∗.

It is easy to verify that r−1(y) = 1− y

Hence in this case, g(z) = r−1(p
∗

z ) = 1− p∗

z when z ≥ p∗, and
g(z) = 0 otherwise.
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Change in demand for r(x) = 1− x , f (z) = z
520 CHAPTER 17. NETWORK EFFECTS
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Figure 17.5: When r(x) = 1 − x and f(z) = z, we get the curve for g(z) shown in the
plot: g(z) = 1 − p∗/z if z ≥ p∗ and g(z) = 0 if z < p∗. Where the curve ẑ = g(z) crosses
the line ẑ = z, we have self-fulfilling expectations equilibria. When ẑ = g(z) lies below the
line ẑ = z, we have downward pressure on the consumption of the good (indicated by the
downward arrows); when ẑ = g(z) lies above the line ẑ = z, we have upward pressure on the
consumption of the good (indicated by the upward arrows). This indicates visually why the
equilibrium at z� is unstable while the equilibrium at z�� is stable.

This provides a way of computing the outcome ẑ from the shared expectation z, but we

should keep in mind that we can only use this equation when there is in fact a value of ẑ

that solves Equation (17.1). Otherwise, the outcome is simply that no one purchases.

Since r(·) is a continuous function that decreases from r(0) down to r(1) = 0, such a

solution will exist and be unique precisely when
p∗

f(z)
≤ r(0). Therefore, in general, we can

define a function g(·) that gives the outcome ẑ in terms of the shared expectation z as follows.

When the shared expectation is z ≥ 0, the outcome is ẑ = g(z), where

• g(z) = r−1

�
p∗

f(z)

�
when the condition for a solution

p∗

f(z)
≤ r(0) holds; and

g(z) = 0 otherwise.

Let’s try this on the example illustrated in Figure 17.3, where r(x) = 1−x and f(z) = z.

In this case, r−1(x) turns out to be 1 − x. Also, z(0) = 1, so the condition for a solution
p∗

f(z)
≤ r(0) is just z ≥ p∗. Therefore, in this example

Figure: Fig 17.5 in E&K. For r(x) = 1− x , f (z) = z , the curve for g(z) is
depicted. Here g(z) = 1− p∗/z if z ≥ p∗ and 0 otherwise. When the curve
crosses the line z = z∗, we have self-fulfilling expectations equilibria. Downward
(resp. upward) arrows indicate downward (upward) pressure on demand. Here
one can visualize why z ′ is unstable while z ′′ is a stable equilibtrium.
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What we expect to see more generally
17.4. A DYNAMIC VIEW OF THE MARKET 521
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Figure 17.6: The curve g(z), and its relation to the line ẑ = z, illustrates a pattern that we
expect to see in settings more general than just the example used for Figure 17.5.

g(z) = 1 − p∗

z
when z ≥ p∗, and g(z) = 0 otherwise.

We can plot the function ẑ = g(z) as shown in Figure 17.4. Beyond the simple shape of the

curve, however, its relationship to the 45o line ẑ = z provides a striking visual summary of the

issues around equilibrium, stability, and instability that we’ve been discussing. Figure 17.5

illustrates this. To begin with, when the plots of the two functions ẑ = g(z) and ẑ = z cross,

we have a self-fulfilling expectations equilibrium: here g(z) = z, and so if everyone expects a

z fraction of the population to purchase, then in fact a z fraction will do so. When the curve

ẑ = g(z) lies below the line ẑ = z, we have downward pressure on the consumption of the

good: if people expect a z fraction of the population to use the good, then the outcome will

underperform these expectations, and we would expect a downward spiral in consumption.

And correspondingly, when the curve ẑ = g(z) lies above the line ẑ = z, we have upward

pressure on the consumption of the good.

This gives a pictorial interpretation of the stability properties of the equilibria. Based on

how the functions cross in the vicinity of the equilibrium z��, we see that it is stable: there

is upward pressure from below and downward pressure from above. On the other hand,

where the curves cross in the vicinity of the equilibrium z�, there is instability — downward

pressure from below and upward pressure from above, causing the equilibrium to quickly

unravel if it is perturbed in either direction.

The particular shape of the curve in Figure 17.5 depends on the functions we chose in our

Figure: More generally, we would expect a smoother demand curve below the
equilibrium z ′.

[Fig 17.6, E&K]
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Discrete step dynamic behaviour
Starting at some initial observable demand z0, we generate future
demands according to zt+1 = g(zt) for each time step t = 0, 1, 2, . . .

[Fig 17.9, E&K]
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Concluding the discussion of Chapter17. What
happens when f (0) > 0?

One of the model assumptions up to now is that f (0) = 0. We have been
assuming that the reservation price for consumer x is r(x)f (z) when f (z)
is the direct benefit factor for having a fraction z ∈ [0, 1] of existing users
of the good. This implies that x = 0 is an (uninteresting) equlibrium..

While this may be the case for say a FAX machine (assuming only one is
ever sold), in general most goods have some (perhaps very small) value
even without anyone else having it. So what happens when f (0) > 0?

The text again considers the example r(x) = 1− x but now assumes that
f (z) = a + z2 for some a > 0.

Now z = 0 is no longer an equilibrium point. In the specific example the
new g(z) = 1− p∗

a+z2
. As the text deomonstrates, the dynamics is

essentially the same but now small changes in the price p∗ can cause large
changes in the equlibria that will be reached starting at z = 0.
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Visualizing the dynamics for f (0) > 0
Letting r(x)= 1-x and f (x) = a + z2.530 CHAPTER 17. NETWORK EFFECTS

Shared Expectation z

Outcome

z

z = z

z = g(z)

(z   , z  )1 1

(z   , z  ) 0 0 = (0,0)

stable equilibrium (z*,z*)

stable equilibrium (z**,z**)

Figure 17.11: The audience grows dynamically from an initial size of zero to a relatively
small stable equilibrium size of z⇥.

g(z) = r�1

�
p⇥

f(z)

⇥
when the condition for a solution

p⇥

f(z)
⌅ r(0) holds; and

g(z) = 0 otherwise.

As before, we have r�1(x) = 1 � x. Since in our case r(0) = 1, f(z) ⇧ 1, and p⇥ < 1, this

means that the condition for a solution
p⇥

f(z)
⌅ r(0) will always hold. Plugging this into the

formula for g(z), we get

g(z) = 1 � p⇥

1 + az2
.

When we plot this function ẑ = g(z) together with the 45o line ẑ = z, we get something

that looks like Figure 17.10.

Growing an Audience from Zero. In our earlier model with f(0) = 0, an audience size

of zero was a stable equilibrium: if everyone expected that no one would use the product,

then no one would. But when f(0) > 0, so that the product has value to people even when
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Visualizing the dynamics for f (0) > 0
Letting r(x)= 1-x and f (x) = a + z2.17.6. MIXING INDIVIDUAL EFFECTS WITH POPULATION-LEVEL EFFECTS 531

Shared Expectation z

Outcome

z

z = z

z = g(z)

stable equilibrium

Figure 17.12: If the price is reduced slightly, the curve ẑ = g(z) shifts upward so that it no
longer crosses the line ẑ = z in the vicinity of the point (z⇥, z⇥).

they are the only user, an audience size of zero is no longer an equilibrium (when p⇥ < 1):

even if everyone expects no one to use the product, some people will still purchase it.

As a result, it becomes natural to ask what happens when such a product starts at an

audience size of zero, and we then follow the dynamics that were defined in Section 17.4.

Figure 17.11 shows what happens when we do this: the sequence of audience sizes increases

from z0 = 0 up to the first point (z⇥, z⇥) at which the curve ẑ = g(z) crosses the line ẑ = z.

This is the stable equilibrium that is reached when we run the dynamics of the market

starting from an audience size of 0.

Notice how the underlying story that we’re modeling with this process has no direct

analogue in the earlier model when f(0) = 0. There, because the product was useless if it

had an audience size of zero, a firm marketing the product needed alternate ways to get over

its tipping point at the low, unstable equilibrium in order to have any customers at all. But

when f(0) > 0, the audience can grow from zero up to some larger stable equilibrium z⇥

through the simple dynamics in Figure 17.11. In other words, we’re able to talk here about
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Visualizing the dynamics for f (0) > 0
Letting r(x)= 1-x and f (x) = a + z2.532 CHAPTER 17. NETWORK EFFECTS
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(z   , z  )5 5
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stable equilibrium

Figure 17.13: The small reduction in price that shifted the curve ẑ = g(z) has a huge e�ect
on the equilibrium audience size that is reached starting from zero.

an audience that grows gradually and organically, starting from no users at all, rather than

one that needs to be pushed by other means over an initial tipping point.

Bottlenecks and Large Changes. The firm marketing the product in our example,

however, may well want more than what it gets in Figure 17.11. Although the audience

grows to some size z⇥ on its own, there is a much higher stable equilibrium, shown in

the figure at (z⇥⇥, z⇥⇥), that would be much more desirable if only it could be reached. But

starting from zero, the audience doesn’t reach this high equilibrium z⇥⇥, because it is blocked

by a “bottleneck” that stops it at z⇥.

Here is where we get to the surprising phenomenon at the heart of this example: small

changes in the properties of the market can cause enormous changes in the size of the

equilibrium audience that is reached, starting from zero [192]. Suppose that the firm is able

to lower the price p⇥ slightly, to some new value q⇥ < p⇥. Then we get a new function h(z)
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Chapter 19: Influence spread in a social network

We begin a study of the spread/diffusion of products/influence in a
social network (Chapter 19) in contrast to population wide spread
phenomena as studied in Chapters 16, 17 and 18.

The goal (as before) is to qualitatively understand the process in a
highly stylized (but hopefully still interesting) setting.

We will (as usual) be interested in what kind of general conclusions
can be inferred from such an understanding?
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Recap: population wide effects

In Chapters 16 (herding or informational effects), 17 (direct benefit
effects), and 18 (rich get richer models) we did not have a social
network per se.

These chapters dealt with population wide effects. Although :
I One can construe Chapter 16 as taking place in a network where the

ith individual is connected to all i − 1 previous individuals.
I Chapter 17 can be construed as taking place in a network where

everyone is directly connected (the network is a complete graph).
I Chapter 18 studies random processes by which networks can grow and

and one can think of situations where the resulting network is a social
network.

But still . . . these are basically population wide effects absent from an
existing social network.
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Social network effects

Now we wish to consider an existing social network where edges (ties)
between individuals represent some sort of friendship/relationship.

This takes us back to concepts introduced in Chapters 3 and 4.

There we saw the contrast between
I homophily (we tend to be friends with people of similar backgrounds,

geography, interests)
I social influence (we join clubs, are influenced) by our friends/relations.
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Models of influence spread/diffusion

One of the most important themes of the text (and CSC 303) is that
we construct models to gain insight.

I Our models are often (maybe always) very simplified given the
complexity of real social and economic networks.

I There is always a tradeoff between the adherence to reality and our
ability to analyze and gain insight.

How we model diffusion in a social network will clearly depend on
what product, idea, membership, etc. we are considering.

There are many assumptions as to how products, ideas, influence are
spread in a social network and what are the set of individual
alternatives.

The main emphasis in Chapter 19 is on a very simple process of
diffusion where each person has 2 alternative decisions:

1 stay with a current “product” B
2 or switch to a (new) product A.
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A simple model of diffusion in a social network

Let’s assume that we are making decisions based on the direct benefit
of being coordinated with our friends beyond any intinsic value
associated with the decision (e.g. when the decision is the purchase
of an item).

A standard example is what laptop or cell phone we decide to buy to
the extent that we are mostly influenced by our friends rather than by
general population wide usage. What influences you most? Friends or
general population benefits?

I Choosing between two weekly television shows that occur at the same
time or who to vote for are other examples.

In fact, the model given in this chapter dictates that certain decisions
(i.e. to change from B to A) are irreversible.

I The text calls this a “progressive process” in the sense that it
progresses in only one direction. Any good examples of truly (or
essentially) irreversible decisions?

I For example, the decision to get a tatoo.
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A threshold model for spread

We assume that some number of individuals are enticed (at some
time t = 0) to adopt a new product A.

Outside of these “initial adopters”, we assume all other individuals in
the network are initially using a different product B (or equivalently
this is the first product in a given market).

This is not really a competitive influence model as B is not really
competing. (More comments later.)

The first model we consider for diffusion is that every node v has a
threshold q (in absolute or relative terms) for how many of its
neighbors must have adopted product A before v adopts A.
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Threshold model (continued)

For simplicity the text initially assumes that every node v (i.e.
individual) in the network has the same threshold but then later
explains how to deal with individual thresholds.

If at some time t, the threshold for a node v has been achieved, then
by time time t + 1, v will adopt product A.

If the threshold has not been reached then v decides not to adopt A
at this time.

Note

Although it is not explicitly stated, the initial adopters
never reverse their adoption.

Given these model assumptions, adopting A is irreversible for all
nodes in the network.
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Determining a (relative) threshold

One way (some might say is usually the best way) to reason about a
plausible threshold for a node is to view one’s decision in economic
terms.

Specifically for every edge (v ,w) in the network suppose
I There is payoff a to v and w if both v and w have adopted product A.
I There is payoff b to v and w if both v and w have adopted product B.
I A zero payoff when v and w do not currently utilize the same product.

This determines a simple coordination game.

566 CHAPTER 19. CASCADING BEHAVIOR IN NETWORKS

from informational effects [2, 38, 186] or direct-benefit effects [62, 147, 308, 420]. In this

chapter, we will focus on the latter, beginning with a natural model of direct-benefit effects

in networks due to Stephen Morris [308].

Network models based on direct-benefit effects involve the following underlying consid-

eration: you have certain social network neighbors — friends, acquaintances, or colleagues

— and the benefits to you of adopting a new behavior increase as more and more of these

neighbors adopt it. In such a case, simple self-interest will dictate that you should adopt the

new behavior once a sufficient proportion of your neighbors have done so. For example, you

may find it easier to collaborate with co-workers if you are using compatible technologies;

similarly, you may find it easier to engage in social interaction — all else being equal — with

people whose beliefs and opinions are similar to yours.

A Networked Coordination Game. These ideas can be captured very naturally using

a coordination game, a concept we first encountered in Section 6.5. In an underlying social

network, we will study a situation in which each node has a choice between two possible

behaviors, labeled A and B. If nodes v and w are linked by an edge, then there is an

incentive for them to have their behaviors match. We represent this using a game in which

v and w are the players and A and B are the possible strategies. The payoffs are defined as

follows:

• if v and w both adopt behavior A, they each get a payoff of a > 0;

• if they both adopt B, they each get a payoff of b > 0; and

• if they adopt opposite behaviors, they each get a payoff of 0.

We can write this in terms of a payoff matrix, as in Figure 19.1. Of course, it is easy to

imagine many more general models for coordination, but for now we are trying to keep things

as simple as possible.

v

w
A B

A a, a 0, 0
B 0, 0 b, b

Figure 19.1: A-B Coordination Game

This describes what happens on a single edge of the network; but the point is that each

node v is playing a copy of this game with each of its neighbors, and its payoff is the sum of

its payoffs in the games played on each edge. Hence v’s choice of strategy will be based on

the choices made by all of its neighbors, taken together.

Figure: A− B coordination [Fig 19.1, E&K]
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Coordination game induces threshold

Suppose node v has not yet adopted A at time t, but a fraction p of
the d(v) neighbors of v have already adopted A, then:

I By switching, the payoff to v is p × d(v)× a.
I By staying with B, v has payoff (1− p)× d(v)× b.

Thus node v will switch to A if

p × d(v)× a ≥ (1− p)× d(v)× b

(for simplicity say v switches when payoffs are equal).

This is then equivalent to saying that v will switch whenever p is at
least b

a+b = q which is then the relative threshold.

That is, whenever there is at least a (threshold) fraction q of the
neighbours of node v that have adopted A, then v will also adopt A.
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The process unfolds (example: a = 3 and b = 2)

[Fig 19.3, E&K]

t = 0

A node adopts A if and only if the threshold q = b
a+b = 2/5 is

reached.

Two nodes v and w are initial adopters.
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The process unfolds (example: a = 3 and b = 2)

[Fig 19.3, E&K]

t = 2

A node adopts A if and only if the threshold q = b
a+b = 2/5 is

reached.

Two nodes v and w are initial adopters.
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Complete cascades vs tightly-knit communities
(example: a = 3, b = 2, q = 2/5)

The previous example showed a complete cascade where all nodes
eventually adopt A.

In the next example, “tightly-knit communities” block the spread.

t = 0 [Fig 19.4, E&K]
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Complete cascades vs tightly-knit communities
(example: a = 3, b = 2, q = 2/5)

The previous example showed a complete cascade where all nodes
eventually adopt A.

In the next example, “tightly-knit communities” block the spread.

t = 3 [Fig 19.4, E&K]
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End of Monday, March 4 lecture

We ended Monday lecture at the start of the discussion of Chapter 19 and
the topic of cascades in networks on Wednesday. However, I omitted a
discussion in Chapter 17 on direct network effects that I should have
included. Namely, what happens when the benefits function f (z) > 0. I
will add some slides (where they belong at the end of the Chapter 17
discussion) which now means that the Monday lecture in effect ended at
slide 30.

Todays agenda

Go over the slides concerning f (0) > 0

Continue the discussion of cascasdes in a network

Choosing influential initial adopters. This is material not in text but
can be found in the article Kempe, Kleinberg and Tardos paper which
has been posted on the web page.

Finish discussion of chapter 19
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Factors determining the rate and extent of diffusion
in a social network

1 The structure of the network.

2 The relative payoffs vs costs for adopting a new product.
I We haven’t spoken of costs yet but we usually do have a cost for

adopting a new product.
I We can introduce such a cost into the model by saying that v will not

adopt the new A unless

p × d(v)× a ≥ (1− p)× d(v)× b + cost

I We could also add intrinsic values for A and B to both sides of the
above inequality to determine the threshold for v adopting A.

3 The choice of initial adopters.
I This raises an interesting computational question as to how to select

the most influential nodes (within some budgetary constraint).
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Defining a tightly-knit community

We want to show that not only do tightly-knit communities cause a
cascade to be blocked but moreover this is the only thing that can
stop a cascade.

To do so, we need a more precise definition.

Definition

A non-empty subset S of nodes is a blocking cluster of density p if every
node v ∈ S has at least a fraction p of its edges go to nodes in S .

Aside

Clustering is a pervasive concept in many fields and contexts (beyond
networks).

It is an intuitive concept that can be defined in many ways.

There does not appear to be any one definition that is always (or
even usually) most preferred.
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Clusters at different levels of granularity

The given definition of a blocking cluster does not imply a unique way
of clustering the nodes.

Indeed if S and T are both clusters of density p, then the union of S
and T is a cluster of density p.

I Note: this is not generally true of the intersection of S and T .

This clustering definition also implies that the set of all nodes is a
cluster of density 1.
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Clusters vs complete cascades

Suppose we have a network threshold spread model with threshold q,
an initial set of A adopters I and V ′ = V − I is the set of nodes that
are not initial adopters.

Then we have the following (provable) intuitive result that
characterizes when complete clusters will or will not form:

I If V ′ contains a cluster C of density greater than 1− q, then the initial
adopters will not cause a complete cascade. Furthermore, no node in C will
adopt A.

I If in a network with threshold q and an initial set I of adopters does not
cause a complete cascade, then the non initial adopters nodes V ′ = V − I
must contain a cluster of density greater than 1− q.

35 / 1



When nodes have different thresholds
As remarked before the assumption that all nodes have the same
threshold is not essential.

Consider a node v . Suppose now that for every adjacent edge (v ,w),
node v has payoff a(v) (resp. b(v)) if both v and w have adopted
product A (resp. B) and a zero payoff if v and w currently utilize
different products.
If node v has not yet adopted A at time t, but a fraction p of the
d(v) neighbours of v have already adopted A, then:

I By switching, v has payoff p × d(v)× a(v).
I By staying with B, v has payoff (1− p)× d(v)× b(v).

Thus node v will switch to A if

p × d(v)× a(v) ≥ (1− p)× d(v)× b(v).

This is then equivalent to saying that v will switch whenever

p ≥ b(v)

a(v) + b(v)
= q(v)

which is then the threshold for node v .
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Redefining blocking clusters

A blocking cluster is now a set of nodes C such that every node
v ∈ C has more than a fraction 1− q(v) of its adjacent nodes in C .

It follows (as in the case of homogenous threshold nodes) that a given
set of adopters I in a network will not cause a complete cascade iff
V − I contains a blocking cluster C .

t = 0
[Fig 19.13, E&K]
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Redefining blocking clusters

A blocking cluster is now a set of nodes C such that every node
v ∈ C has more than a fraction 1− q(v) of its adjacent nodes in C .

It follows (as in the case of homogenous threshold nodes) that a given
set of adopters I in a network will not cause a complete cascade iff
V − I contains a blocking cluster C .

t = 3
[Fig 19.13, E&K]
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A blocking cluster is now a set of nodes C such that every node
v ∈ C has more than a fraction 1− q(v) of its adjacent nodes in C .

It follows (as in the case of homogenous threshold nodes) that a given
set of adopters I in a network will not cause a complete cascade iff
V − I contains a blocking cluster C .

t = 4
[Fig 19.13, E&K]
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Redefining blocking clusters

A blocking cluster is now a set of nodes C such that every node
v ∈ C has more than a fraction 1− q(v) of its adjacent nodes in C .

It follows (as in the case of homogenous threshold nodes) that a given
set of adopters I in a network will not cause a complete cascade iff
V − I contains a blocking cluster C .

t = 5
[Fig 19.13, E&K]
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Choosing influential adopters

Suppose we wish to spread a new technology and to do so we have
money to influence some “small” set of initial adopters (e.g. by giving
away the product or even paying people to adopt it).

Even in this simple model of (non-competitive) influence spread, and
even if we have complete knowledge of the social network, it is not at
all clear how to chose an initial set of adopters so as to achieve the
largest spread.

Furthermore the spread process could be much more sophisticated.
I For example, adoption by a node might be a more random process (say

adopting with some probability relative to the nodes threshold) and
maybe the influence of neighbors first increases and then decreases
over time.
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Choosing influential adopters continued

Suppose we have funds/ability to influence k nodes to become initial
adopters.

I We can try all possible subsets of the entire n = |V | nodes and for
each such subset simulate the spread process.

I But clearly as k gets larger, this “brute force” becomes prohibitive
especially for large networks.

Earlier in the course, we mentioned that for many optimization
problems (like the one being considered now), there is a widely held
belief (with good supporting evidence from complexity theory):

“NP-hard problems” cannot be optimally solved in an efficient manner
(and sometimes we cannot even get a good

approximation to optimality).
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Can we determine a “good” set of initial adopters?

For even simple models of information spread as being discussed here,
complexity theory (the P vs NP conjecture) argues that we cannot
efficiently choose the best set of initial adopters. There is a class of
networks for which (assuming the P 6= NP conjecture) it is not
possible to obtain an approximation within a factor nc for any c < 1.

Instead we will identify properties of a spread process that will allow a
good approximation: a good set of initial adopters that will do
“almost as well” as the best set.

Note: What follows is a discussion as to how to choose a set of initial
adopters by a relatively efficient approximation algorithm when making
some assumptions on the spread process. However, we would need much
more efficient methods for very large networks.
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Influence maximization models; monotone
submodular set functions

Some spread models have the following nice properties.

Let f (S) be size (or more generally a real value benefit since some nodes
may be more valuable) of the final set S of adopters satisfying:

1 Monotonicity: f (S) ≤ f (T ) if S is a subset of T

2 Submodularity: f (S + v)− f (S) ≥ f (T + v)− f (T ) if S is a subset of T

We also usally assume that f (∅) = 0. Such normalized, monotone,
submodular functions arise in many applications.

The simple threshold examples considered thus far are monotone
processes but are not submodular in general. Are these contrived
worst case network examples?

But some variants of the threshold model and related models do
satisfy these properties. We consider two such stochastic models.
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Linear threshold model
We have an edge weighted (undirected or directed) network where
weight w(u, v) represents the relative influence (e.g. quantitative
version of weak and strong ties) of node u on node v .

Now each nodes threshold q(v) is chosen randomly in [0, 1] to model
lack of knowledge as to how easy it is to influence a given individual.

A node v adopts A if the sum of all edge weights into v exceeds the
randomly chosen q(v).

Goal: find an initial set of k adopters so as to maximize the expected
number (or benefit) of eventual adopters. (This is a stochasitic
process so that we are trying to optimize the expected value of the
process.)

Aside: We often use the language of disease spread and say “infected
nodes” rather than “already influenced nodes”.
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The linear threshold model

Each node v chooses a threshold tv randomly from [0, 1].

Each edge (u, v) has assigned weight wuv from [0, 1] such that

∑

u→v

wuv ≤ 1.

In each step t, a node v is infected if the weighted sum of incident
edges coming from infected neighbors exceeds threshold.

v

a ba b

tv = 1/2

1/4 1/3

t = 0

v

a ba b

tv = 3/4

1/4 1/3

t = 0
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Independent cascade influence model

We again have an edge weighted network (as in threshold model) but
now the weights p(u, v) ≤ 1 represent the probability that node u will
influence node v given one and only one chance to do so.

That is, if node u adopts A at time t, then with probability p(u, v),
node v will adopt v at time t + 1.

After this, node u will not have another opportunity to influence v .

Goal for both threshold and cascade models: to find initial set of
adopters to maximize the expected number of eventual adopters.

Threshold and (especially) cascade processes are motivated by models
for the contagious spread of disease. Should disease spread and
influence spread should be governed by similar processes?

I See http://www.economist.com/blogs/babbage/2012/04/

social-contagion
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The Independent Cascade Process

Each edge (u, v) has an associated probability puv .

In each step t, nodes that adopted technology at step t − 1 “infect”
each of their uninfected neighbors with probability puv .
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