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This weeks agenda

Announcements

Lectures this week by Tyrone Strngway

Assignment 1 is (or will soon be complete). It is due February 15.

Last weeks lectures:

We will complete Chapter 4 of the text with the discussion of
Schelling’s segregation model (section 4.5).

The rest of the week will be devoted to Chapter 5 where now
negative effects in social networks are introduced.
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Is some degree of segregation “natural”?

Chapter 4 ends with a discussion of Schelling’s model that provides an
explanation as to how racial neighbourhood segregation can evolve when
driven by individuals wanting to be near “people similar to themselves”.
Schelling’s model and his simulations lead him to a fundamental
observation:
Segregation can and will happen even if there is no explcit individual desire
to avoid (say) people of a different race. All that is needed is some desire
to be near enough similar people.
This observation isn’t restricted to racial segregation but we can also
witness neghbourhoods that are largely or significantly basd on ethnicity.

In addition to the importance of this fundamental observation, the model
provides an interesting study of network dynamics, homophily driven by
selection, and how local decisions lead to global structure in a network.

Of course, Schelling’s model does not preclude the presense of other
economic and political factors, not does it preclude explicit racism.
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The Schelling model
The model itself is quite simple but still hard to analyze analytically. In
this model, we view two classes of individuals (X and O) living in a grid.
More speficially, individuals occupy some subset of the nodes as depicted
in figure 4.15 of the text.

4.5. A SPATIAL MODEL OF SEGREGATION 109

X X

X

X

X

X

X X

XXX

O

O

O

O O

O O O

O O

O

(a) Agents occupying cells on a grid.

O

O O

X

O

X O

X

X

X

XO

O

O

X X

XX

X

O O O

(b) Neighbor relations as a graph.

Figure 4.15: In Schelling’s segregation model, agents of two di�erent types (X and O) occupy
cells on a grid. The neighbor relationships among the cells can be represented very simply
as a graph. Agents care about whether they have at least some neighbors of the same type.

The general formulation of the model is as follows. We assume that there is a population

of individuals, whom we’ll call agents; each agent is of type X or type O. We think of the

two types as representing some (immutable) characteristic that can serve as the basis for

homophily — for example, race, ethnicity, country of origin, or native language. The agents

reside in the cells of a grid, intended as a stylized model of the two-dimensional geography

of a city. As illustrated in Figure 4.15(a), we will assume that some cells of the grid contain

agents while others are unpopulated. A cell’s neighbors are the cells that touch it, including

diagonal contact; thus, a cell that is not on the boundary of the grid has eight neighbors.

We can equivalently think of the neighbor relationships as defining a graph: the cells are the

nodes, and we put an edge between two cells that are neighbors on the grid. In this view,

the agents thus occupy the nodes of a graph that are arranged in this grid-like pattern, as

shown in Figure 4.15(b). For ease of visualization, however, we will continue to draw things

using a geometric grid, rather than a graph.

The fundamental constraint driving the model is that each agent wants to have at least

some other agents of its own type as neighbors. We will assume that there is a threshold t

common to all agents: if an agent discovers that fewer than t of its neighbors are of the same

type as itself, then it has an interest in moving to a new cell. We will call such an agent

unsatisfied with its current location. For example, in Figure 4.16(a), we indicate with an

asterisk all the agents that are unsatisfied in the arrangement from Figure 4.15(a), when the

threshold t is equal to 3. (In Figure 4.16(a) we have also added a number after each agent.

This is simply to provide each with a unique name; the key distinction is still whether each

agent is of type X or type O.)
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The dynamics of the Schelling model

Schelling then hypotesizes that every individual wants to have at least
some threshold t of his/her neighbours to be immediate neighbours. When
a individal’s thrshold is not met, they move. There are diffeerent versions
of the model depending on the order in which individuals move and where
they rndomly move to in order to satsify the desire for similarity. The
claim is that the results do not change qualitatively.

To observe the dynamics, simulatiuons of the network are conducted for
different threshold values. What is very apparent is the segegrated
structure of the network as it evolves.

The specific gird is a 150 by 15o grid (i.e., 12,500 cells, with 10,000 cells
occupied) with both groups equlally represented. The following show the
results for thresholds t = 3 (i.e. an individual desires less than a majority
of his/her neighbours to be similar) and t = 4.
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Simulations for t = 3
112 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

(a) A simulation with threshold 3. (b) Another simulation with threshold 3.

Figure 4.17: Two runs of a simulation of the Schelling model with a threshold t of 3, on a
150-by-150 grid with 10, 000 agents of each type. Each cell of the grid is colored red if it is
occupied by an agent of the first type, blue if it is occupied by an agent of the second type,
and black if it is empty (not occupied by any agent).

150 columns, 10, 000 agents of each type, and 2500 empty cells. The threshold t is equal to

3, as in our earlier examples. The two images depict the results of two di�erent runs of the

simulation, with di�erent random starting patterns of agents. In each case, the simulation

reached a point (shown in the figures) at which all agents were satisfied, after roughly 50

rounds of movement.

Because of the di�erent random starts, the final arrangement of agents is di�erent in

the two cases, but the qualitative similarities reflect the fundamental consequences of the

model. By seeking out locations near other agents of the same type, the model produces

large homogeneous regions, interlocking with each other as they stretch across the grid. In

the midst of these regions are large numbers of agents who are surrounded on all sides by

other agents of the same type — and in fact at some distance from the nearest agent of

the opposite type. The geometric pattern has become segregated, much as in the maps of

Chicago from Figure 4.14 with which we began the section.

Interpretations of the Model. We’ve now seen how the model works, what it looks

like at relatively large scales, and how it produces spatially segregated outcomes. But what

broader insights into homophily and segregation does it suggest?

The first and most basic one is that spatial segregation is taking place even though no
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Simulation for t = 4
114 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

(a) After 20 steps (b) After 150 steps

(c) After 350 steps (d) After 800 steps

Figure 4.19: Four intermediate points in a simulation of the Schelling model with a threshold
t of 4, on a 150-by-150 grid with 10, 000 agents of each type. As the rounds of movement
progress, large homogeneous regions on the grid grow at the expense of smaller, narrower
regions.
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Some concluding comments on the Schelling study
The model is not constructed so as to build in segregation. More
specifically, the model allows for stable configurations thta are well
integrated.
However, given a random starting configuration, the simulations show
that people will gravittate to a segregated structure.
There is a compunding effect of the model dynamics. Namely, when
one person leaves, it can result in other neighbours falling below their
threshold ansd hence a new desire to leave the current location has
been created.
The word segregation is a term with a very negative connotation due
to the use of the term with respect to racial 9(e.g., Jim Crow
legislattion) and religious segregation (e.g., ghettos) which was forced
by governments. Do we think that neighbourhoods that are
concentrated along say ethnic lines is a bad thing? At some level (i.e.,
Metro Toronto), Toronto may be the most ethically diverse city as is
claimed. But at a more detailed level, many neighbours are far from
being “integrated”.
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The reality of neighbourood segregation in Chkicago
(1970s)

108 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

(a) Chicago, 1940 (b) Chicago, 1960

Figure 4.14: The tendency of people to live in racially homogeneous neighborhoods produces
spatial patterns of segregation that are apparent both in everyday life and when superim-
posed on a map — as here, in these maps of Chicago from 1940 and 1960 [302]. In blocks
colored yellow and orange the percentage of African-Americans is below 25, while in blocks
colored brown and black the percentage is above 75.

percentage of African-Americans per city block in Chicago for the years 1940 and 1960; in

blocks colored yellow and orange the percentage is below 25, while in blocks colored brown

and black the percentage is above 75.

This pair of figures also shows how concentrations of di�erent groups can intensify over

time, emphasizing that this is a process with a dynamic aspect. Using the principles we’ve

been considering, we now discuss how simple mechansisms based on similarity and selection

can provide insight into the observed patterns and their dynamics.

The Schelling Model. A famous model due to Thomas Schelling [365, 366] shows how

global patterns of spatial segregation can arise from the e�ect of homophily operating at a

local level. There are many factors that contribute to segregation in real life, but Schelling’s

model focuses on an intentionally simplified mechanism to illustrate how the forces leading to

segregation are remarkably robust — they can operate even when no one individual explicitly

wants a segregated outcome.
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Stuctural balance when there are positive and
negative links
As previously mentioned so far we have restricted attention to social
networks where all edges reflect some positive degree of friendship,
collaboration, communictation, etc.

Chapter 5 now explores some interesting aspects of networks where edges
can be both positive and negatve. This is, of course, quite natural in that
people (countries) often have enemies as well as friends (allies). We also
have companies that can be aligned in some way or can be competitors.
Here the meaning of a edge can seemingly change any general
observations more than when there are only positive edges.

Following the development stemming from the distinction between strong
and weak ties, we would like to see what we can infer about a network
given that some edges are positive and some are negative. More
specifically, what can be assumed from certain types of triadic closures?
How can local properties (e.g., how edges of a triangle are labelled) can
have global implications (i.e., provable results about network structure)?
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Some initial assumptions

We start with a strong assumption:
Assume the network is a complete (undirected) graph. That is, as
individuals we either like or dislike someone. Furthermore, this is not
nuanced in the sense that there is no differentiation as to the of
attraction/repulsion).

Later in the chapter, the text considers the issue of networks that are not
complete networks. The text also reflects a little on the nature of directed
networks (when discussing the weak balance property) but essentially this
chapter is about undirected networks.

Note: We can assume the graph is connected since otherwise we can
consider each connected component separately.
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Types of instability

Thinking of networks as people with likes and dislikes of other people
(rather than some other possible interpretations), we can consider the 4
different types of labelled triangles in the graph, depending on the number
of positive (+) and negative (-) edges. That is, any completely labelled
triangle can have 0,1,2, or 3 positive edges and due to the symmetry of a
triangle that is all the information we have about any particular triangle.

Using a central idea from social psychology, two of the four triangle
labellings are considered relatively stable (called balanced) and the other
two relatively unstable (not balanced).
Here follows the four types of triangles as depicted in Figure 5.1 of the
text:
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A natural stable configuration
5.1. STRUCTURAL BALANCE 121
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(a) A, B, and C are mutual friends: balanced.

A

B C

+ +

-

(b) A is friends with B and C, but they don’t get
along with each other: not balanced.

A

B C

+ -

-

(c) A and B are friends with C as a mutual en-
emy: balanced.

A

B C

- -

-

(d) A, B, and C are mutual enemies: not bal-
anced.

Figure 5.1: Structural balance: Each labeled triangle must have 1 or 3 positive edges.

friends (thus turning the B-C edge label to +); or else for A to side with one of B or

C against the other (turning one of the edge labels out of A to a �).

• Similarly, there are sources of instability in a configuration where each of A, B, and C

are mutual enemies (as in Figure 5.1(d)). In this case, there would be forces motivating

two of the three people to “team up” against the third (turning one of the three edge

labels to a +).

Based on this reasoning, we will refer to triangles with one or three +’s as balanced, since

they are free of these sources of instability, and we will refer to triangles with zero or two

+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than

In this case, A,B,C are mutual friends and that naturally indicates that
they would likely remain so.

13 / 29



The second stable configuration
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friends (thus turning the B-C edge label to +); or else for A to side with one of B or

C against the other (turning one of the edge labels out of A to a �).

• Similarly, there are sources of instability in a configuration where each of A, B, and C

are mutual enemies (as in Figure 5.1(d)). In this case, there would be forces motivating

two of the three people to “team up” against the third (turning one of the three edge

labels to a +).

Based on this reasoning, we will refer to triangles with one or three +’s as balanced, since

they are free of these sources of instability, and we will refer to triangles with zero or two

+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than

This may be a slightly less obvious stable situation where A and B are
friendis and if anything that friendship is reinforced by a mutual dislike for
C .
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A natural unstable configuration
In this case, A has two friends B and C who unfortunately do not like each
other. The claim here is that the stress of this situation will encourage A
to either try to have B and C become friends or else for A to take sides
with B or C and thus eliminate a friendship so as to move toward the
previous stable configuration.
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A somewhat less obvious unstable configuration
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• Similarly, there are sources of instability in a configuration where each of A, B, and C

are mutual enemies (as in Figure 5.1(d)). In this case, there would be forces motivating

two of the three people to “team up” against the third (turning one of the three edge

labels to a +).

Based on this reasoning, we will refer to triangles with one or three +’s as balanced, since

they are free of these sources of instability, and we will refer to triangles with zero or two

+’s as unbalanced. The argument of structural balance theorists is that because unbalanced

triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than

Why is this unstable

The instability here is explained by the phenomena
that “the enemy of my enemy becomes my friend” as we sometimes see in
international relations.
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The strong structural balance property

The underlying behavioural theory is that these unstable triangles cause
stress and hence the claim that such unbalnced troangles are not common.

In order to try to ‘understand if this theory tells us anyting about the
global structure of the network, we can make the following strong balance
assumption (much as we made the strong triadic closure assumption).

Strong structural balance property: Every triangle in the netowrk is
balanced.

Recall that we started off with the assumption that the network is a
complete graph with every edge labelled so we are assuming a property for
all n choose 3 triangles. Of course, we cannt expect this property to hold
but just as the strong troadic closure property was an extreme assumption,
we can hope that this strong assumotion will also suggest or predict useful
information about the network.
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Consequence of the strong structural balance
property: A provable characterization of networks
that satisfy the property

One simple (idealistic) way to construct a network satisfying the property
is to asssume that that there are no enemies; everyone is a friend. Is this
the only way?

Suppose that we had two communities of active political people (e.g. X =
the “base” for candidate or political party R, , and Y and the “base” for
candidate or political party B. In the world of highly politicized politics, it
isn’t too far of a stretch to think that eveyone within a community are
friends and everyone dislikes people in the other community. This kind of
network would also clearly satisfy the property.

So far then, we have two possibilities, the network is a clique, or the
network is composed of two cliques with a complete bipartite graph of
negative edges between the communities.
Are there other possible ways to have the strong balsnce property?
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Harary’s Balance Theorem

Are there other possible ways to have the strong balance property?

Perhaps suprisingly, thsee two types of networks (no enemies and two
opposing communities) are the only possibilities.

This is a theorem and the proof is not difficult as we will show using the
figure 5.4 in the text.

Proof
We assume that the network satisfies the strong balance property. If there
are no enemies, then we are done. So suppose there is at least one
negative edge and for definiteness lets say that edge is adjacent to node A.
Let X be all the friends of A and Y all of its enemies. So every node is in
either X or Y since every edge is labelled.
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Proof of balance theorem continued

Consider the three possible triangles as in the figure. It is easy to see that
in order to maintain structural balance, B and C must be friends as must
D and E , whereas B abd D (also C and E ) must be enemies.5.2. CHARACTERIZING THE STRUCTURE OF BALANCED NETWORKS 125

A

B

C E

D

+

+

-

-

?

?

?

friends of A enemies of A

Figure 5.4: A schematic illustration of our analysis of balanced networks. (There may be
other nodes not illustrated here.)

(iii) Every node in X is an enemy of every node in Y .

Let’s argue that each of these conditions is in fact true for our choice of X and Y . This will

mean that X and Y do satisfy the conditions of the claim, and will complete the proof. The

rest of the argument, establishing (i), (ii), and (iii), is illustrated schematically in Figure 5.4.

For (i), we know that A is friends with every other node in X. How about two other

nodes in X (let’s call them B and C) — must they be friends? We know that A is friends

with both B and C, so if B and C were enemies of each other, then A, B, and C would

form a triangle with two + labels — a violation of the balance condition. Since we know

the network is balanced, this can’t happen, so it must be that B and C in fact are friends.

Since B and C were the names of any two nodes in X, we have concluded that every two

nodes in X are friends.

Let’s try the same kind of argument for (ii). Consider any two nodes in Y (let’s call them

D and E) — must they be friends? We know that A is enemies with both D and E, so if D

and E were enemies of each other, then A, D, and E would form a triangle with no + labels

— a violation of the balance condition. Since we know the network is balanced, this can’t

happen, so it must be that D and E in fact are friends. Since D and E were the names of

any two nodes in Y , we have concluded that every two nodes in Y are friends.

Finally, let’s try condition (iii). Following the style of our arguments for (i) and (ii),

consider a node in X (call if B) and a node in Y (call it D) — must they be enemies? We

know A is friends with B and enemies with D, so if B and D were friends, then a, B, and
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Strong structural balance in networks that are not
complete

We will depart form the order of topics in chapter 5, and consider the issue
of networks that are not complete. Is there a meaningful sense in which a
network is or is not structurally balanced?

One possibility is to ask whether or not there is a way to complete the
graph so that it becomes structurally balanced. Of course, if there is
already an unbalanced triangle then there is no way to complete the graph
into one satisfying the strong balance property.

Aside: Of course, this immediately raises the question as to how many
existing edge labels need to be changed so that a complete network is
balanced (or an incomplete network can be made to be balanced)? And
will networks tend to dynamically evolve into balanced networks. But for
now we will assume that all exiting lables are permanent.
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How to label missing edges?

Note that when considering the strong triadic property, if all existing
triangles satisfied the strong triadic property, then there was always a
trivial way to assign labels to unlabelled edges by simply making each
unlabelled edge a weak link.

Question: If all existing triangles are balanced, is there a always a way to
complete a network so as to form a strongly balanced network?

It is easy to see that this is not always possible. For example, comsider a
network which is a 4 node cycle having 3 positive edges and one negative
edge. Any way to label a “diagonal edge” will lead to an imbalance.

We are then led to the following
Question: Can we determine when there is an efficient algorithm to
complete the network so as to satisfy the strong blance property? And if
there is a completion, how efficiently can one be found?
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Determining when and how to complete a network
to satisfy the strong balance property
Clearly, if the existing edges are all poisitve links then there is a trivial way
to complete the graph by simply making all missing edges to be positive
edges.

So the intersting case is when there are existing negative edges. In this
case, the characterization of strongly balanced networks tells us that when
the graph is completed, the graph structure must be that of two opposing
communities, with only positive edges within each community and only
negative edeges for links between the communities.

The previous example of a 4 node cycle is a clue as to how to proceed.
That example can be stated as follows: if a network contains a 4 node
cycle with one negative edge then it cannot be completed (to be strongly
balanced) . More generally, if a network contains a cycle (of any length)
with one negative edge, it cannot be completed. And even more generally,
if a network contains a cycle having an odd nunber of negative edges it
cannot be completed. Why?
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The algorithm for determining if a partially labelled
network can be completed to the strongly balanced

Let]s call a cycle with an odd number of edges an odd cycle. The desired
algorithm will either find an odd cycle (certifying that the netwiork cannot
be completed) or it will return a bipartiton of the nodes satisfying the
Balance Theorem. This then is also determines if a complete network is
balanced.

We proceed as follows:

Suppose G = V ,E ) is the given connected network and let
G+ = (V ,E+) whee E+ = {e ∈ E such that e is a positive link.}
We consider the connnected components C = C1, . . . ,Cr of G+ and
let T1, . . . ,Tr be spanning trees for these componenets.

Note that all edges between any Ci ,Cj must be labelled as negative
edges (or else they would have beem merged into a larger connected
comoponent in G+..
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Completing the algorithm

Otherwise, consider the graph G− = {C,E−} whose nodes are the
components of G+ and whose edges are negative edges in G .

Since G is connected, G− is connected.

if G− has a cycle with an odd number of negative edges, then by
following positive edges in each Ci we have such a cycle in G . We
then again have a witness that G cannot be completed.

Otherwise we are showing that G− is bipartite and this gives us the
biparttition we need for the balance theorem.

A graph has an odd cycle iff the graph is not bipartite. Brewadth first
search can be used to determine whether or not a graph is bipartite
(equivalently has a 2-colouring). Hence this development is efficient.

For the remainder of this lecture, we return to the assumption that
our networks are undirected complete graphs.
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Friends-enemies vs trust-distrust
There is always an ambiguity in social networks as to how to interpret
links. Is a friend as we might traditionally mean a “good friend”, or is it a
friend as in Facebook friends which in many cases are just people you
know? And as we have seen we also use social network links to mean
collaboration or communication rather than friendship.

This is both the power of network modeling (i.e., that results can carry
over to different settings) and also the danger of misinterpreting results for
one type of setting to apply to another.

In chapter 5, we see another instance of the ambiguity where instead of
the friend-enemy relation, one can interpret an edge label as a
trust-distrust relation.

To what extent should we expect intuiton for friendship to carry over to
trust? As discussed in the text, one distinction between these settings is
that turst may be more of a directed edge concept relative to friendship.
(Of course, even for friendship the relation may not be symmetric which is
why maybe we should reserve the term of “friend” for a good friend.)

26 / 29



The ambiguity in the trust-distrust relation

Ignoring the fact that trust might not be at all symmetric, there is an
additional ambiguity in the trust-distrust terminology. Namely, the text
considers two possible interpretations that are meaningful even in the
context of a single setting as in the online product rating site Epionions.

1 If trust is aligned with agremment on political issues as in the ratings
of political commentary, then the four cases of balanced and
unbalanced triangles still seem to apply. In particular, if A distrusts B
and B distrusts C , it is reasonable to assume that A trusts C and
hence a triangle having three negative labels is not stable.

2 However, if A disttrusts B is aligned with A believing that he/she is
more knowledgeable than B about a certain product, then a triangle
having three negative labels is stable.

This suggests that it is reasonable to study a weaker form of structural
balance.

27 / 29



A weaker form of structural balance
It is then interesting to consider a weaker form of structural balance where
the only unstable triangles are those having two positive labels.

This leades to the following definition (analogous to the strong structural
balance property:
A network satisfies the weak structural balance property if it does not
contain any triangles with exactly two positive edges. This in turn leads to
the following
Question: Is there a characterization of which (complete) networks satisfy
the weak structural balance property?

Since every network that satisfies the strong balance property must also
satisfy the weak balance property, the characterization of strongly
balanced networks must be a special case of weakly balanced networks.
Indeed we have the following characterization:

Theorem: A network G = (V ,E ) satisfies the weak strucrtural balance
property iff V = V1 ∪ V2 . . .Vr such that all edges within any Vi are
positive edges and all edges between Vi and Vj (i 6= j) are negative edges.
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Proof of the characterization of weak structural
balance

Clearly if the network G = (V ,E ) has the network structure specified in
the Theorem, then the network satisfies the weak balance property. The
converse (that the weak balancet property implies the network structure)
is a reasonably simple inductive argument (say with respect to the number
of edges).

Consider any node A and let X be all the friends of A.
The following two claims are easy to verify:

Any B,C ∈ X are friends

If B ∈ X and D /∈ X , then B and D are enemies.

Upon removing the nodes in X , the induced network G ′ of the remaining
nodes still must satisfy the weak structure balance property and hence by
the induction hypothesis must have the stated network structure.
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