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Announcements

My office hours will be Monday 1-2, and Wednesdays 4-5 or by
appointment, or by dropping in and taking your chances.

I have posted a third question for Assignment 1 and I plan to add one or
two more question this week.
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Week 3: Todays agenda
Last weeks lectures: We discussed chapter 3 of the EK text. We
introduced a number of basic graph-theoretic concepts motivated by
social networks (e.g., triadic closure, and the span, embeddedness and
dispersion of an edge). A major theme of the chapter was the
distinction between strong and weak ties, and the strength of weak
ties.

This week we will discuss chapter 4 of the text on Networks in their
surrounding contexts. In particular, we will discuss

I Homophily
I the selection vs influence question.
I Social-affiliation networks; three types of triangle closure

But first lets finish the discussion of the Sintos and Tsaparas paper.
This article is interesting because it gives us another example of how
useful (and perhaps private) information can be extracted just from
network structure. Moreover, it is an example of where a little
knowledge of algorithms is important but one has to be careful about
worst case results.
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Sintos and Tsaparas: The vertex cover algorithms
and the 5 data sets
While there are uncovered edges, the (vertex) greedy algorithm selects a
vertex for the vertex cover with maximum current degree. It has worst
case O(log n) approximation ratio. The maximal matching algorithm is a
2-approximation online algorithm that finds an uncovered edge and takes
both endpoints of that edge.

implies that if there was an algorithm with bounded ap-
proximation ratio, then for an input instance for which the
optimal algorithm has cost zero, the algorithm would be able
to produce a solution with zero cost as well; otherwise the
approximation ratio is infinite. However, for k � 3, finding
a k-coloring of a k-colorable graph is NP-hard. Therefore,
it is hard to decide if there is a solution to the minMulti-
STC problem that has cost greater than zero. Therefore,
the problem is hard to approximate, unless P = NP .

We note that for k = 2, the O(log n)-approximation al-
gorithm makes use of linear programming for deriving the
solution. We propose a simpler heuristic in Section 7.

7. EXPERIMENTS
The goal of the experiments is to study if the labeling

we obtain by enforcing the STC property correlates with an
intuitive measure of tie strength in practice. We perform a
variety of experiments towards this end. Our experiments
are on real data, and demonstrate the practical utility of our
formulation and of the proposed algorithms.

7.1 Datasets
We use five di↵erent datsets in our experiments: Actors,

Authors, Les Miserables, Karate Club and Amazon Books.
Table 1 shows some statistics about our datasets. The col-
umn “Weights” indicates whether we can compute weights
for the edges of the graph. The weight of an edge corre-
sponds to the empirical strength of the connection. The col-
umn “Community Structure” indicates whether there exists
a known community structure in the graph.

Table 1: Datasets Statistics.

Dataset Nodes Edges Weights
Community
structure

Actors 1,986 103,121 Yes No
Authors 3,418 9,908 Yes No

Les Miserables 77 254 Yes No
Karate Club 34 78 No Yes

Amazon Books 105 441 No Yes

We now describe the datasets in detail.
The Actors dataset: We create a graph from a movie

dataset collected from IMDB1, consisting of 3,125 movies
made from 1945 to 2010, and 2,171 actors that participate
in these movies. The actor graph contains a node for each
actor in the data, and there is an edge between two actors
if they have collaborated in at least one movie. For each
node of the graph we also have information about the set of
movies in which the actor has played. We prune actors who
participated in less than 5 movies since we do not consider
them to be significant members of the network.

The Authors dataset: This dataset was obtained from
data downloaded from the DBLP site2. It consists of a col-
lection of authors that have published papers in one of the
major Data Mining, Databases or Theory conferences dur-
ing the period between 1994 and 2013. The author graph
contains a node for each author in the data, and there is
an edge between two authors if they have collaborated in at
least one paper. For each node in the graph we also have

1http:www.imdb.com
2http://dblp.uni-trier.de/xml/

information about the set of papers the author has written.
We prune authors who wrote less than 3 papers since we do
not consider them to be significant members of the network.

The Les Miserables dataset: This dataset contains the
network of co-appearances of characters in Victor Hugo’s
novel ”Les Miserables” [13]. Nodes represent characters of
the novel, and there is an edge between two nodes if the
pair of characters appear in the same chapter of the book.
For each edge we have the number of such co-appearances
between the two characters.

The Karate Club dataset: Zachary’s Karate Club
dataset [23] is a social network of friendships between 34
members of a karate club at a US university in the 1970s.
The information about the friendship was derived by ques-
tionnaires filled out by the members of the club.

The Amazon Books dataset: This dataset contains a
set of books about US politics published around the time of
the 2004 presidential election which are sold by the online
bookseller Amazon.com3. Edges between books represent
frequent co-purchasing of the books. In addition, each node
(book) is labeled as “liberal”, “neutral”, or “conservative”,
depending on its political viewpoint. There are 43 liberal,
13 neutral and 49 conservative books in this dataset.

7.2 Algorithms
In Section 5, we proved that minSTC problem on the

graph G can be mapped to the minVertexCover problem
on the dual graph GT . Given the graph G, the dual graph
GT is constructed by creating a node for every edge of G,
and connecting two nodes if the corresponding edges form
an open triangle. The algorithms we consider work by con-
structing an approximate solution to the minVertexCover
problem. We now describe them in detail.

The Greedy Algorithm: The input to the algorithm is
the graph G and its dual GT , and the output is a labeling of
the edges of the graph G as strong or weak. The algorithm
works by constructing a vertex cover of graph GT in a greedy
fashion. Recall that a vertex cover of a graph is a set of
vertices such that every edge of the graph has at least one
endpoint in the set. Let C denotes the set of nodes which are
selected by our algorithm. Initially C = ;. At every step the
algorithm selects the node v with the maximum degree in
GT , and adds it to the set C. It then deletes node v and all
edges incident on v from graph GT . The process is repeated
until there are no more edges in the graph GT . Given the set
of nodes in C, we label the corresponding edges of graph G as
weak. The remain edges are labeled strong. This algorithm
is known to be a O(log n)-approximation algorithm [21].

If at any step of the algorithm more than one nodes have
the same degree, we break ties by choosing the node that
corresponds to the edge in G that participates in the fewest
closed triangles in the graph G. This way, our algorithm
tends to label as weak edges that participate in many open
triangles and few closed triangles, a principle that agrees
with our intuition of what a weak edge should be.

The MaximalMatching Algorithm: The MaximalMatch-
ing algorithm also produces a vertex cover of the graph GT ,
by constructing a maximal matching for the dual graph GT .
A matching of a graph is a collection of non-adjacent edges
of the graph, while a maximal matching is one where no
additional edges can be added. The algorithm constructs
the matching one edge at the time. Let M denote the set

3Available by V. Krebs at http://www.orgnet.com/.

Figure: Weights (respectively, community structure) indicates when explicit edge
weights (resp. a community structure) are known.
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End of Wednesday, January 16 Lecture

We ended the lecture on slide 36. In the Monday, January 21 lecture, we
will finish up the discussion of the Sintos and Tsaparas paper. I am
including the remaining slides for those who want to see some of the
results in that paper. I will also post the paper.

5 / 43



Tie strength results in detecting strong and weak
ties

of edges selected by our algorithm. Initially M = ;. The
algorithm selects the next edge to add to the set M by first
selecting the node u with the highest degree in GT and then
the neighbor v of u with the highest degree. If more than
one nodes have the same degree then we break ties in the
same way as in the Greedy Algorithm. We add edge (u, v) to
M , and delete u, v and all edges incident on u or v from GT .
The algorithm terminates when there are no more edges in
the graph GT . Let C denote the set of vertices that are
endpoints of the edges in M . Similar to before, we label
as weak the corresponding edges of G, while the remaining
edges are labeled as strong. This algorithm is known to be
a 2-approximation algorithm [21].

Note that for both algorithms if there are vertices in the
graph GT that have no incident edges, then the correspond-
ing edges in the graph G will be labeled strong. These cor-
respond to edges that participate only in closed triangles, or
that are isolated in the graph G.

Table 2 shows the number of edges labeled weak and
strong for the two algorithms on the five datasets we con-
sider in this paper. Despite the better approximation ra-
tio the MaximalMatching algorithm always produces a larger
number of weak edges.

Table 2: Number of strong and weak edges for Greedy
and MaximalMatching algorithms.

Greedy MaximalMatching
Strong Weak Strong Weak

Actors 11,184 91,937 8,581 94,540
Authors 3,608 6,300 2,676 7,232

Les Miserables 128 126 106 148
Karate Club 25 53 14 64

Amazon Books 114 327 71 370

7.3 Measuring Tie Strength
In this section we study the relationship between the as-

signed labels and a notion of tie strength measured in prac-
tice. Our experiments follow the line of experimentation in
prior work [16, 10] where they study how structural features
of an edge correlate with empirical tie strength.

For this experiment, we use the three datasets for which
we can compute weights for the edges: the Actors dataset,
the Les Miserables dataset and the Authors dataset. The
weights on the edges correspond to the strength of the re-
lationships: a strong and enduring collaboration between
two nodes in the case of the Actors and Authors datasets,
and high a�nity in the storyline of the novel in the case
of the Les Miserables dataset. Specifically, for the Actors
dataset, the weight of an edge is the number of times that
the two actors have collaborated; for the Authors dataset
it represents the number of papers that they have written
together; for the Les Miserables dataset, it is the number of
co-appearances between two characters in the same chapter.
The goal of this experiment is to test the validity of the edge
labeling, by examining if there is a correlation between the
assigned label and the weight of the edge. Mathematically,
we will show that there is a statistically significant di↵erence
between the mean weight of strong and weak edges.

Table 3 shows the mean weight for the strong and weak
edges for all the three datasets, using the Greedy and Maxi-
malMatching algorithms. Clearly, for all of the datasets the

strong edges have higher weight than the weak ones. The
t-test reveals that the di↵erence is statistically significant at
a 5% confidence level. We can thus conclude that the label-
ing of our algorithm agrees with the “true” strength of the
network ties.

Table 3: Mean count weight for strong and weak
edges for Greedy and MaximalMatching algorithms.

Greedy MaximalMatching
S W S W

Actors 1.4 1.1 1.3 1.1
Authors 1.341 1.150 1.362 1.167

Les Miserables 3.83 2.61 3.87 2.76

The frequency of common activity (e.g. collaboration) be-
tween two users is obviously a strong indicator of tie strength.
However it may also be an artifact of the general frequent
activity of the two users. For example, two highly prolific
researchers may collaborate on higher-than-average number
of papers, but this may be simply due to the fact that they
produce a lot of publications in general. An alternative mea-
sure of tie strength is the fraction of the activity of the two
users that is devoted to their relationship. We use Jaccard
similarity to capture this idea. Recall that Jaccard similarity
between two sets is defined as the ratio of their intersection
over their union. In our case the sets correspond to the
sets of activities in which the two users engage (e.g., movies,
publications, etc), and the Jaccard similarity measures the
fraction of their activities that are common.

For this experiment we use the Actors and the Authors
datasets. For the Actors dataset the weight of an edge be-
tween two actors is the number of movies in which they have
played together, over the total number of movies in which
at least one of the two actors has participated. Similarly,
the weight of an edge between two authors is defined as the
number of papers that they have written together over the
total number of their papers. We cannot compute Jaccard
similarity for the Les Miserables dataset, since we do not
have the exact chapter appearances for each character.

Table 4 shows the mean Jaccard similarity for the strong
and weak edges using Greedy and MaximalMatching algo-
rithms. Again, for all of the datasets the strong edges have
higher weight than the weak ones and the t-test reveals that
this di↵erence is statistically significant at a 5% confidence
level. We note that in the case of Jaccard similarity, the
gap between strong and weak edges is larger than before.
It seems that our labeling is more adept at capturing this
focused measure of tie strength.

Table 4: Mean Jaccard similarity for strong and
weak edges for Greedy and MaximalMatching algo-
rithms.

Greedy MaximalMatching
S W S W

Actors 0.06 0.04 0.06 0.04
Authors 0.145 0.084 0.155 0.088

Comparing the MaximalMatching and the Greedy algorithm
we observe that they behave very similarly in terms of the
mean weights of strong and weak edges. However, the Greedy
algorithm produces consistently a larger number of strong
edges, and it is intuitively more appealing.

Figure: The number of labelled links.

Although the Greedy algorithm has an inferior (worst case) approximation
ratio, here the greedy algorithm has better performance than Maximal
Matching. (Recall, the goal is to maximize the number of strong ties, or
equivalently minimize the number of weak ties.)
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Results for detecting strong and weak ties

of edges selected by our algorithm. Initially M = ;. The
algorithm selects the next edge to add to the set M by first
selecting the node u with the highest degree in GT and then
the neighbor v of u with the highest degree. If more than
one nodes have the same degree then we break ties in the
same way as in the Greedy Algorithm. We add edge (u, v) to
M , and delete u, v and all edges incident on u or v from GT .
The algorithm terminates when there are no more edges in
the graph GT . Let C denote the set of vertices that are
endpoints of the edges in M . Similar to before, we label
as weak the corresponding edges of G, while the remaining
edges are labeled as strong. This algorithm is known to be
a 2-approximation algorithm [21].

Note that for both algorithms if there are vertices in the
graph GT that have no incident edges, then the correspond-
ing edges in the graph G will be labeled strong. These cor-
respond to edges that participate only in closed triangles, or
that are isolated in the graph G.

Table 2 shows the number of edges labeled weak and
strong for the two algorithms on the five datasets we con-
sider in this paper. Despite the better approximation ra-
tio the MaximalMatching algorithm always produces a larger
number of weak edges.

Table 2: Number of strong and weak edges for Greedy
and MaximalMatching algorithms.

Greedy MaximalMatching
Strong Weak Strong Weak

Actors 11,184 91,937 8,581 94,540
Authors 3,608 6,300 2,676 7,232

Les Miserables 128 126 106 148
Karate Club 25 53 14 64

Amazon Books 114 327 71 370

7.3 Measuring Tie Strength
In this section we study the relationship between the as-

signed labels and a notion of tie strength measured in prac-
tice. Our experiments follow the line of experimentation in
prior work [16, 10] where they study how structural features
of an edge correlate with empirical tie strength.

For this experiment, we use the three datasets for which
we can compute weights for the edges: the Actors dataset,
the Les Miserables dataset and the Authors dataset. The
weights on the edges correspond to the strength of the re-
lationships: a strong and enduring collaboration between
two nodes in the case of the Actors and Authors datasets,
and high a�nity in the storyline of the novel in the case
of the Les Miserables dataset. Specifically, for the Actors
dataset, the weight of an edge is the number of times that
the two actors have collaborated; for the Authors dataset
it represents the number of papers that they have written
together; for the Les Miserables dataset, it is the number of
co-appearances between two characters in the same chapter.
The goal of this experiment is to test the validity of the edge
labeling, by examining if there is a correlation between the
assigned label and the weight of the edge. Mathematically,
we will show that there is a statistically significant di↵erence
between the mean weight of strong and weak edges.

Table 3 shows the mean weight for the strong and weak
edges for all the three datasets, using the Greedy and Maxi-
malMatching algorithms. Clearly, for all of the datasets the

strong edges have higher weight than the weak ones. The
t-test reveals that the di↵erence is statistically significant at
a 5% confidence level. We can thus conclude that the label-
ing of our algorithm agrees with the “true” strength of the
network ties.

Table 3: Mean count weight for strong and weak
edges for Greedy and MaximalMatching algorithms.

Greedy MaximalMatching
S W S W

Actors 1.4 1.1 1.3 1.1
Authors 1.341 1.150 1.362 1.167

Les Miserables 3.83 2.61 3.87 2.76

The frequency of common activity (e.g. collaboration) be-
tween two users is obviously a strong indicator of tie strength.
However it may also be an artifact of the general frequent
activity of the two users. For example, two highly prolific
researchers may collaborate on higher-than-average number
of papers, but this may be simply due to the fact that they
produce a lot of publications in general. An alternative mea-
sure of tie strength is the fraction of the activity of the two
users that is devoted to their relationship. We use Jaccard
similarity to capture this idea. Recall that Jaccard similarity
between two sets is defined as the ratio of their intersection
over their union. In our case the sets correspond to the
sets of activities in which the two users engage (e.g., movies,
publications, etc), and the Jaccard similarity measures the
fraction of their activities that are common.

For this experiment we use the Actors and the Authors
datasets. For the Actors dataset the weight of an edge be-
tween two actors is the number of movies in which they have
played together, over the total number of movies in which
at least one of the two actors has participated. Similarly,
the weight of an edge between two authors is defined as the
number of papers that they have written together over the
total number of their papers. We cannot compute Jaccard
similarity for the Les Miserables dataset, since we do not
have the exact chapter appearances for each character.

Table 4 shows the mean Jaccard similarity for the strong
and weak edges using Greedy and MaximalMatching algo-
rithms. Again, for all of the datasets the strong edges have
higher weight than the weak ones and the t-test reveals that
this di↵erence is statistically significant at a 5% confidence
level. We note that in the case of Jaccard similarity, the
gap between strong and weak edges is larger than before.
It seems that our labeling is more adept at capturing this
focused measure of tie strength.

Table 4: Mean Jaccard similarity for strong and
weak edges for Greedy and MaximalMatching algo-
rithms.

Greedy MaximalMatching
S W S W

Actors 0.06 0.04 0.06 0.04
Authors 0.145 0.084 0.155 0.088

Comparing the MaximalMatching and the Greedy algorithm
we observe that they behave very similarly in terms of the
mean weights of strong and weak edges. However, the Greedy
algorithm produces consistently a larger number of strong
edges, and it is intuitively more appealing.

Figure: The avergae link weight.
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Tie strength results in detecting strong and weak
ties normalized by amount of activity

of edges selected by our algorithm. Initially M = ;. The
algorithm selects the next edge to add to the set M by first
selecting the node u with the highest degree in GT and then
the neighbor v of u with the highest degree. If more than
one nodes have the same degree then we break ties in the
same way as in the Greedy Algorithm. We add edge (u, v) to
M , and delete u, v and all edges incident on u or v from GT .
The algorithm terminates when there are no more edges in
the graph GT . Let C denote the set of vertices that are
endpoints of the edges in M . Similar to before, we label
as weak the corresponding edges of G, while the remaining
edges are labeled as strong. This algorithm is known to be
a 2-approximation algorithm [21].

Note that for both algorithms if there are vertices in the
graph GT that have no incident edges, then the correspond-
ing edges in the graph G will be labeled strong. These cor-
respond to edges that participate only in closed triangles, or
that are isolated in the graph G.

Table 2 shows the number of edges labeled weak and
strong for the two algorithms on the five datasets we con-
sider in this paper. Despite the better approximation ra-
tio the MaximalMatching algorithm always produces a larger
number of weak edges.

Table 2: Number of strong and weak edges for Greedy
and MaximalMatching algorithms.

Greedy MaximalMatching
Strong Weak Strong Weak

Actors 11,184 91,937 8,581 94,540
Authors 3,608 6,300 2,676 7,232

Les Miserables 128 126 106 148
Karate Club 25 53 14 64

Amazon Books 114 327 71 370

7.3 Measuring Tie Strength
In this section we study the relationship between the as-

signed labels and a notion of tie strength measured in prac-
tice. Our experiments follow the line of experimentation in
prior work [16, 10] where they study how structural features
of an edge correlate with empirical tie strength.

For this experiment, we use the three datasets for which
we can compute weights for the edges: the Actors dataset,
the Les Miserables dataset and the Authors dataset. The
weights on the edges correspond to the strength of the re-
lationships: a strong and enduring collaboration between
two nodes in the case of the Actors and Authors datasets,
and high a�nity in the storyline of the novel in the case
of the Les Miserables dataset. Specifically, for the Actors
dataset, the weight of an edge is the number of times that
the two actors have collaborated; for the Authors dataset
it represents the number of papers that they have written
together; for the Les Miserables dataset, it is the number of
co-appearances between two characters in the same chapter.
The goal of this experiment is to test the validity of the edge
labeling, by examining if there is a correlation between the
assigned label and the weight of the edge. Mathematically,
we will show that there is a statistically significant di↵erence
between the mean weight of strong and weak edges.

Table 3 shows the mean weight for the strong and weak
edges for all the three datasets, using the Greedy and Maxi-
malMatching algorithms. Clearly, for all of the datasets the

strong edges have higher weight than the weak ones. The
t-test reveals that the di↵erence is statistically significant at
a 5% confidence level. We can thus conclude that the label-
ing of our algorithm agrees with the “true” strength of the
network ties.

Table 3: Mean count weight for strong and weak
edges for Greedy and MaximalMatching algorithms.

Greedy MaximalMatching
S W S W

Actors 1.4 1.1 1.3 1.1
Authors 1.341 1.150 1.362 1.167

Les Miserables 3.83 2.61 3.87 2.76

The frequency of common activity (e.g. collaboration) be-
tween two users is obviously a strong indicator of tie strength.
However it may also be an artifact of the general frequent
activity of the two users. For example, two highly prolific
researchers may collaborate on higher-than-average number
of papers, but this may be simply due to the fact that they
produce a lot of publications in general. An alternative mea-
sure of tie strength is the fraction of the activity of the two
users that is devoted to their relationship. We use Jaccard
similarity to capture this idea. Recall that Jaccard similarity
between two sets is defined as the ratio of their intersection
over their union. In our case the sets correspond to the
sets of activities in which the two users engage (e.g., movies,
publications, etc), and the Jaccard similarity measures the
fraction of their activities that are common.

For this experiment we use the Actors and the Authors
datasets. For the Actors dataset the weight of an edge be-
tween two actors is the number of movies in which they have
played together, over the total number of movies in which
at least one of the two actors has participated. Similarly,
the weight of an edge between two authors is defined as the
number of papers that they have written together over the
total number of their papers. We cannot compute Jaccard
similarity for the Les Miserables dataset, since we do not
have the exact chapter appearances for each character.

Table 4 shows the mean Jaccard similarity for the strong
and weak edges using Greedy and MaximalMatching algo-
rithms. Again, for all of the datasets the strong edges have
higher weight than the weak ones and the t-test reveals that
this di↵erence is statistically significant at a 5% confidence
level. We note that in the case of Jaccard similarity, the
gap between strong and weak edges is larger than before.
It seems that our labeling is more adept at capturing this
focused measure of tie strength.

Table 4: Mean Jaccard similarity for strong and
weak edges for Greedy and MaximalMatching algo-
rithms.

Greedy MaximalMatching
S W S W

Actors 0.06 0.04 0.06 0.04
Authors 0.145 0.084 0.155 0.088

Comparing the MaximalMatching and the Greedy algorithm
we observe that they behave very similarly in terms of the
mean weights of strong and weak edges. However, the Greedy
algorithm produces consistently a larger number of strong
edges, and it is intuitively more appealing.

Figure: Normalizing the number of interactions by the amount of activity.
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Results for strong and weak ties with respect to
known communities

7.4 Weak edges as bridges
Granovetter, in his seminal paper [8], demonstrated the

importance of weak social ties in connecting individuals with
information that is not readily available in their close social
circle, such as new work opportunities. A possible expla-
nation to this observation is nicely articulated in the book
of David Easley and Jon Kleinberg [4], where they postu-
late that weak ties act as bridges between communities in
the graph. Communities hold di↵erent types of information,
and the only way for an individual to obtain access to infor-
mation from a community di↵erent than her own is through
weak ties.

In accordance to this interpretation, given a labeling of
the edges of a graph with known community structure, we
would like most of the inter-community edges to be labeled
weak, while most of the strong labels to be confined to intra-
community edges. That is, edges that bridge communities
should be labeled weak, while strong edges should serve as
a backbone of the communities.

Formally, let G = (V, E) denote the input graph, and let
C = {C1, ..., Ck} denote a partition of the nodes of the graph
into k communities, which is also given as part of the input.
Let Einter denote the set of edges (u, v) such that u 2 Ci and
v 2 Cj for some i 6= j, and let Eintra denote the set of edges
(u, v) such that u, v 2 Ci for some i. Also given the labeling
LG of the graph G let W denote the set of edges labeled
weak, and let S denote the set of edges labeled strong. We
define the precision PW and recall RW for the weak edges
as follows:

PW =
|W \ Einter|

|W | and RW =
|W \ Einter|

|Einter|
Similarly, we define precision PS and recall RS for strong
edges as follows:

PS =
|S \ Eintra|

|S| and RS =
|S \ Eintra|

|Eintra|
The numbers we are mostly interested in are RW and PS ,
that is, we want the bridging edges to be labeled weak, and
the strong edges to be confined within the communities.

To test our hypothesis we need graphs with known com-
munity structure. To this end, we use the Karate Club and
Amazon Books datasets. For the Karate Club dataset it
is well known [4] that there were two fractions within the
members of the club, centered around the two trainers, that
eventually led to the breakup of the club. For the Amazon
Books dataset the communities are given by the political
viewpoint of the books.

Table 5: Precision and Recall for strong and weak
edges for Greedy and MaximalMatching algorithms.

Greedy
PS RS PW RW

Karate Club 1 0.37 0.19 1
Amazon Books 0.81 0.25 0.15 0.69

MaximalMatching
PS RS PW RW

Karate Club 1 0.2 0.16 1
Amazon Books 0.73 0.14 0.14 0.73

Table 5 shows the results for the two datasets for the
Greedy and MaximalMatching algorithms. The two algo-

rithms behave similarly, but the Greedy algorithm performs
better overall in terms of both precision and recall. We now
study the labeling of the Greedy algorithm in more detail.

For the Karate Club dataset we observe that we have per-
fect precision for the strong edges, and perfect recall for the
weak edges. We visualize the results of the Greedy algorithm
in Figure 1. The nodes are colored white and gray depend-
ing on the community to which they belong. The thick red
edges correspond to the edges labeled strong, and the thin
blue edges to the edges labeled weak. We can see that strong
edges appear only between nodes of the same group, while
all edges that cross communities are labeled weak.

Figure 1: Karate Club graph. Blue light edges rep-
resent the weak edges, while red thick edges repre-
sent the strong edges.

For the Amazon Books dataset the Greedy algorithm char-
acterizes 114 edges as strong, out of which 92 connect books
of the same type, thus yielding precision PS = 0.81. On
the other hand, there are 70 edges that connect nodes from
di↵erent groups, and 48 of those are labeled weak, yielding
recall RW = 0.69. Of the remaining 22 edges that cross
communities and are labeled strong, 20 are edges with one
of the two endpoints being a book labeled as neutral. It
is intuitive that people would co-purchase books of neutral
viewpoint with liberal or conservative books, thus leading to
strong connections. There are only two edges that connect
a liberal and a conservative pair of books, and are labeled
strong by our algorithm. These pairs are: (“America Un-
bound”, “Rise of the Vulcans”), and (“The Choice”, “Rise of
the Vulcans”). After some investigation, we found out that,
for the first pair, although the books “America Unbound”
and “Rise of the Vulcans” belong to di↵erent categories (lib-
eral and conservative respectively), they are both about the
exact same issue: George W. Bush’s foreign policy. There-
fore, there is a di↵erent latent dimension that groups them
together, which can explain the strong relationship between
them.

7.5 STC with added edges
In this section we conduct experiments for the minSTC+

problem, where except for labeling edges as strong or weak,
we can also add edges to the graph. To this end we use the
greedy algorithm we described in Section 6. The algorithm
works iteratively. At each step of the algorithm a pair of
nodes (u, v) is selected which covers the most remaining open
triangles. This pair is either an edge not currently in the
graph, which, when added, closes the most remaining open
triangles, or an existing edge, which, when labeled weak,

Figure: Precision and recall with respect to the known communities.
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The meaning of the precision-recall table

The precision and recall for the weak edges are defined as follows:

PW =
|W∩Einter|

|W | and RW =
|W∩Einter|
|Einter |

PS =
|S∩Eintra|

|S | and RS =
|S∩Eintra|
|Eintra|

Ideally, we want RW = 1 indicating that all edges between
communities are weak; and we want PS = 1 idicating that strong
edges are all within a community.

For the Karate Club data set, all the strong links are within one of the
two known communities and hence all links between the communities
are all weak links.

For the Amazon Books data set, there are three communities
corresponding to liberal, neutral, conservative viewpoints. Of the 22
strong tie edges crossing communities, 20 have one node labeled as
neutral and the remaining two inter-community strong ties both deal
with the same issue.
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A Balanced Min Cut in Graph: Bonding capital of
nodes 1 and 34

Mining Social Network Data

Mining social networks also has long history in social sciences.

E.g. Wayne Zachary’s Ph.D. work (1970-72): observe social
ties and rivalries in a university karate club.

During his observation, conflicts intensified and group split.

Split could be explained by minimum cut in social network.

Jon Kleinberg Challenges in Mining Social Network Data

Note that node 34 also seems to have bridging capital.
Wayne Zachary’s Ph.D. work (1970-72): observed social ties and
rivalries in a university karate club.
During his observation, conflicts intensified and group split.
Could the club boundaries be predicted from the network structure?
Split could almost be explained by minimum cut in social network.
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Strong and weak ties in the karate club network

7.4 Weak edges as bridges
Granovetter, in his seminal paper [8], demonstrated the

importance of weak social ties in connecting individuals with
information that is not readily available in their close social
circle, such as new work opportunities. A possible expla-
nation to this observation is nicely articulated in the book
of David Easley and Jon Kleinberg [4], where they postu-
late that weak ties act as bridges between communities in
the graph. Communities hold different types of information,
and the only way for an individual to obtain access to infor-
mation from a community different than her own is through
weak ties.

In accordance to this interpretation, given a labeling of
the edges of a graph with known community structure, we
would like most of the inter-community edges to be labeled
weak, while most of the strong labels to be confined to intra-
community edges. That is, edges that bridge communities
should be labeled weak, while strong edges should serve as
a backbone of the communities.

Formally, let G = (V, E) denote the input graph, and let
C = {C1, ..., Ck} denote a partition of the nodes of the graph
into k communities, which is also given as part of the input.
Let Einter denote the set of edges (u, v) such that u ∈ Ci and
v ∈ Cj for some i "= j, and let Eintra denote the set of edges
(u, v) such that u, v ∈ Ci for some i. Also given the labeling
LG of the graph G let W denote the set of edges labeled
weak, and let S denote the set of edges labeled strong. We
define the precision PW and recall RW for the weak edges
as follows:

PW =
|W ∩ Einter|

|W | and RW =
|W ∩ Einter|

|Einter|
Similarly, we define precision PS and recall RS for strong
edges as follows:

PS =
|S ∩ Eintra|

|S| and RS =
|S ∩ Eintra|

|Eintra|
The numbers we are mostly interested in are RW and PS ,
that is, we want the bridging edges to be labeled weak, and
the strong edges to be confined within the communities.

To test our hypothesis we need graphs with known com-
munity structure. To this end, we use the Karate Club and
Amazon Books datasets. For the Karate Club dataset it
is well known [4] that there were two fractions within the
members of the club, centered around the two trainers, that
eventually led to the breakup of the club. For the Amazon
Books dataset the communities are given by the political
viewpoint of the books.

Table 5: Precision and Recall for strong and weak
edges for Greedy and MaximalMatching algorithms.

Greedy
PS RS PW RW

Karate Club 1 0.37 0.19 1
Amazon Books 0.81 0.25 0.15 0.69

MaximalMatching
PS RS PW RW

Karate Club 1 0.2 0.16 1
Amazon Books 0.73 0.14 0.14 0.73

Table 5 shows the results for the two datasets for the
Greedy and MaximalMatching algorithms. The two algo-

rithms behave similarly, but the Greedy algorithm performs
better overall in terms of both precision and recall. We now
study the labeling of the Greedy algorithm in more detail.

For the Karate Club dataset we observe that we have per-
fect precision for the strong edges, and perfect recall for the
weak edges. We visualize the results of the Greedy algorithm
in Figure 1. The nodes are colored white and gray depend-
ing on the community to which they belong. The thick red
edges correspond to the edges labeled strong, and the thin
blue edges to the edges labeled weak. We can see that strong
edges appear only between nodes of the same group, while
all edges that cross communities are labeled weak.

Figure 1: Karate Club graph. Blue light edges rep-
resent the weak edges, while red thick edges repre-
sent the strong edges.

For the Amazon Books dataset the Greedy algorithm char-
acterizes 114 edges as strong, out of which 92 connect books
of the same type, thus yielding precision PS = 0.81. On
the other hand, there are 70 edges that connect nodes from
different groups, and 48 of those are labeled weak, yielding
recall RW = 0.69. Of the remaining 22 edges that cross
communities and are labeled strong, 20 are edges with one
of the two endpoints being a book labeled as neutral. It
is intuitive that people would co-purchase books of neutral
viewpoint with liberal or conservative books, thus leading to
strong connections. There are only two edges that connect
a liberal and a conservative pair of books, and are labeled
strong by our algorithm. These pairs are: (“America Un-
bound”, “Rise of the Vulcans”), and (“The Choice”, “Rise of
the Vulcans”). After some investigation, we found out that,
for the first pair, although the books “America Unbound”
and “Rise of the Vulcans” belong to different categories (lib-
eral and conservative respectively), they are both about the
exact same issue: George W. Bush’s foreign policy. There-
fore, there is a different latent dimension that groups them
together, which can explain the strong relationship between
them.

7.5 STC with added edges
In this section we conduct experiments for the minSTC+

problem, where except for labeling edges as strong or weak,
we can also add edges to the graph. To this end we use the
greedy algorithm we described in Section 6. The algorithm
works iteratively. At each step of the algorithm a pair of
nodes (u, v) is selected which covers the most remaining open
triangles. This pair is either an edge not currently in the
graph, which, when added, closes the most remaining open
triangles, or an existing edge, which, when labeled weak,

Sintos and Tsaparas apply their algorithm to the karate club network.

Note that all the strong links are within one of the two “computed
communities”; that is, links between the communities are all weak
links.
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Chapter 4: The context of network formation

In this chapter, we study social networks within their context,
considering factors outside of the nodes and edges of the network
that impact how the network structure evolves.

The chapter introduces a very important (and often controversial)
issue, namely the relative roles of selection (similarity) vs influence in
social relations.

As we have already noted, Easley and Kleinberg have already
indicated that there is a limit to what one can understand just in
terms of the network structure.
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Word of caution from Chapter 3 repeated

Easley and Kleinberg (end of Section 3.3):

Given the size and complexity of the (who call whom) network,
we cannot simply look at the structure. . . Indirect measures must
generally be used and, because one knows relatively little about
the meaning or significance of any particular node or edge, it
remains an ongoing research challenge to draw richer and more
detailed conclusions. . .

We should also add that we may know very little about the reasons for the
formation (or disappeaance) of an edge.

Yogi Berra(1925-2015):

In theory there is no difference between theory and practice. In
practice there is.
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Homophily

Homophily: we tend to be similar to our friends.

This observation is captured in various writings and proverbs perhaps
most notably by “Birds of a feather flock together” suggesting that
friendships (and membership in groups) are selectively formed due to
similar interests.

In contrast we also have “opposites attract” but the quote might
better be “opposites attract but the like-minded last”.

Why triadic closure? In Chapter 3: some network “intrinsic” reasons
(opportunity, trust, incentive) for forming a freindship and now we
consider “contextual” reasons for homophily.

Note: But to what extent do we adopt similar interests based on
friendship rather than conversely?
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Characteristic factors

Factors which help determine our friendships and relations can be
immutable or more transient.

Some (essentially) immutable factors: race, birth date, gender;
religion, height. What other such (mainly permanent) factors exist?

Some more mutable (often related) factors: membership in clubs or
courses, educational level, recreational interests, professional interests,
income level, residential neighbourhood, political party preference.

Of course, immutable factors can and do influence mutable factors.
Furthermore, one’s friendships can and do influence mutable factors
such as say recreational interests.
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The influence vs selection issue

So the selection vs influence issue can be seen as the relative extent
to which our friendships are formed selectively due to similarity vs
friendships influencing our interests and other similarity traits.

Homophily (which we will use just to note the correlation between
friendships and similarity) can be more easily attributed (directly or
indirectly) to similarity leading to friendships when similarity factors
are immutable or not easily changeable. The issue becomes much less
clear and sometimes quite controversial when the similarity factors are
mutable.

And to further complicate matters, the “environment” of various
(perhaps unobserved) external events or hidden influences can also
impact one’s friendships and/or interests and affiliations.

For example, Alice and Bob are not friends nor have any interest in
political issues. Then a popular entertainer is performing in a rally for
a political candidate. Alice and Bob meet at the event and become
friends as well as becoming more politically involved.
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Graphic visualization of homophily
4.1. HOMOPHILY 87

Figure 4.1: Homophily can produce a division of a social network into densely-connected, homogeneous

parts that are weakly connected to each other. In this social network from a town’s middle school and

high school, two such divisions in the network are apparent: one based on race (with students of different

races drawn as differently colored circles), and the other based on friendships in the middle and high schools

respectively [304].

hypothesizing intrinsic mechanisms: when individuals B and C have a common friend A,

then there are increased opportunities and sources of trust on which to base their interactions,

and A will also have incentives to facilitate their friendship. However, social contexts also

provide natural bases for triadic closure: since we know that A-B and A-C friendships

already exist, the principle of homophily suggests that B and C are each likely to be similar

to A in a number of dimensions, and hence quite possibly similar to each other as well. As

a result, based purely on this similarity, there is an elevated chance that a B-C friendship

will form; and this is true even if neither of them is aware that the other one knows A.

The point isn’t that any one basis for triadic closure is the “correct” one. Rather, as we

take into account more and more of the factors that drive the formation of links in a social

[Fig. 4.1, textbook]

Homophily can divide a social network into densely-connected,
homogeneous parts that are weakly connected to each other.
In this social network from a town’s middle school and high school,
two divisions are apparent: one based on race (students of different
races drawn as differently-colored circles), and the other based on
friendships in the middle and high schools.
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Comments on figure 4.14.1. HOMOPHILY 87

Figure 4.1: Homophily can produce a division of a social network into densely-connected, homogeneous

parts that are weakly connected to each other. In this social network from a town’s middle school and

high school, two such divisions in the network are apparent: one based on race (with students of different

races drawn as differently colored circles), and the other based on friendships in the middle and high schools

respectively [304].

hypothesizing intrinsic mechanisms: when individuals B and C have a common friend A,

then there are increased opportunities and sources of trust on which to base their interactions,

and A will also have incentives to facilitate their friendship. However, social contexts also

provide natural bases for triadic closure: since we know that A-B and A-C friendships

already exist, the principle of homophily suggests that B and C are each likely to be similar

to A in a number of dimensions, and hence quite possibly similar to each other as well. As

a result, based purely on this similarity, there is an elevated chance that a B-C friendship

will form; and this is true even if neither of them is aware that the other one knows A.

The point isn’t that any one basis for triadic closure is the “correct” one. Rather, as we

take into account more and more of the factors that drive the formation of links in a social

[Fig. 4.1, textbook]

Such a visualization is not at a scale that one can see most of the
individual relations. The visualization clearly shows homophily based
on race and the junior/senior high split (both immutable factors).
We can measure the extent of homophily (as we will next see) but
observing any such phenomena (even for immutable factors) is just
the starting point in truly understanding the phenomena.
The figure does show some detailed information; i.e. individuals
without any friends (isolated nodes) or with few friends (low degree).
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Measuring homophily

As mentioned before, when networks are large (and/or when
homophily is less dramatic) it is difficult if not impossible to visualize
various aspects of a network and so one needs a measure of
homophily (whatever the cause or the consequence of the network).

Suppose we wish to study the likelihood of friendships according to
some factor (with say two values) such as gender. (Recall Moreno’s
sociograms regarding seating preferences in elementary school.)

Think Big!: Lets think in terms of large social networks where the
presense or absense of a given individual will not have any noticeable
impact on the probability of any phenomena.
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Thought experiment
What would it mean to say that a social network does or does not
exhibit homophily according to some factor such as gender?

Consider a given network where the fraction (i.e. probability) of males
is p and the fraction of females is q.

I Consider a given edge (u, v) in the network.
I If gender has no correlation with relations, then the probability that the

genders of u and v are different is 2pq. Why?

This leads to a homophily test: If the actual fraction of cross-gender
edges is “significantly less than” 2pq then there is evidence for
homophily.
What would this say about same gender (male-male) or
(female-female) edges?

Clearly the meaning of an edge is an essential aspect of any study; e.g.
consider the difference between an edge representing collaboration in
a course project vs an edge meaning a romantic relationship.
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Reviewing selection vs social influence
With immutable factors (such as race and for the most part gender),
when we observe evidence of homophily, we often attribute increased
friendships to selection, which is the tendency to form friendships
with others who are like you in some way(s). (But note that race
often correlates with neighbourhoods or academic programs.)

But when considering more mutable factors, there is a feedback
between similar characteristics and social links.

I To what extent does behaviour get modified by our social network?
I That is, to what extent is social influence determining interests and

behaviour?

Of course, both selection and social influence can be interacting in the
same social network. How does one understand the relative interplay?

Longitudinal studies may make it possible to see the behavioral changes
that occur after changes in an individuals network connections, as opposed
to the changes to the network that occur after an individual changes his or
her behavior.
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Two interesting longitudinal studies

In academic success (or drug usage) in teenage friendship networks,
Cohen (1977) and Kandel (1978) claim that peer pressure (i.e. social
influence) is less a factor here than previously believed. We can
speculate that (for example) similar family environments is a
significant determining factor for such behaviour amongst friends.

In contrast to the above example, in a controversial report on obesity
patterns of 32,000 people observed over a 32 year period, Christakis
and Fowler (2007) claim: obesity or keeping fit is (perhaps
surprisingly) to some extent a contagious disease spread within a
social network. “You dont necessarily catch it from your friends the
way you catch the flu, but it nonetheless can spread through the
underlying social network via the mechanism of social influence.”
(Later in the course we will discuss models for the spread of influence
in a network.)
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Why the obsesity homophily?

Three possibilities identified by Christakis and Fowler:
1 [1] selection
2 [2] homophily being driven by other factors that correlate with obesity

(e.g. poverty)
3 [3] the social influence of peer pressure say as in the case of drug use or

academic performance or fitness.

Christakis and Fowler conclude that even accounting for [1] and [2],
social influence is a significant factor.
Aside: I am not sure as to the extent that they consider the relative
role of genetics vs diet.

Once again, we caution that observing homophily is clearly only a
starting point.
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End of Monday, January 21 lecture

We continue with a discussion of social-affiliation networks. We can view
joint membership by A and B in an organziation or club as being similar.
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Why do we care?

How do we study the relative interplay (selection vs. social influence)
and why do we want to answer this chicken vs. egg type question?

If indeed social influence is a significant factor, then targeting key
individuals and trying to modify undesirable behaviour (or promote
positive behaviour) can be effective since we are then viewing such
behaviour as a process of influence spread.

If not, focusing on a few individuals will at best change the behaviour
of a few individuals.
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Social-affiliation networks: incorporating context
into the network

Up to now we have viewed contextual (mutable and immutable)
factors that affect the formation of links to be outside of the social
network being considered.
Section 4.3 discusses how to include context in the network so as to
have a common framework for studying the interplay between the
extent of (social) triadic closure (common friendships induce new
friendships), homophily determined by selection, and mutual activity
determined by social influence.

Let’s consider the (mutable) context of affiliation in a
group/participation in an activity. Such an activity is referred to as a
foci, a focal point for social interaction.
We incorporate such foci into social networks by considering a focus
to be a different type of node, distinct from a node representing an
individual. We first consider a pure affiliation network, an example
being of which we have already seen in a bipartite graph with
individuals and corporate boards.
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Example of a pure affiliation network94 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

John 

Doerr

Amazon

Google

Apple

Disney

General 

Electric

Al Gore

Shirley 

Tilghman

Susan 

Hockfield

Arthur 

Levinson

Andrea 

Jung

Steve 

Jobs

Figure 4.4: One type of affiliation network that has been widely studied is the memberships
of people on corporate boards of directors [301]. A very small portion of this network (as of
mid-2009) is shown here. The structural pattern of memberships can reveal subtleties in the
interactions among both the board members and the companies.

A very simple example of such a graph is depicted in Figure 4.3, showing two people (Anna

and Daniel) and two foci (working for a literacy tutoring organization, and belonging to a

karate club). The graph indicates that Anna participates in both of the foci, while Daniel

participates in only one.

We will refer to such a graph as an affiliation network, since it represents the affiliation of

people (drawn on the left) with foci (drawn on the right) [78, 323]. More generally, affiliation

networks are examples of a class of graphs called bipartite graphs. We say that a graph is

bipartite if its nodes can be divided into two sets in such a way that every edge connects a

node in one set to a node in the other set. (In other words, there are no edges joining a pair

of nodes that belong to the same set; all edges go between the two sets.) Bipartite graphs

are very useful for representing data in which the items under study come in two categories,

and we want to understand how the items in one category are associated with the items

in the other. In the case of affiliation networks, the two categories are the people and the

foci, with each edge connecting a person to a focus that he or she participates in. Bipartite

Figure: [E&K, Fig 4.4] One type of affiliation network that has been widely
studied is the memberships of people on corporate boards of directors. A very
small portion of this network (as of mid-2009) is shown here.
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Social-affiliation networks continued

We can then combine the people-people edges of a social network with the
people-focus edges of an affiliation network to form a social-affiliation
network. Within such a combined network, we can discuss three types of
graph triangle closures:

triadic closure as introduced in chapter 3 where common friends of
one or more individuals become friends

focal closure where individuals become friends based on their common
interest(s)

membership closure where an individual joins an activity because a
friend (or a group of friends) is (are) already in that activity
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Three types of closure

Three forms of closure 

!!Triadic closure: become friends because of a common friend 

!!Focal closure: become friends because of a common focus/activity 

!!Membership closure: adopt a focus because a friend does 

19 CSC 200 Lecture Slides (c) 2011, A. Borodin and C. Boutilier 

[E&K, Ch.4, Fig. 4.6] 

Which of these correspond 

to social influence, which to  
selection? Is it still fully clear? 

Figure: [E&K, Fig 4.6] Three types of closure
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Toy example of a social-affiliation network4.3. AFFILIATION 105

AnnaBob

Claire

Daniel
Karate

Club

Literacy

Volunteers

Figure 4.5: A social-a⇥liation network shows both the friendships between people and their
a⇥liation with di�erent social foci.

graphs are often drawn as in Figure 4.3, with the two di�erent sets of nodes drawn as two

parallel vertical columns, and the edges crossing between the two columns.

A⇥liation networks are studied in a range of settings where researchers want to un-

derstand the patterns of participation in structured activities. As one example, they have

received considerable attention in studying the composition of boards of directors of major

corporations [297]. Boards of directors are relatively small advisory groups populated by

high-status individuals; and since many people serve on multiple boards, the overlaps in

their participation have a complex structure. These overlaps can be naturally represented

by an a⇥liation network; as the example in Figure 4.4 shows, there is a node for each person

and a node for each board, and each edge connects a person to a board that they belong to.

A⇥liation networks defined by boards of directors have the potential to reveal interesting

relationships on both sides of the graph. Two companies are implicitly linked by having

the same person sit on both their boards; we can thus learn about possible conduits for

information and influence to flow between di�erent companies. Two people, on the other

hand, are implicitly linked by serving together on a board, and so we learn about particular

patterns of social interaction among some of the most powerful members of society. Of

course, even the complete a⇥liation network of people and boards (of which Figure 4.4

is only a small piece) still misses other important contexts that these people inhabit; for

example, the seven people in Figure 4.4 include the presidents of two major universities and

a former Vice-President of the United States.

Co-Evolution of Social and A�liation Networks. It’s clear that both social networks

and a⇥liation networks change over time: new friendship links are formed, and people

become associated with new foci. Moreover, these changes represent a kind of co-evolution

Figure: [E&K, Fig 4.5] In this social-affiliation network, the oval nodes are people
and the rectangular nodes are activities. What kinds of triangular closures can
occur? 31 / 43



Toy example showing three types of closureToy example after three types of closure

Recap of Last Time 

! Affiliation networks 
•  encode factors that might 

explain homophily (both social 
influence and selection) 

! Three forms of closure 
•  triadic closure 
•  focal closure 
•  membership closure 

! Studies exploring formation 
of closing links 

•  let’s continue with this 

2 CSC 200 Lecture Slides (c) 2011, A. Borodin and C. Boutilier 

[E&K, Ch.4, 
Fig. 4.5] 

triadic'

focal'membership'

Figure: [E&K, Fig 4.7] We can observe the three types of triangular closures that
have occured in some time period.
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Figure: [E&K, Fig 4.7] We can observe the three types of triangular closures that
have occured in some time period.
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How do we measure extent of these processes?

Closure is inherently dynamic
I So we need to take snapshots of the network at different times to see

how the relationships evolve and to what extent each form of closure
occurs

I If common friends or common interests are causing new links (i.e.,
closures) then the more friends or interests in common, the more we
should see this effect.

We briefly look at a couple studies stemming from online interactions,
but realize the usual warning about limitations of such studies

I As in all modeling we may be missing many factors
I The timing of the snapshots may influence results
I These particular studies look at link formation, but not link dissolution.

What would the network look like if links formed but never dissolved?
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Triadic closure: dependence on number mutual
friends

Email exchanges (over 60 days) by 22,000 students in large US
university [Kossinets, Watts 2006]

“Friends” defined as two-way email communication (prev. 60 days)

Measure probability T (k) of a new friendship emerging between a
pair of students as a function of the number k of mutual friends

That is, the probability of it happening in any given day (averaging
over many such pairs)

Compare data (black) with baseline theoretical model (red) baseline:
assume any single mutual friend will generate a new friendship with
probability p and that this will happen independently for each
common friend. Thus T (k) = 1 − (1 − p)k Why?

For small p, (1 − p)k ≈ 1 − pk so that T (k) ≈ pk.
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Probability (per-day) of triadic closure as a function
of the number of common friends

Probability (per-day) of triadic closure as a 

function of the number of common friends  

23 CSC 200 Lecture Slides (c) 2011, A. Borodin and C. Boutilier 

[E&K, Ch.4, Fig. 4.9; 

from Kossinets and Watts, 2006] 

Figure: [E&K, Fig 4.9]
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Observations

Data does not show much more propensity for friendship when going
from zero to one mutual friend.

I The second dashed red line shifts the curve over by one friend so as to
better compare the actual data and baseline model.

I Why no major impact with one common friend?

Increasing from 1 to 9 friends shows linear curve (greater slope than
baseline)

A sharp difference going beyond 9 friends

I The theoretical model (and its assumption of independence) no longer
supported.

I Is there some threshold of mutual friends which escalates the pressure
for triadic closure?

Exercise: translate per-day probability into per-month or per-year
probability
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Probability of focal closure as a function of the
number of common classes
Kossinetts and Watts also studied focal closure where a focus means a
class in which a student is enrolled.102 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS
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Figure 4.10: Quantifying the e�ects of focal closure in an e-mail dataset [259]. Again, the
curve determined from the data is shown in the solid black line, while the dotted curve
provides a comparison to a simple baseline.

Focal and Membership Closure. Using the same approach, we can compute probabil-

ities for the other kinds of closure discussed earlier — specifically,

• focal closure: what is the probability that two people form a link as a function of the

number of foci they are jointly a⌅liated with?

• membership closure: what is the probability that a person becomes involved with a

particular focus as a function of the number of friends who are already involved in it?

As an example of the first of these kinds of closure, using Figure 4.8, Anna and Grace have

one activity in common while Anna and Frank have two in common. As an example of the

second, Esther has one friend who belongs to the karate club while Claire has two. How do

these distinctions a�ect the formation of new links?

For focal closure, Kossinets and Watts supplemented their university e-mail dataset with

information about the class schedules for each student. In this way, each class became a

focus, and two students shared a focus if they had taken a class together. They could then

compute the probability of focal closure by direct analogy with their computation for triadic

closure, determining the probability of link formation per day as a function of the number of

shared foci. Figure 4.10 shows a plot of this function. A single shared class turns out to have

roughly the same absolute e�ect on link formation as a single shared friend, but after this the

Figure: [E&K, Fig 4.10]

Clearly the theory and the actual data do not correspond especially when
considering students going from 3 to 4 common classes. Can you
speculate on a reason?

If you haven’t formed a friendship having attend 3
classes together, then perhaps there is a reason?

37 / 43



Probability of focal closure as a function of the
number of common classes
Kossinetts and Watts also studied focal closure where a focus means a
class in which a student is enrolled.102 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

0 1 2 3 4 5

number of common foci

0

0.0001

0.0002

0.0003

0.0004

0.0005

p
ro

b
. 
o
f 
lin

k
 f
o
rm

a
ti
o
n

Figure 4.10: Quantifying the e�ects of focal closure in an e-mail dataset [259]. Again, the
curve determined from the data is shown in the solid black line, while the dotted curve
provides a comparison to a simple baseline.

Focal and Membership Closure. Using the same approach, we can compute probabil-

ities for the other kinds of closure discussed earlier — specifically,

• focal closure: what is the probability that two people form a link as a function of the

number of foci they are jointly a⌅liated with?

• membership closure: what is the probability that a person becomes involved with a

particular focus as a function of the number of friends who are already involved in it?

As an example of the first of these kinds of closure, using Figure 4.8, Anna and Grace have

one activity in common while Anna and Frank have two in common. As an example of the

second, Esther has one friend who belongs to the karate club while Claire has two. How do

these distinctions a�ect the formation of new links?

For focal closure, Kossinets and Watts supplemented their university e-mail dataset with

information about the class schedules for each student. In this way, each class became a

focus, and two students shared a focus if they had taken a class together. They could then

compute the probability of focal closure by direct analogy with their computation for triadic

closure, determining the probability of link formation per day as a function of the number of

shared foci. Figure 4.10 shows a plot of this function. A single shared class turns out to have

roughly the same absolute e�ect on link formation as a single shared friend, but after this the

Figure: [E&K, Fig 4.10]

Clearly the theory and the actual data do not correspond especially when
considering students going from 3 to 4 common classes. Can you
speculate on a reason? If you haven’t formed a friendship having attend 3
classes together, then perhaps there is a reason?
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Probability of membership closure as a function of
the number of common friends
The text presents two studies of membership closure where there is data
concerning both person-to-person interactions and person-foci affiliations.
The first study shows the p robability of joining the blogging site
LiveJournali where “friendship” is self-identified within a user’s profile.

4.4. TRACKING LINK FORMATION IN ON-LINE DATA 103
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Figure 4.11: Quantifying the e�ects of membership closure in a large online dataset: The
plot shows the probability of joining a LiveJournal community as a function of the number
of friends who are already members [32].

curve for focal closure behaves quite di�erently from the curve for triadic closure: it turns

downward and appears to approximately level o�, rather than turning slightly upward. Thus,

subsequent shared classes after the first produce a “diminishing returns” e�ect. Comparing

to the same kind of baseline, in which the probability of link formation with k shared classes

is 1 � (1 � p)k (shown as the dotted curve in Figure 4.10), we see that the real data turns

downward more significantly than this independent model. Again, it is an interesting open

question to understand how this e�ect generalizes to other types of shared foci, and to other

domains.

For membership closure, the analogous quantities have been measured in other on-line

domains that possess both person-to-person interactions and person-to-focus a⌅liations.

Figure 4.11 is based on the blogging site LiveJournal, where friendships are designated by

users in their profiles, and where foci correspond to membership in user-defined communities

[32]; thus the plot shows the probability of joining a community as a function of the number

of friends who have already done so. Figure 4.12 shows a similar analysis for Wikipedia [122].

Here, the social-a⌅liation network contains a node for each Wikipedia editor who maintains

a user account and user talk page on the system; and there is an edge joining two such editors

if they have communicated, with one editor writing on the user talk page of the other. Each

Figure: [E&K, Fig 4.11]
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Second study of membership closure as a function
of the number of common friends
The second study concerns Wikipedia editors and foci are specific
Wikipedia pages. Here “friendship” is defined as having communicated
together on a user-talk page and membership in a foci corresponds to
having edited a Wikipedia page.

104 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

Figure 4.12: Quantifying the e�ects of membership closure in a large online dataset: The
plot shows the probability of editing a Wikipedia articles as a function of the number of
friends who have already done so [122].

Wikipedia article defines a focus — an editor is associated with a focus corresponding to a

particular article if he or she has edited the article. Thus, the plot in Figure 4.12 shows the

probability a person edits a Wikipedia article as a function of the number of prior editors

with whom he or she has communicated.

As with triadic and focal closure, the probabilities in both Figure 4.11 and 4.12 increase

with the number k of common neighbors — representing friends associated with the foci. The

marginal e�ect diminishes as the number of friends increases, but the e�ect of subsequent

friends remains significant. Moreover, in both sources of data, there is an initial increasing

e�ect similar to what we saw with triadic closure: in this case, the probability of joining a

LiveJournal community or editing a Wikipedia article is more than twice as great when you

have two connections into the focus rather than one. In other words, the connection to a

second person in the focus has a particularly pronounced e�ect, and after this the diminishing

marginal e�ect of connections to further people takes over.

Of course, multiple e�ects can operate simultaneously on the formation of a single link.

For example, if we consider the example in Figure 4.8, triadic closure makes a link between

Bob and Daniel more likely due to their shared friendship with Anna; and focal closure also

makes this link more likely due to the shared membership of Bob and Daniel in the karate

club. If a link does form between them, it will not necessarily be a priori clear how to

attribute it to these two distinct e�ects. This is also a reflection of an issue we discussed

Figure: [E&K, Fig 4.12]
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The interplay between selection and influence

Using the same Wikipedia data as in the previous focal closure example,
The text presents one study that speaks to the manner in which selection
and influence combine to result in observed homophily. Once again, the
nodes are Wikipedia editors, the foci are articles, and edges correspond to
communication via a user-talk page.

In addition, the study defines a numerical similarity measure between two
users A and B as a small variation on the following ratio which is
analogous to the way neighbourhood overlap was defined:

number of articles edited by both A and B

number of artices edited at least one of A or B

Fortunately, every action on Wikipedia is recorded and time-stamped so it
is possible to conduct a meaningful longitudinal study by looking at each
“time step” defined by an “action” of an editor where an action is either
an article edit, or a communication.
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Average level of similarity before and after the first
Wikipedia communication
The figure below plots the level of similarity as a function of the number
of edits before and after the first communication. Time 0 is defined to be
the time of the first interction between a pair (A,B) of editors. This is
then averaged over all the (A,B) plots.106 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

Selection: rapid 

increase in similarity 

before first contact

Social influence: 

continued slower 

increase in similarity 

after first contact

Figure 4.13: The average similarity of two editors on Wikipedia, relative to the time (0)
at which they first communicated [122]. Time, on the x-axis, is measured in discrete units,
where each unit corresponds to a single Wikipedia action taken by either of the two editors.
The curve increases both before and after the first contact at time 0, indicating that both
selection and social influence play a role; the increase in similarity is steepest just before
time 0.

Because every action on Wikipedia is recorded and time-stamped, it is not hard to get

an initial picture of this interplay, using the following method. For each pair of editors A

and B who have ever communicated, record their similarity over time, where “time” here

moves in discrete units, advancing by one “tick” whenever either A or B performs an action

on Wikipedia (editing an article or communicating with another editor). Next, declare time

0 for the pair A-B to be the point at which they first communicated. This results in many

curves showing similarity as a function of time — one for each pair of editors who ever

communicated, and each curve shifted so that time is measured for each one relative to

the moment of first communication. Averaging all these curves yields the single plot in

Figure 4.13 — it shows the average level of similarity relative to the time of first interaction,

over all pairs of editors who have ever interacted on Wikipedia [122].

There are a number of things to notice about this plot. First, similarity is clearly increas-

ing both before and after the moment of first interaction, indicating that both selection and

Figure: [E&K, Fig 4.13]
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Observations on similarity vs. interactions (Figure
4.13)

There are a number of interesting observations and caveats regarding
Figure 4.13. First some noteable observations.

The level of similarity is increassing over “time” before and after the
first interaction.

The steepest increase in similarity occurs just before the first
interaction suggesting that selection is playing a pronounced role in
forming this “friendship link” in the networks that are being
dynamically created.

The bottom dashed line indicates the level of similarity for those who
never communicate. Clearly those who eventually interact evidence
more similarity suggesting some significant similarity factors outside of
what is being studied.
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Some caveats

Like any averaging of individual data, we cannot say why any
particular pair of editors have decided to communicate.

Because the defined time 0 corresponds to different moments in “real
time” for each pair, we cannot understand to what extent real time
events may also be a factor leading communication.

In this study, links are never eliminated. Other “fully dynamic”
network settings would have node and/or links that are not
permanent.

The biggest question about such a study is the extent to which any
observations may or may not extend to different settings. In what
settings do we have the same kind of detailed time stamping of
events?

43 / 43


