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Announcements and agenda
Announcements

@ TA office hour today following class in SF 4302B

@ Assignment 1 is due this Saturday (Feb 16) at 11:59.
@ Next week is reading week

@ The term test is Friday, March 1

Agenda

@ We continue to discuss Chapter 18 of the text. The focus is on a
preferential attachment model. This model is propsed as a model
explaining the power law distribution for the number of Web page
in-links.

@ We will then discuss Chapter 14 which provides two ranking
algorithms, Hubs and Authorities and Page Rank, that utilize links to
rank Web pages relating to a search query.

@ We return to the ongoing issue of influence in decision making; in

particular, we start the discussion of the cascade model in Chapter 16.
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A power law distribution and network dynamics
We repeat the definition from last week:

A power law distribution for an event E satisfes Prob[E |parameterk] ~ %
for some constants a and c¢. (We often just focus on on the exponent ¢
and say that the probability is proportional to k~¢.) Such distributions are
called “scale-free” in the sense that the stated probability is independent

of the size of the network.

Having observed that many events in social and information networks have
a power law distribution, the big question is how this happens.

Chapter 14 considers the observed power law for the number of in-links in
the Web graph. We understand that this could not evolve from
independent decisions (that have averaged out) but rather results from the
feedback coming from correlated decisions.

In an influential article, Kumar et al [2000] proposed a preferential
attachment model that can explain the power law distribution. Recall, the
observed distribution of in-links is that Probla site has k in-links] is
proportional to k~(279) for a small ¢ > 0.



A “rich get richer model” for in-links on the Web

Here is the model proposed in Kumar et al article (which has been
uploaded to the course Web page).

Aside: | found this link from a paper by Bollobas which was cited in
Chapter 18.

© Web pages are created sequentially, and named 1,2,... .
(Of course, N keeps growing but we are looking at the web at some
point in time.)

@ With probability p, the jt" page chooses a page i < j uniformly at
random and links to page i.

© With probability g = 1 — p, page j chooses a page i < j uniformly at
random and then creates a link to the page (say k < i) to which i has
a link.

Note: The model is more general in that multiple links from page j are
created in this stochastic model. Chapter 18 simplifies the model and only
creates one link. However, this does not change the power law
exponent. As will be seen, the key parameter is p.



The linking model continued

There is an equivalent way to state the indirect linking that takes place
that makes clear the “rich get richer” preferential attachment phenomena.
@ [3'] With probability ¢ =1 — p, page j chooses a page ¢ with

probability proportional to ¢'s current number of in-links and creates a
link to 4.

This is, of course, the idea behind popularity. For example, the more
people that are reading a current novel, the more likely that you might

want to read it. And for various social and economic reasons why some
large cities continue to grow.
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The linking model continued
There is an equivalent way to state the indirect linking that takes place
that makes clear the “rich get richer” preferential attachment phenomena.
@ [3'] With probability ¢ =1 — p, page j chooses a page ¢ with
probability proportional to ¢'s current number of in-links and creates a
link to 4.

This is, of course, the idea behind popularity. For example, the more
people that are reading a current novel, the more likely that you might
want to read it. And for various social and economic reasons why some
large cities continue to grow.

Note: As p — 0 (and g — 1), pages are more likely to copy the same
previous pages and the more likely that the process is creating some
popular pages.

Hedge: As the text states clearly, the goal of this model is not to capture
all the reasons why people create links on the Web (or links in other
networks) but rather to explain why it is reasonable to expect such
popularity effects.



Sensitivity to unpredictable initial stages in network
dynamics

As we are all are familiar, it is never clear why say some “pop"” singers
become so popular while other (perhaps of equal talent) never “make it".
Clearly, the initial stages of a dynamic process are critical and that is why
advertising, promotions, etc. are so important.

How can we better understand the impact of the randomness in the initial
stages of a dynamic process? What if we could replay history many times?
We would, of course, expect the resulting distribution to be the same. But
would the same books, the same movies, the same pop stars, the same
web pages, etc continue to be the most popular?
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Sensitivity to unpredictable initial stages in network
dynamics

As we are all are familiar, it is never clear why say some “pop"” singers
become so popular while other (perhaps of equal talent) never “make it".
Clearly, the initial stages of a dynamic process are critical and that is why
advertising, promotions, etc. are so important.

How can we better understand the impact of the randomness in the initial
stages of a dynamic process? What if we could replay history many times?
We would, of course, expect the resulting distribution to be the same. But
would the same books, the same movies, the same pop stars, the same
web pages, etc continue to be the most popular?

Our intuition (and experience) suggets that there is often considerable
“luck” in exactly who or what becomes popular, On the flip side, we also
believe that “quality” is also important.

But how do we “rewind history”?
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An experiment to “rewind history”

While we do not have the ability to really rewind history, it is something
that | think we often think about.

Aside: There are some classic movies (e.g. Sliding Doors, Run Lola Run,
Blind Chance) that explore this theme about initial random effects that
lead to very different alternative outcomes. These are very interesting
movies but, as you might expect, do not consider distributions. See
https://www.denofgeek.com /us/movies/run-lola-run /256336 /7-movies-
and-tv-shows-that-master-the-multiple-reality-narrative.

Salganik et al perform an interesting experiment (in fact, two experiments
at different times with different participants) to observe the impact of the
initial random stages in a dynamic process. (| have downloaded the article
and the supporting material.)



The Salganik et al experiment

Here is their experiment:

@ They created 9 copies of 48 “obscure” (as determined by some
experts) songs of varying “quality”

@ In the experiment, approximately 7200 young participants were
recruited to listen to the music. At the start of the experiment, all
that is known is the name of the band and the name of the song.

@ In each of the copies, participants sequentially listened to some music
selections, rated the music and then were given the opportunity to
download copies of songs they liked.

@ In each of 8 copies of the music, 10% of the participants were also
given the number of times each song had been previously downloaded.

@ In the 9" version, this previous history of downloads was not provided
to the remaining 20% of the particpants. The average of the ratings
(from 1 = “| hated it" to 5 = "I loved it") in this “no influence”
version determined the song “quality”.



The findings in the Salganik experiement

The experiment was designed to measure the extent that social influence
leads to different outcomes in the “success” (i.e. the number of
downloads) of a particular song.

Simply stated, the results show that:

@ Increasing the strength of social influence increased both the
inequality (i.e. degrees of popularity) and unpredictability (i.e.,
relation to quality) of success.

@ However, quality was also a factor: the best rated songs rarely did
poorly and the the worst songs rarely did well.

As | said, this is an interesting study and one where the authors carefully
try to eliminate sources of bias. The article is worth reading.

As the text points out in section 18.6, how recommendation systems are
designed can impact how people make choices, leading to increased “rich
can richer” phenomena, or alternatively exposing people to less popular
items.



Visualizing the long tail of a power law distribution
Once we accept a power law nature of popularity, it is instructive to
consider the consequences for a given industry. Namely, the nature of the
sales curve that would be dictated by a power law distribution.

The shape of the long tail in a power distribution raises the question as to
how many sales can be obtained from less popular (e.g. niche items).

A

sales
volume

The j-th most popular

\ book has sold k
\\ copies.

»
| g

number of books

Figure: [Fig 18-4 in E&K] text; how many copies of the j™ most popular items

have been sold.
10



An informal analysis for the simplied preferential

attachment model proposed for Web in-links

A precise analysis of even the simple one link per page preferential
attachment model is technical. In section 18.7, the text provides a
heuristic argument as to how the power law exponent is determined by the
probability p (of the jth page linking uniformly at random to some page

i < j vs linking indirectly with probability g =1 — p to a page ¢ based on
the popularity of page /).

While we often gain insight by viewing a continuous process as a long
sequence of discrete events, it is often adventageous to model a sequence
of discrete events as a continuous process.

More specifically, the approximate analysis considers a continuous
deterministic variable x;(t), which is an approximation of the discrete
random variable X;(t), the number of in-links to a page ¢ at time ¢t > 0.
Aside: We often do this in the analysis of algorothms. For example, we
consider the continuous extension of a submodular function and what is

called a continuous greedy algorithm.
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The deterministic continuous model of the rendom
discrete process
Initially, X;(0) = x,(0) = 0.
The discrete propbability that the number of links to a page ¢ increases is :
P q-X(t)
t t
and the corresponding continuous rate of growth is modeled by the

differential equation:

dxe _p q-x(t)

dt t t
The rest of the section uses some basic calculus to show that this leads to
a power law distribution proportional to k=€ with ¢ =1+ 1/q. This
makes sense as the closer p gets to 0 (and g = 1 — p goes to 1), the
exponent ¢ = 1+ 1/q limits to the observed exponent ¢ = 2 + ¢ for the
observed in-link power law distribution. The closer p goes to 1, the
exponent limits to oo making a large number of in-links very unlikely.
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Search and ranking on the Web

Our next topic is to undertstand how the popularity of a web page is
determined and how that impacts its rank in the responses to a query.

But first, how do search engines find and rank responses to a query?
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Search and ranking on the Web

Our next topic is to undertstand how the popularity of a web page is
determined and how that impacts its rank in the responses to a query.

But first, how do search engines find and rank responses to a query?

The specific algorithms used by search engines such as Bing and Google is
a trade secret. To some extent this has to be kept secret as there is always

a “war” between a search engine and companies that create web sites to
enhance the ranking of a site.

However, we do have a basic idea as to how these search engines rank
sites given a query. In fact, at the most elementary level, the main idea is
an old one, but one that was not well accepted for many years. Here is my
sense of things.

Aside: In the 1960s and 70s, there was a basic argument as to whether
online search and ranking was a more or less normal algorithmic search

and optimization problem or one that required “intellegience” (i.e. the

ability to understand natural language). Who won this argument?
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Search and ranking of Web documents; the role of
link popularity

The most basic approach is to treat a document as a bag of words and
then use “normalized” word counts (and pairs,triplets of words) to identify
and rank docuemnts relating to the query. This became enhanced by more
sophisticated contextual aspects of word occurrences, etc and today
machine learning algorithms are also used in classifiying a search query.

But early in the development of popular search engines, a popularity
aspect was added where the ranking of a docuemnt also depended on the
link structure and the popularity of a Web page in the Web network (or at
least that part that seems relevant to the query).

Two algorithms were independently proposed for determinining the
popularity of a Web page, namely Hubs and Authorities developed at IBM
and used in their never released search engine, and Page Rank, developed
and integrated into Google's search engine.
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End of Monday, February 11 lecture

Monday's lecture ended at slide 14.
Today's agenda:

@ Continue discussion of search engines and the role of link structure in
helping to determine the ranking of a document.

@ Hubs and Authorities

@ Page Rank

@ Why these algorithms converge

@ Begin Chapter 16 and discussion of Information Cascades
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Link analysis and page popularity

Neither Hubs and Authorities nor Page Rank use link in-degree as the
popularity measure but link analysis is (or at least was) used to determine
page popularity. Currently, it seems clear that popularity also depends on
recent behaviour of users to related queries.

We will not try to infer more precisely how say Google (or any search
engine) precisely determines the ranking of a document in resposne to a
query. In particular, we do not know how much page ranking depends on
content vs link analysis. But we do know that this ranking is essential in
determining how often a page will be downloaded. The quality of the
ranking algorithm leads to user activity and thus the resulting advertising.

We will begin with the Hubs and Authorites ranking algorithm and then
the Page Rank algorithm.

16
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Hubs and Authorities

@ A simple way to utilize links to rank web pages would be to think of
each link from A to B as an endorsement or vote by A for B.

@ And then use the number (or weight) of endorsements as a key
feature determining the rank. Of course, one would have to adjust
such scores coming from say the same domain name.

@ Even after adjusting for such “vote fixing", if Auston Mathews or
John Tavares has a web site and a link suggesting where he buys his
hockey equipment you might think that is more meaningful than if
say where | recommend you buy your hockey equipment.

Spoiler alert: | don't play hockey.
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Reinforcement of Hubs and Authorities.

@ This then becomes the motivation (and seemingly circular reasoning)
behind hubs and authorities.

@ The best “authorities” on a subject (places to buy equipment) are
being endorsed by the best hubs (people who know where to buy
equipment).

@ Similarly, the best hubs are those sites that recommend the best
authorities. Conceptually the link structure induces a bipartite graph.
The same web page can be both a hub and an authority.

@ Comment: The word “authority” is not generally an accurate way to
describe high ranking documents. These might better be referred to
(barring other information) as the most relied upon sites. This is also
different from “the most popular” sites which might better be
measured in terms of the number of clicks being received. Hubs then

are the most reliable endorsers.
18



@ The result of applying the authority update rule: for each page p,
auth(p) is the sum of hub values (initially just the number) of hubs
pointing to p.

2 votes

4 votes

3 votes

3 votes

[Fig 14.1, E&K]

3 votes

Figure: Counting in-links to pages for the query “newspapers.”
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@ Then to recalibrate hub values, we use the hub update rule: for each
page p, hub(p) is the sum of values of all authorities that p points to.

2 votes

2 votes

4 votes

3 votes

3 votes

[Fig 14.2, E&K]

3 votes

Figure: Finding good lists for the query “newspapers”: each page's value as a list
is written as a number inside it.
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@ Applying the authority update rule again we get figure 14.3.

new score: 19

new score: 19

new score: 31

new score: 24

new score: 15

new score: 12 [F|g 143, E&K]

new score: 5

Figure: Re-weighting votes for the query “newspapers”: each of the labeled
pages new score is equal to the sum of the values of all lists that point to it.
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@ Since we only care about the relative values of these numbers, both
authority and hub scores can be normalized to sum to 1 (to allow
convergence and avoid dealing with large numbers).

normalized .152

normalized .152

normalized .248

normalized .120

[Fig 14.4, E&K]

normalized .096

Figure: Re-weighting votes after normalizing for the query “newspapers”.
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Keep repeating a good idea

@ Now having recalibrated and normalized both the authority and hub
scores, we can continue this process to continue to refine these scores.

@ That is, the hubs and authorities procedure is as follows:
> Initialize all hub values (say to some positive vector perhaps depending

on usage or content)
» For sufficiently large k, perform the following k times

* Apply authority update rule to each page

* Apply hub update rule to each page
* Normalize so that sum of A and H weights = 1.

@ Using linear algebra, it can be shown (in Section 14.6) that these A
and H normalized values will converge to a limit as kK — oo (which
can be approximated by some sufficiently large k)!

@ Hubs and Authorities can be extended to work for weighted edges
(e,g. weighting links in achor text, or near a section heading, etc.)



limit .199...

limit .199...

limit .304...

limit .205...

limit .042....

limit .043...

@ limit .008...

Figure: Limiting hub and authority values for the query “newspapers”.

[Fig 14.5, E&K]
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Page Rank

@ The motivation behind page rank is a somewhat different view of how
authority is conferred.
» Endorsement of authority is conveyed by other authorities
» That is, no hub concept
» This is how peer review works in the academic and scholarly world.

@ Authorities themselves convey authority on those they link to. This
naturally leads to a forumation in terms of two equivalent views of
page rank:

© Authorities directly conveying authority (without hubs)
@ Authority values resulting from long term behaviour of a random walk
on a graph.
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How does Page rank spread authority?

@ Suppose at any point of time we have relevant authority scores.
» A page spreads its authority equally amongst all of its out links.
> If a page has no outlinks then all authority stays there.

@ This redistributes the authority scores. (We are not creating or losing
any authority, we are just redistributing it.)

@ We can initially start with every relevant page having authority 1/n
where there are n pages. Then we repeat this process k times for
some sufficiently large k .

@ With the exception of some “degenerate cases’ (e.g. the process is
periodic) it can be proven (again using linear algebra) that this
process has a limiting behavior as kK — oo.

@ The resulting limit values will form an equilibrium.

@ If the network is strongly connected then there is a unique equilibrium,

Remark

In many cases this won't reflect the desired authority. Namely, if the
network has any sinks (or strongly connect components that are sinks)
which it will surely have, then all of the authority will pass to such sinks.

o
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Page rank equilibrium for a network

2/13

113 113

[Fig 14.7, E&K]

Figure: Equilibrium PageRank values for the network of eight Web page.
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Where has all the authority gone when we redirect
(F,A) and (G, A) edges?

[Fig 14.8, E&K]

Figure: The same collection of eight pages, but F and G have changed their
links to point to each other instead of to A. Without “scaling”, all the PageRank
would go to F and G.
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Scaled page rank

@ The way around this sink hole of authority is to have a scaled version
of page rank where

» only a fraction s of the authority of a page is distributed to its out links
» the remaining (1 — s) fraction is distributed equally amongst all
relevant pages.

@ For any value of s < 1 (which effectively makes the graph strongly
connected), we get convergence to a unique set of scores for each
page and that is its page rank (for that particular value of s). It is
reported that Google uses 0.8 < s < 0.9.

@ (See the footnote on page 410 of E&K as to why in the previous
example, nodes F and G will still get most of the authority but that
for realistically large networks, the process works well.)



Some additional remarks

@ The limiting scores for both the authority and hubs approach and the
page rank approach are equilibrium points for an appropriate algebraic
process.

@ That is, if we actually were in the limiting state, we would be in the
equilibrium state. In practice, we can stop the process when the
change in each iteration is sufficiently small.

@ We can weight the network edges (say according to some concept of
link importance) and apply the same authority and hubs or page rank
approach distributing authority in proportion to these weights.
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Advanced material (section 14.6): Handwaving
argument why these processes converge

We have already suggested that both the page rank and hubs and
authorities processes can be understood in terms of an algebraic process,
namely, a linear transformation.

@ Suppose we are considering a web network of n pages. We can
represent the hub, authority or page rank values at any time k of the
process by an n-dimensional (column) vector, denoted (respectively)
by h(k), a(k) ¢(k),

@ Here we are using boldface v =< vy, ..., v, > to represent a vector
whose components are the v; so that (for example), rJ-(k) repesents the
page rank of the jt" web page after k steps of the page rank process.

@ Let v be any of the hub, authority or page rank vectors. In each case
it is not difficult to see that the process can be viewed as a linear

transformation v(k*1) = Mv(¥) for some appropriate n x n matrix M
whose entries are non negative real numbers.
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Advanced material continued: page rank
convergence

@ Section 14.6 tells us how to define the appropriate matrices and gives
the conditions that will guarantee the convergence of the process;
that is, when there exists v(*) = limx_ o v(¥) and when this limit
vector v(*) is unique and independent of the starting vector v(?).

o Figure 14.3 of the text illustrates a simple directed graph and the
matrix N that defines the unscaled page rank update process. That
is, < rf Lkt Ss= N < oo Pk > where N s the
transpose of matrix N.

@ 1 0 0 0

iy

o o
° 8
S o
V]

o o
NSNS

[Fig 14.13, E&K]

Figure: A toy web graph and the associated matrix N describing the

unscaled update process. 30



Page rank analysis for the scaled update

Similarly Figure 14.4 illustrates the same graph and the matrix N that
defines the scaled page rank update process with scaling factor s = .8.

<>

.05 .45 .05 .45
.05 .05 .45 .45
.85 .05 .05 .05

.05 .05 .85 .05

[Fig 14.14, E&K]

Figure: The same toy web graph and the associated matrix N describing the
scaled update process with s = 0.8.

o It follows that rk = (N/t)k¢0

@ If the process is converging then it would be converging to some r*
satisfying r* = N'r*
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Now comes the necessary linear algebra

So far we have mainly used matrices as a convenient way to represent the
process. But to understand convergence we need to mention some more
essential aspects of linear algebra.

@ Let M, «, be a full rank matrix. Recall that the matrix-vector
multiplication Mv can rotate and expand/shrink the vector v.

@ Since it is hard to “visualize” an n-dimensional vectore space, we can
simply think about the meaning of such a linear transformation in
2-space or 3-space.

@ A vector v is an eigenvector of M with associated eigenvalue \ if
Mv = \v. It follows that v is also an eigenvector of M with
eigenvalue \k.

@ When A\ = 1, the eigenvector then becomes an equilibrium of the
process!
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More linear algebra

@ For each full rank matrix there is a set of n eigenvectors with (not
necessarily distinct) associated eigenvalues A1, ..., A,; these
eigenvectors span the n-dimensional Euclidean space so that any
vector can be expressed as a linear combination of the eigenvectors.

@ An important result from linear algebra (Perron’s Theorem) states
that any matrix which has all positive entries has a unique eigenvector
y corresponding to the largest positive eigenvalue A1 and furthermore
A1 > ‘)\,‘ for i > 1.

@ Since A1 > |\j| for i > 1, and since every vector is a linear
combination of the eigenvectors, it follows that as k — oo, the
transformation M* is being dominated by the largest eigenvalue
acting on its associated eigenvector.

@ For the scaled matrix N, all entries are positive and the largest

eigenvalue is 1. It follows that as k — oo, (N*)kv will converge to
the eignevector y associated with the largest eignevalue 1.



Similar analysis for hubs and authorites

o If M is the adjacency matrix of the web graph, then the process can
be described by h = Ma and a = M"h.

@ Then
Q alV) = Mtrh(®
Q@ h® = mMad = MMtrh©)

@ It follows that

0 a(k) _ (M/\/Itr)k—lMtrh(O)
Q hk) = (/\/]Mtr)kh(o)
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Hubs and authorities analysis continued

@ The matrices (MM™) and (M* M) are symmetric and have
non-negative entries.

@ Any n x n symmetric matrix S with non negative entries has an
orthonormal set of n eigenvectors all of whose associated eigenvalues
are real. By normalizing the scores, we can assume that the largest
eigenvalue \; = 1.

@ If the largest eigenvalue is unique (which is what would happen in a
real web graph), then the same analysis for page rank applies
(assuming that the starting hub scores are all positive).
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Returning to the issue of influence

In some sense or another we are often talking about social influence in this
course. Even in Chapter 14, we can view, for example, hubs as influencing
which Web pages will be ranked highly.

In chapter 18, we observed two sequential processes where previous
individual decisions had a significant impact on

1) The evolution of links on the Web, and

2) The evolution of opinions in evaluating music.

The music evaluation experiment is closer to reality in the sense that it
explicitly integrates a changing measure of quality into the decision
making process. (We could augment the link generation process to use a
measure of similarity between web pages to enhance the process by which
Web pages are generated, but the goal of that discussion was to illustrate
how power law distributions can arise.



The spread of influence

@ This will be the beginning of a several week discussion of
» influence/technology/disease spread
i.e. “contagion” in a very general sense in social networks;

@ We will first be discussing Chapter 16 (information cascades) where
(as we have seen before) sequential decisions are influenced by
previous decisions. The chapter argues that being infuenced by
previous decisions is rational and not necessarily mindless. Here the
benefit is indirect in the sense that the probability of making a better
decision can be improved by following othetrs.

@ Then in Chapter 17 , influence comes in the form that there is a
direct benefit effect (i.e. a change in the reward) for following others.

@ That is, for the next several weeks we will be studying

various social processes that channel individual behaviour into collective
behaviour.
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Information cascades (herding) - Chapter 16

@ Chapter 16 concerns the phenomena of information cascades

» whereby individuals observe and then make decisions sequentially based
on the behaviour of people having made decisions earlier;

» e.g. deciding on a restaurant by observing how many people are
currently eating there, what clothes you buy, other fashions/fads.

@ Chapter 17 discusses decisions based on direct benefit (e.g., using a
popular operating system/ laptop because wide use implies more
software support).

@ Clearly both phenomena can be interacting when people make
decisions (e.g. busy restaurants are more able to use fresh
ingrediants); the text organization is to try to first isolate and model
these phenomena so as to gain insight.
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A simple information cascade model

Assumptions for an information cascade:

@ Individuals make decisions sequentially and can observe the decision
of those who have acted earlier.

@ Each individual has some private information that can be used in
making their decision.

@ Individuals only observe the behavior of earlier people but do not
know their private information beyond any inferences that can be
made from the previous decisions/actions.

@ Note how the musice evaluation experiment fits into this model.
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