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Todays agenda

@ Last weeks lectures and tutorial: a number of basic graph-theoretic
concepts:
» undirected vs directed graphs
unweighted and vertex/edge weighted graphs
paths and cycles
breadth first search
connected components and strongly connected components
giant component in a graph
bipartite graphs

vV VY VY VY VY

@ This lecture: Chapter 3 of the textbook on “Strong and Weak Ties".

@ But let’s first briefly return to the “romantic relations” table to see
how graph structure may or may not align with our understanding of
sociological phenomena.

)
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The dispersion of edge

@ In their paper, Backstrom and Kleinberg introduce various dispersion
measures for an edge. The general idea of the dispersion of an edge
(u, v) is that mutual neighbours of u and v should not be well
“well-connected” to one another.

@ They consider dense subgraphs of the Facebook network (where a
known relationship has been stated) and study how well certain
dispersion measures work in predicting a relationship edge (marriage,
engagement, relationship) when one is known to exist.

@ Another problem is to discover which individuals have a romantic
relationship. Note that discovering the romantic edge or if one exists
raises questions of the privacy of data.

@ They compare their dispersion measures against the embeddedmess of
an edge (to be defined) and also against certain semantic interaction
features (e.g., appearance together in a photo, viewing the profile of a
neighbour).



Some experimental results for the fraction of correct

predictions

Recall that we argued (since the median number of friends was 200), that
the fraction might be around .005 when randomly choosing an edge to be
the edge to be link to the significant partner. Do you find anything

surprising in this table?

type embed | rec.disp. | photo | prof.view.
all 0.247 0.506 | 0415 0.301
married 0.321 0.607 | 0.449 0.210
married (fem) 0.296 0.551 | 0.391 0.202
married (male) 0.347 0.667 | 0.511 0.220
engaged 0.179 0.446 | 0.442 0.391
engaged (fem) 0.171 0.399 | 0.386 0.401
engaged (male) 0.185 0.490 | 0.495 0.381
relationship 0.132 0.344 0.347 0.441
relationship (fem) | 0.139 0.316 | 0.290 0.467
relationship (male) | 0.125 0.369 | 0.399 0.418
type max. | max. all. all. | comb.
struct. | inter. | struct. | inter.
all 0.506 | 0.415 | 0.531 | 0.560 | 0.705
married 0.607 | 0.449 | 0.624 | 0.526 | 0.716
engaged 0.446 | 0.442 | 0472 | 0.615 | 0.708
relationship | 0.344 | 0.441 | 0.377 | 0.605 | 0.682
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Chapter 3: Strong and Weak Ties

There are two themes that run throughout this chapter.
@ Strong vs. weak ties and “the strength of weak ties” is the specific
defining theme of the chapter. The chapter also starts a discussion of
how networks evolve.

© The larger theme is in some sense “the scientific method” .
» Formalize concepts, construct models of behaviour and relationships,

and test hypotheses.
» Models are not meant to be the same as reality but to abstract the
important aspects of a system so that it can be studied and analyzed.
> See the discussion of the strong triadic closure property in section 3.2
of text (pages 53 and 56 in my online copy).

Informally
@ strong ties: stronger links, corresponding to friends

@ weak ties: weaker links, corresponding to acquaintances




Triadic closure (undirected graphs)

(a) Before B-C' edge forms. (b) After B-C' edge forms.

Figure: The formation of the edge between B and C illustrates the effects of
triadic closure, since they have a common neighbor A. [E&K Figure 3.1]

@ Triadic closure: mutual “friends” of say A are more likely (than
“normally”) to become friends over time.

@ How do we measure the extent to which triadic closure is occurring?

@ How can we know why a new friendship tie is formed? (Friendship
ties can range from just knowing someone to a true friendship .)



Measuring the extent of triadic closure

@ The clustering coefficient of a node A is a way to measure (over time)
the extent of triadic closure (perhaps without understanding why it is
occurring).

@ Let E be the set of an undirected edges of a network graph. (Forgive
the abuse of notation where in the previous and next slide E is a node
name.) For a node A, the clustering coefficient is the following ratio:

[{(B,C) € E:(B,A) € E and (C,A) € E}|
[{{B,C}:(B,A) € E and (C,A) € E}

@ The numerator is the number of all edges (B, C) in the network such
that B and C are adjacent to (i.e. mutual friends of) A.

@ The denominator is the total number of all unordered pairs {B, C}
such that B and C are adjacent to A.



Example of clustering coefficient

(a) Before new edges form. (b) After new edges form.

@ The clustering coefficient of node A in Fig. (a) is 1/6 (since there is
only the single edge (C, D) among the six pairs of friends:
{B,C}, {B,D}, {B,E}, {C,D}, {C,E}, and {D, E})

@ The clustering coefficient of node A in Fig. (b) increased to 1/2
(because there are three edges (B, C), (C.D), and (D, E)).

42



Interpreting triadic closure

@ Does a low clustering coefficient suggest anything?
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Interpreting triadic closure

@ Does a low clustering coefficient suggest anything?

@ Bearman and Moody [2004] reported finding that a low clustering
coefficient amongst teenage girls implies a higher probability of
suicide (compared to those with high clustering coeficient). How can
we understand this finding?



Interpreting triadic closure
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Interpreting triadic closure

@ Does a low clustering coefficient suggest anything?

@ Bearman and Moody [2004] reported finding that a low clustering
coefficient amongst teenage girls implies a higher probability of
suicide (compared to those with high clustering coeficient). How can
we understand this finding?

@ Why triadic closure?
Increased opportunity, trust, incentive ; it can be awkward to have
good friends (i.e. with strong ties) who are not themselves friends.
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Granovetter’s thesis: the strength of weak ties

@ In 1960s interviews: Many people learn about new jobs from personal
contacts (which is not surprising) and often these contacts were
acquaintances rather than friends. Is this surprising?
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Granovetter’s thesis: the strength of weak ties

@ In 1960s interviews: Many people learn about new jobs from personal
contacts (which is not surprising) and often these contacts were
acquaintances rather than friends. Is this surprising?

Upon a little reflection, this intuitively makes sense.

@ The idea is that weak ties link together “tightly knit communities”,
each containing a large number of strong ties.

@ Can we say anything more quantitative about such phenomena?

@ To gain some understanding of this phenomena, we need some
additional concepts relating to structural properties of a graph.

Recall
@ strong ties: stronger links, corresponding to friends

@ weak ties: weaker links, corresponding to acquaintances
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Bridges and local bridges

@ One measure of connectivity is the number of edges (or nodes) that
have to be removed to disconnect a graph.

@ A bridge (if one exists) is an edge whose removal will disconnect a
connected component in a graph.

@ We expect that large social networks will have a “giant component”
and few bridges.
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Bridges and local bridges

@ One measure of connectivity is the number of edges (or nodes) that
have to be removed to disconnect a graph.

@ A bridge (if one exists) is an edge whose removal will disconnect a
connected component in a graph.

@ We expect that large social networks will have a “giant component”
and few bridges.

@ A local bridge is an edge (A, B) whose removal would cause A and B
to have graph distance (called the span of this edge) greater than
two. Note: span is a dispersion measure, as introduced in the
Backstrom and Kleinberg article regarding Facebook relations.

@ A local bridges (A,B) plays a role similar to bridges providing access
for A and B to parts of the network that would otherwise be (in a
useful sense) inaccessible.

11/42



Local bridge (A, B)

Figure: The edge (A, B) is a local bridge of span 4, since the removal of this
edge would increase the distance between A and B to 4. [E&K Figure 3.4]
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Strong triadic closure property: connecting tie
strength and local bridges

Strong triadic closure property

Whenever (A, B) and (A, C) are strong ties, then there will be a tie
(possibly only a weak tie) between B and C.

@ Such a strong property is not likely true in a large social network
(that is, holding for every node A)

@ However, it is an abstraction that may lend insight.
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Strong triadic closure property: connecting tie
strength and local bridges

Strong triadic closure property

Whenever (A, B) and (A, C) are strong ties, then there will be a tie
(possibly only a weak tie) between B and C.

@ Such a strong property is not likely true in a large social network
(that is, holding for every node A)

@ However, it is an abstraction that may lend insight.

Theorem

Assuming the strong triadic closure property, for a node involved in at
least two strong ties, any local bridge it is part of must be a weak tie.

Informally, local bridges must be weak ties since otherwise strong triadic
closure would produce shorter paths between the end points.
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Triadic closure and local bridges

Strong Triadic Closure says
the B-C edge must exist, but
the definition of a local bridge
says it cannot.

Figure 3.6: If a node satifies Strong Triadic Closure and is involved in at least two stron
ties, then any local bridge it is involved in must be a weak tie. The figure illustrates tl
reason why: if the A-B edge is a strong tie, then there must also be an edge between B an

C, meaning that the A-B edge cannot be a local bridge. i



Strong triadic closure property continued

@ Again we emphasize (as the text states) that “Clearly the strong
triadic closure property is too extreme to expect to hold across all
nodes ... But it is a useful step as an abstraction to reality, ..."

@ Sintos and Tsaparas give evidence that assuming the strong triadic
closure property can help in determining whether a link is a strong or
weak tie.
(http:/(www.cs.uoi.gr/~tsap/publications/frp0625-sintos.pdf)

We will discuss this paper later in the lecture.

@ A followup and refinement of the Sintos and Tsaparas 2014
experiments can be found in a relatively a 2018 paper by Adriaens et
al
(http://http://www.mlgworkshop.org/2018 /papers/MLG2018_paper_28
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Embeddedness of an edge

Just as there are many specific ways to define the dispersion of an edge,
there are different ways to define the embeddedness of an edge.

The general idea is that embeddedness of an edge (u, v) should capture
how much the social circles of u and v “overlap”. The next slide will use a
particular definition for embeddedness.

Why might dispersion be a better discriminator of a romantiic relationship
(especially for marriage) than embeddedness?
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Large scale experiment supporting strength of weak
ties and triadic closure

@ Onnela et al. [2007] study of who-talks-to-whom network maintained
by a cell phone provider. Large network of cell users where an edge
exists if there existed calls in both directions in 18 weeks.

@ First observation: a giant component with 84% of nodes.

@ Need to quantify the tie strength and the closeness to being a local
bridge.

@ Tie strength is measured in terms of the total number of minutes
spent on phone calls between the two end of an edge.

@ Closeness to being a local bridge is measured by the neighborhood
overlap of an edge (A, B) defined as the ratio

number of nodes adjacent to both A and B

number of nodes adjacent to at least one of A or B

@ Local bridges are precisely edges having overlap 0.
@ The numerator is the embeddedness of the edge.
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Onnela et al. experiment
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Figure: A plot of the neighborhood overlap of edges as a function of their
percentile in the sorted order of all edges by tie strength. [E&K Fig 3.7]
@ The figure shows the relation between tie strength and overlap.
@ Quantitative evidence supporting the theorem: as tie strength
decreases, the overlap decreases; that is, weak ties are becoming
“almost local bridges” having ovelap almost equal to O.
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End of Monday, January 14 Lecture

We ended the lecture on slide 18.

Todays agenda

© Continue the discussion of Chapter 3: strong vs weak ties and the
strength of weak ties

@ Continue with the Onnela et al study

@ The Marlow et al study of different types of ties in the Facebook and
Twitter networks

@ Social captial: bonding capital and bridging capital

© The Sintos and Tsaparas experiments
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Onnela et al. experiment (shown again)
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Figure: A plot of the neighborhood overlap of edges as a function of their
percentile in the sorted order of all edges by tie strength. [E&K Fig 3.7]
@ The figure shows the relation between tie strength and overlap.
@ Quantitative evidence supporting the theorem: as tie strength
decreases, the overlap decreases; that is, weak ties are becoming
“almost local bridges” having ovelap almost equal to O.

20 /42



Onnela et al. study continued

To support the hypothesis that weak ties tend to link together more
tightly knit communities, Onnela et al. perform two simulations:

© Removing edges in decreasing order of tie strength, the giant
component shrank gradually.

© Removing edges in increasing order of tie strength, the giant
component shrank more rapidly and at some point then started
fragmenting into several components.
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Word of caution in text regarding such studies

Easley and Kleinberg (end of Section 3.3):

Given the size and complexity of the (who calls whom) network,
we cannot simply look at the structure. . . Indirect measures must
generally be used and, because one knows relatively little about
the meaning or significance of any particular node or edge, it
remains an ongoing research challenge to draw richer and more
detailed conclusions. . .
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Strong vs. weak ties in large online social networks
(Facebook and Twitter)

@ The meaning of “friend” as in Facebook is not the same as one might
have traditionally interpreted the word “friend”.

@ Online social networks give us the ability to qualify the strength of
ties in a useful way.

@ For an observation period of one month, Marlow et al. (2009)
consider Facebook networks defined by 4 criteria (increasing order of
strength): all friends, maintained (passive) relations of following a
user, one-way communication, and reciprocal communication.

@ These networks thin out when links represent stronger ties.

@ As the number of total friends increases, the number of reciprocal
communication links levels out at slightly more than 10.

© How many Facebook friends did you have for which you had a
reciprocal communication in the last month?
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Different Types of Friendships: The neighbourhood
network of a sample Facebook individual

All Friends Maintained Relationships
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A limit to the number of strong ties

Active Network Sizes

—— Maintained Relationships
— One-way communication
—— Reciprocal communication

# of People

T T T T T T
o 100 200 300 500 s00

Netwark Size

Figure: The number of links corresponding to maintained relationships, one-way
communication, and reciprocal communication as a function of the total
neighborhood size for users on Facebook. [Figure 3.9, textbook]
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Twitter:Limited Strong Ties vs Followers

Number of Friends

L L 1
o 200 400 600 800 1000 1200
Number of followees

Figure: The total number of a user's strong ties (defined by multiple directed
messages) as a function of the number of followees he or she has on Twitter.
[Figure 3.10, textbook]
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Information spread in a passive network

@ The maintained or passive relation network (as in the Facebook
network on slide 24) is said to occupy a middle ground between

@ strong tie network (in which individuals actively communicate), and
@ very weak tie networks (all “friends”) with many old (and inactive)
relations.

@ “Moving to an environment where everyone is passively engaged with
each other, some event, such as a new baby or engagement can
propagate very quickly through this highly connect neighborhood.”

@ We can add that an event might be a political demonstration.
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Social capital (as discussed in secrion 3.5 of EK
text)

Social capital is a term in increasingly widespread use, but it is a famously
difficult one to define.

The term social capital is designed to suggest its role as part of an array of
different forms of capital (e.g., economic capital) all of which serve as
tangible or intangible resources that can be mobilized to accomplish tasks.

A person can have more or less social capital depending on his or her
position in the underlying social structure or network. A second, related,
source of terminological variation is based on whether social capital is a
property that is purely intrinsic to a group based only on the social
interactions among the groups members or whether it is also based on the
interactions of the group with the outside world.



“Tightly knit communities” connected by weak ties

@ The intuitive concept of tightly knit communities occurs several times
in Chapter 3 but is deliberately left undefined.

@ In a small network we can sometimes visualize the tightly knit
communities but one cannot expect to do this is a large network.
That is, we need algorithms and this is the topic of the advanced
material in Section 3.6.
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“Tightly knit communities” connected by weak ties

@ The intuitive concept of tightly knit communities occurs several times
in Chapter 3 but is deliberately left undefined.

@ In a small network we can sometimes visualize the tightly knit
communities but one cannot expect to do this is a large network.
That is, we need algorithms and this is the topic of the advanced
material in Section 3.6.

@ Recalling the relation to weak ties, the text calls attention to how
nodes at the end of one (or especially more) local bridges can play a
pivotal role in a social network.

@ These “gatekeeper nodes” between communities stand in contrast to
nodes which sit at the center of a tightly knit community.



Central nodes vs. gatekeepers

Figure: The contrast between densely-knit groups and boundary-spanning links is
reflected in the different positions of central node A and gatekeeper node B in
the underlying social network. [Fig 3.11, textbook]
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Social capital of nodes A and B

@ The edges adjacent to node A all have high embeddedness. Visually
one sees node A as a central node in a tightly-knit cluster. As such,
the social capital that A enjoys is its “bonding capital” in that the
actions of A can (for example) induce norms of behaviour because of
the trust in A.

@ In contrast, node B is a bridge to other parts of the network. As
such, its social capital is in the form of “brokerage” or “bridging
capital” as B can play the role of a “gatekeeper” (of information and
ideas) between different parts of the network. Furthermore, being
such a gatekeeper can lead to creativity stemming from the synthesis
of ideas.

@ Some nodes can have both bonding capital and bridging capital.
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Florentine marriages: Bridging capital of the Medici

@ The Medici are connected to more families, but not by much.

@ More importantly: Four of the six edges adjacent to the Medici are
bridges or local bridges and the Medici lie on the shortest paths
between most pairs of families.
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Figure: see [Jackson, Ch 1]
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A Balanced Min Cut in Graph: Bonding capital of
nodes 1 and 34

Note that node 34 also seems to have bridging capital.

Wayne Zachary's Ph.D. work (1970-72): observed social ties and
rivalries in a university karate club.

During his observation, conflicts intensified and group split.

Could the club boundaries be predicted from the network structure?
Split could almost be explained by minimum cut in social network. ,
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The Sintos and Tsaparas Study

In their study of the strong triadic closure (STC) property, Sintos and
Tsaparas study 5 small networks. They give evidence as to how the STC
assumption can help determine weak vs strong ties, and how weak ties act
as bridges to different communities.

More specifically, for a social network where the edges are not labelled
they define the following two computational problems: Label the graph
edges (by strong and weak) so as to satisfy the strong triadic closure
property and

© Either maximize the number of strong edges, or equivalently

© minimize the number of weak edges
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The computational problem in identifying strong vs
weak ties

@ For computational reasons (i.e., assuming P # NP and showing NP
hardness by reducing the max clique problem to the above
maximization problem), it is not possible to efficiently optimize and
hence they settle for approximations.

@ Note that even for the small Karate Club network having only m = 78
edges, a brute force search would require trying 278 solutions. Of
course, there may be better methods for any specific network.

@ The reduction preserves the approximation ratio, so it is also NP-hard
to approximate the maximization problem with a factor of n'—¢.
However, the minimization problem can can reduced (preserving
approximations) to the vertex cover problem which can be
approximated within s factor of 2.

@ Their computational results are validated against the 5 networks
where the strength of ties is known from the given data.
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The vertex cover algorithms and the 5 data sets
While there are uncovered edges, the (vertex) greedy algorithm selects a
vertex for the vertex cover with maximum current degree. It has worst
case O(log n) approximation ratio. The maximal matching algorithm is a
2-approximation online algorithm that finds an uncovered edge and takes
both endpoints of that edge.

Table 1: Datasets Statistics.

Dataset Nodes | Edges | Weights Community
structure
Actors 1,986 | 103,121 Yes No
Authors 3,418 9,908 Yes No
Les Miserables 77 254 Yes No
Karate Club 34 78 No Yes
Amazon Books 105 441 No Yes

Figure: Weights (respectively, community structure) indicates when explicit edge

weights (resp. a community structure) are known.
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End of Wednesday, January 16 Lecture

We ended the lecture on slide 36. In the Monday, January 21 lecture, we
will finish up the discussion of the Sintos and Tsaparas paper. | am
including the remaining slides for those who want to see some of the
results in that paper. | will also post the paper.
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Tie strength results in detecting strong and weak
ties

Table 2: Number of strong and weak edges for Greedy
and MaximalMatching algorithms.

Greedy MaximalMatching
Strong  Weak | Strong  Weak
Actors 11,184 91,937 | 8,581 94,540
Authors 3,608 6,300 2,676 7,232
Les Miserables 128 126 106 148
Karate Club 25 53 14 64
Amazon Books 114 327 71 370

Figure: The number of labelled links.

Although the Greedy algorithm has an inferior (worst case) approximation
ratio, here the greedy algorithm has better performance than Maximal
Matching. (Recall, the goal is to maximize the number of strong ties, or_



Results for detecting strong and weak ties

Table 3: Mean count weight for strong and weak

edges for Greedy and MaximalMatching algorithms.

Greedy MaximalMatching
S w S %74
Actors 1.4 1.1 1.3 1.1
Authors 1.341 1.150 | 1.362 1.167
Les Miserables | 3.83 2.61 3.87 2.76

Figure: The avergae link weight.
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Tie strength results in detecting strong and weak
ties normalized by amount of activity

Table 4: Mean Jaccard similarity for strong and
weak edges for Greedy and MaximalMatching algo-
rithms.

Greedy MaximalMatching
S %4 S %4
Actors | 0.06 0.04 | 0.06 0.04
Authors | 0.145 0.084 | 0.155 0.088

Figure: Normalizing the number of interactions by the amount of activity.
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Results for strong and weak ties with respect to
known communities

Table 5: Precision and Recall for strong and weak
edges for Greedy and MaximalMatching algorithms.
Greedy
Ps Rs | Pw Rw
Karate Club 1 0.37 | 0.19 1
Amazon Books | 0.81 0.25 | 0.15 0.69
MaximalMatching
Ps RS PW RW
Karate Club 1 0.2 | 0.16 1
Amazon Books | 0.73 0.14 | 0.14 0.73

Figure: Precision and recall with respect to the known communities.
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The meaning of the precision-recall table

The precision and recall for the weak edges are defined as follows:

WNE; WnNE,
PW — I ‘Vvllnter| and RW — ‘ |E‘ tmt‘er\
inter
_ ‘SmEintra| _ |5ﬁEintra\
Ps =" and Rs = g |

o Ideally, we want Ry, = 1 indicating that all edges between
communities are weak; and we want Ps = 1 indicating that strong
edges are wll within a community.

@ For the Karate Club data set, all the strong links are within one of the
two known communities and hence all links between the communities
are all weak links.

@ For the Amazon Books data set, there are three communities
corresponding to liberal, neutral, conservative viewpoints. Of the 22
strong tie edges crossing communities, 20 have one node labeled as
neutral and the remaining two inter-community strong ties both deal
with the same issue.



Strong and weak ties in the karate club network

Figure 1: Karate Club graph. Blue light edges rep-
resent the weak edges, while red thick edges repre-
sent the strong edges.

@ Note that all the strong links are within one of the two known
communities and hence all links between the communities are weak
links.
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