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Todays agenda

Last weeks lectures and tutorial: a number of basic graph-theoretic
concepts:

I undirected vs directed graphs
I unweighted and vertex/edge weighted graphs
I paths and cycles
I breadth first search
I connected components and strongly connected components
I giant component in a graph
I bipartite graphs

This lecture: Chapter 3 of the textbook on “Strong and Weak Ties”.

But let’s first briefly return to the “romantic relations” table to see
how graph structure may or may not align with our understanding of
sociological phenomena.
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The dispersion of edge

In their paper, Backstrom and Kleinberg introduce various dispersion
measures for an edge. The general idea of the dispersion of an edge
(u, v) is that mutual neighbours of u and v should not be well
“well-connected” to one another.

They consider dense subgraphs of the Facebook network (where a
known relationship has been stated) and study how well certain
dispersion measures work in predicting a relationship edge (marriage,
engagement, relationship) when one is known to exist.

Another problem is to discover which individuals have a romantic
relationship. Note that discovering the romantic edge or if one exists
raises questions of the privacy of data.

They compare their dispersion measures against the embeddedmess of
an edge (to be defined) and also against certain semantic interaction
features (e.g., appearance together in a photo, viewing the profile of a
neighbour).
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Some experimental results for the fraction of correct
predictions
Recall that we argued (since the median number of friends was 200), that
the fraction might be around .005 when randomly choosing an edge to be
the edge to be link to the significant partner. Do you find anything
surprising in this table?
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Figure 3. Performance of (disp(u, v) + b)↵/(emb(u, v) + c) as a func-
tion of ↵, when choosing optimal values of b and c.

type embed rec.disp. photo prof.view.
all 0.247 0.506 0.415 0.301
married 0.321 0.607 0.449 0.210
married (fem) 0.296 0.551 0.391 0.202
married (male) 0.347 0.667 0.511 0.220
engaged 0.179 0.446 0.442 0.391
engaged (fem) 0.171 0.399 0.386 0.401
engaged (male) 0.185 0.490 0.495 0.381
relationship 0.132 0.344 0.347 0.441
relationship (fem) 0.139 0.316 0.290 0.467
relationship (male) 0.125 0.369 0.399 0.418

Figure 4. The performance of different measures for identifying spouses
and romantic partners: the numbers in the table give the precision at the
first position — the fraction of instances in which the user ranked first by
the measure is in fact the true partner. Averaged over all instances, re-
cursive dispersion performs approximately twice as well as the standard
notion of embeddedness, and also better overall than measures based on
profile viewing and presence in the same photo.

of non-neighboring nodes in Cub that have no neighbors in
common in Gu � {u, b}.

Strengthenings of Dispersion.
We can learn a function that predicts whether or not v is
the partner of u in terms of the two variables disp(u, v)
and emb(u, v), where the latter denotes the embeddedness
of the u-v link. We find that performance is highest for
functions that are monotonically increasing in disp(u, v) and
monotonically decreasing in emb(u, v): for a fixed value of
disp(u, v), increased embeddedness is in fact a negative pre-
dictor of whether v is the partner of u. A simple combina-
tion of these two quantities that comes within a few percent
of more complicated functional forms can be obtained by the
expression disp(u, v)/emb(u, v), which we term the normal-
ized dispersion norm(u, v) since it normalizes the absolute
dispersion by the embeddedness. Predicting u’s partner to
be the individual v maximizing norm(u, v) gives the correct
answer in 48.0% of all instances.

There are two strengthenings of the normalized dispersion
that lead to increased performance. The first is to rank nodes
by a function of the form (disp(u, v) + b)↵/(emb(u, v) + c).
Searching over choices of ↵, b, and c leads to maximum per-
formance of 50.5% at ↵ = 0.61, b = 0, and c = 5; see
Figure 3. Alternately, one can strengthen performance by ap-

type embed rec.disp. photo prof.view.
all 0.391 0.688 0.528 0.389
married 0.462 0.758 0.561 0.319
married (fem) 0.488 0.764 0.538 0.350
married (male) 0.435 0.751 0.586 0.287
engaged 0.335 0.652 0.553 0.457
engaged (fem) 0.375 0.674 0.536 0.492
engaged (male) 0.296 0.630 0.568 0.424
relationship 0.277 0.572 0.460 0.498
relationship (fem) 0.318 0.600 0.440 0.545
relationship (male) 0.239 0.546 0.479 0.455

Figure 5. The performance of the four measures from Figure 4 when
the goal is to identify the partner or a family member in the first position
of the ranked list. The difference in performance between the genders
has largely vanished, and in some cases is inverted relative to Figure 4.

plying the idea of dispersion recursively — identifying nodes
v for which the u-v link achieves a high normalized disper-
sion based on a set of common neighbors Cuv who, in turn,
also have high normalized dispersion in their links with u. To
carry out this recursive idea, we assign values to the nodes
reflecting the dispersion of their links with u, and then update
these values in terms of the dispersion values associated with
other nodes. Specifically, we initially define xv = 1 for all
neighbors v of u, and then iteratively update each xv to be

P
w2Cuv

x2
w + 2

P
s,t2Cuv

dv(s, t)xsxt

emb(u, v)
.

Note that after the first iteration, xv is 1+2 ·norm(u, v), and
hence ranking nodes by xv after the first iteration is equiv-
alent to ranking nodes by norm(u, v). We find the highest
performance when we rank nodes by the values of xv after
the third iteration. For purposes of later discussion, we will
call this value xv in the third iteration the recursive disper-
sion rec(u, v), and will focus on this as the main examplar
from our family of related dispersion-based measures. (See
the Appendix for further mathematical properties of the re-
cursive dispersion.)

PERFORMANCE OF STRUCTURAL AND INTERACTION
MEASURES
We summarize the performance of our methods in Figure 4.
Looking initially at just the first two columns in the top row of
numbers (‘all’), we have the overall performance of embed-
dedness and recursive dispersion — the fraction of instances
on which the highest-ranked node under these measures is
in fact the partner. As we will see below in the discussion
around Figure 6, recursive dispersion also has higher perfor-
mance than a wide range of other basic structural measures.

We can also compare these structural measures to features de-
rived from a variety of different forms of real-time interaction
between users — including the viewing of profiles, sending of
messages, and co-presence at events. The use of such ‘inter-
action features’ as a comparison baseline is motivated by the
way in which tie strength can be estimated from the volume of
interaction between two people [8, 17]. Within this category
of interaction features, the two that consistently display the
best performance are to rank neighbors of u by the number of

type max. max. all. all. comb.
struct. inter. struct. inter.

all 0.506 0.415 0.531 0.560 0.705
married 0.607 0.449 0.624 0.526 0.716
engaged 0.446 0.442 0.472 0.615 0.708
relationship 0.344 0.441 0.377 0.605 0.682

Figure 10. The performance of methods based on machine learning
that combine sets of features. The first two columns show the highest
performing individual structural and interaction features; the third and
fourth columns show the highest performance of machine learning clas-
sifiers that combine structural and interaction features respectively; and
the fifth column shows the performance of a classifier that combines all
structural and interaction features together.

links over their time on Facebook, and it is also correlated
with the time since the relationship was first reported. (As we
will see later in Figure 11, performance varies as a function
of this latter quantity as well.) To understand whether there
is any effect of a user’s time on site beyond its relation to
these other parameters, we consider a subset of users where
we restrict the neighborhood size to lie between 100 and 150,
and the time since the relationship was reported to lie between
100 and 200 days. Figure 9 shows that for this subset, there is
a weak increase in performance as a function of time on site;
while the effect is not strong, it points to a further source of
enhanced performance for users with mature neighborhoods.

COMBINING FEATURES USING MACHINE LEARNING
Different features may capture different aspects of the user’s
neighborhood, and so it is natural to ask how well we can pre-
dict partners when combining information from many struc-
tural or interaction features via machine learning.

Machine Learning Techniques.
For our machine learning experiments, we compute 48 struc-
tural features and 72 interaction features for all of the nodes
in the neighborhoods from our primary dataset. This gives us
a total of approximately 18.7 million labeled instances with
120 features each — each instance consists of a node v in
a neighborhood Gu, with a positive label indicating v is the
partner of u, or a negative label indicating v is not.

The 48 structural features are the absolute and normalized
dispersion based on six distinct distance functions defined for
Figure 6, as well as the recursive versions using iterations 2
through 7 (recall that the recursive dispersion corresponds to
the third iteration, and is hence included). The 72 interac-
tion features represent a broad range of properties including
the number of photos in which u and v are jointly tagged,
the number of times u has viewed v’s profile over the last 30,
60, and 90 days, the number of messages sent from u to v,
the number of times that u has ‘liked’ v’s content and vice
versa, and measures based on a number of forms of interac-
tion closely related to these.

To improve the performance of the learning algorithms, we
transformed each of the 120 features into 4 different versions:
(a) the raw feature, (b) a normalized version of the feature
with mean 0 and standard deviation 1, (c) a rank version of
the feature (where the individual with highest score on this
feature has rank 1, and other individuals are sorted in ascend-
ing rank order from there), and (d) a rank-normalized version

where we divide (c) by total number of friends a user has.
Thus, the input to our machine learning algorithms has 480
features derived from 120 values per instance. In addition to
the full set of features, we also compute performance using
only the structural features, and only the interaction features.

We performed initial experiments with different machine
learning algorithms and found that gradient tree boosting [13]
out-performed logistic regression, as well as other tree-based
methods. Thus, all of our in-depth analysis is conducted with
this algorithm. In our experiments, we divide the data so that
50% of the users go into a training set and 50% go into a test
set. We perform 12 such divisions into sets A and B; for each
division we train on set A and test on B, and then train on B
and test on A. For each user u, we average over the 12 runs in
which u was a test user to get a final prediction.

Performance of Machine Learning Methods.
We find (Figure 10) that by using boosted decision trees to
combine all of the 48 structural features we analyzed, we can
increase performance from 50.8% to 53.1%. We can use the
same technique to predict relationships based on interaction
features. We find that, overall, interaction features perform
slightly better than structural features (56.0% vs. 53.1%),
though for married users, structural features do much better
(62.4% vs. 52.6%). In addition, on all categories we find that
the combination of interaction features and structural features
significantly outperforms either on its own. When combining
all features with boosted trees, the top predicted friend is the
user’s partner 70.5% of the time.

Machine Learning to Predict Relationship Status.
Earlier we noted that our focus is on the problem of identify-
ing relationship partners for users where we know that they
are in a relationship. It is natural to ask about the connec-
tion to a related but distinct question — estimating whether
an arbitrary user is in a relationship or not.

This latter question is quite a different issue, and it seems
likely to be more challenging and to require a different set of
techniques. To see why, consider a user u who has a link of
high dispersion to a user v. If we know that u is in a rela-
tionship, then v is a good candidate to be the partner. But our
point from the outset has been that methods based on disper-
sion are useful more generally to identify individuals v with
interesting connections to u, in the sense that they have been
introduced into multiple foci that u belongs to. A user u can
and generally will have such friends even when u is not in
a romantic relationship. For example, Figure 5 suggests that
family members often have this property, and this can apply
to users who are not in romantic relationships as well as to
users in such relationships. Thus, simply knowing that u has
links of high dispersion should not necessarily give us much
leverage in estimating whether u is in a relationship.

We now describe some basic machine-learning results that
bear out this intuition. We took approximately 129,000 Face-
book users, sampled uniformly over all users of age at least
20 with between 50 and 2000 friends. 40% of these users
were single, while the remaining were either in a relation-
ship, engaged, or married. We attempt two different predic-
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Chapter 3: Strong and Weak Ties

There are two themes that run throughout this chapter.

1 Strong vs. weak ties and “the strength of weak ties” is the specific
defining theme of the chapter. The chapter also starts a discussion of
how networks evolve.

2 The larger theme is in some sense “the scientific method”.
I Formalize concepts, construct models of behaviour and relationships,

and test hypotheses.
I Models are not meant to be the same as reality but to abstract the

important aspects of a system so that it can be studied and analyzed.
I See the discussion of the strong triadic closure property in section 3.2

of text (pages 53 and 56 in my online copy).

Informally

strong ties: stronger links, corresponding to friends

weak ties: weaker links, corresponding to acquaintances
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Triadic closure (undirected graphs)48 CHAPTER 3. STRONG AND WEAK TIES
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(a) Before B-C edge forms.
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(b) After B-C edge forms.

Figure 3.1: The formation of the edge between B and C illustrates the effects of triadic
closure, since they have a common neighbor A.

seeking, and offers a way of thinking about the architecture of social networks more generally.

To get at this broader view, we first develop some general principles about social networks

and their evolution, and then return to Granovetter’s question.

3.1 Triadic Closure

In Chapter 2, our discussions of networks treated them largely as static structures — we take

a snapshot of the nodes and edges at a particular moment in time, and then ask about paths,

components, distances, and so forth. While this style of analysis forms the basic foundation

for thinking about networks — and indeed, many datasets are inherently static, offering us

only a single snapshot of a network — it is also useful to think about how a network evolves

over time. In particular, what are the mechanisms by which nodes arrive and depart, and

by which edges form and vanish?

The precise answer will of course vary depending on the type of network we’re considering,

but one of the most basic principles is the following:

If two people in a social network have a friend in common, then there is an

increased likelihood that they will become friends themselves at some point in the

future [347].

We refer to this principle as triadic closure, and it is illustrated in Figure 3.1: if nodes B and

C have a friend A in common, then the formation of an edge between B and C produces

a situation in which all three nodes A, B, and C have edges connecting each other — a

structure we refer to as a triangle in the network. The term “triadic closure” comes from

Figure: The formation of the edge between B and C illustrates the effects of
triadic closure, since they have a common neighbor A. [E&K Figure 3.1]

Triadic closure: mutual “friends” of say A are more likely (than
“normally”) to become friends over time.
How do we measure the extent to which triadic closure is occurring?
How can we know why a new friendship tie is formed? (Friendship
ties can range from just knowing someone to a true friendship .)
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Measuring the extent of triadic closure

The clustering coefficient of a node A is a way to measure (over time)
the extent of triadic closure (perhaps without understanding why it is
occurring).

Let E be the set of an undirected edges of a network graph. (Forgive
the abuse of notation where in the previous and next slide E is a node
name.) For a node A, the clustering coefficient is the following ratio:

∣∣{(B,C ) ∈ E : (B,A) ∈ E and (C ,A) ∈ E
}∣∣

∣∣{{B,C} : (B,A) ∈ E and (C ,A) ∈ E
}∣∣

The numerator is the number of all edges (B,C ) in the network such
that B and C are adjacent to (i.e. mutual friends of) A.

The denominator is the total number of all unordered pairs {B,C}
such that B and C are adjacent to A.

7 / 42



Example of clustering coefficient3.1. TRIADIC CLOSURE 49
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Figure 3.2: If we watch a network for a longer span of time, we can see multiple edges forming
— some form through triadic closure while others (such as the D-G edge) form even though
the two endpoints have no neighbors in common.

the fact that the B-C edge has the effect of “closing” the third side of this triangle. If

we observe snapshots of a social network at two distinct points in time, then in the later

snapshot, we generally find a significant number of new edges that have formed through this

triangle-closing operation, between two people who had a common neighbor in the earlier

snapshot. Figure 3.2, for example, shows the new edges we might see from watching the

network in Figure 3.1 over a longer time span.

The Clustering Coefficient. The basic role of triadic closure in social networks has

motivated the formulation of simple social network measures to capture its prevalence. One

of these is the clustering coefficient [320, 411]. The clustering coefficient of a node A is

defined as the probability that two randomly selected friends of A are friends with each

other. In other words, it is the fraction of pairs of A’s friends that are connected to each

other by edges. For example, the clustering coefficient of node A in Figure 3.2(a) is 1/6

(because there is only the single C-D edge among the six pairs of friends B-C, B-D, B-E,

C-D, C-E, and D-E), and it has increased to 1/2 in the second snapshot of the network in

Figure 3.2(b) (because there are now the three edges B-C, C-D, and D-E among the same

six pairs). In general, the clustering coefficient of a node ranges from 0 (when none of the

node’s friends are friends with each other) to 1 (when all of the node’s friends are friends

with each other), and the more strongly triadic closure is operating in the neighborhood of

the node, the higher the clustering coefficient will tend to be.

The clustering coefficient of node A in Fig. (a) is 1/6 (since there is
only the single edge (C ,D) among the six pairs of friends:
{B,C}, {B,D}, {B,E}, {C ,D}, {C ,E}, and {D,E})

The clustering coefficient of node A in Fig. (b) increased to 1/2
(because there are three edges (B,C ), (C ,D), and (D,E )).
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Interpreting triadic closure

Does a low clustering coefficient suggest anything?

Bearman and Moody [2004] reported finding that a low clustering
coefficient amongst teenage girls implies a higher probability of
suicide (compared to those with high clustering coeficient). How can
we understand this finding?

Why triadic closure?
Increased opportunity, trust, incentive ; it can be awkward to have
good friends (i.e. with strong ties) who are not themselves friends.
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Granovetter’s thesis: the strength of weak ties

In 1960s interviews: Many people learn about new jobs from personal
contacts (which is not surprising) and often these contacts were
acquaintances rather than friends. Is this surprising?

Upon a little reflection, this intuitively makes sense.

The idea is that weak ties link together “tightly knit communities”,
each containing a large number of strong ties.

Can we say anything more quantitative about such phenomena?

To gain some understanding of this phenomena, we need some
additional concepts relating to structural properties of a graph.

Recall

strong ties: stronger links, corresponding to friends

weak ties: weaker links, corresponding to acquaintances
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Bridges and local bridges

One measure of connectivity is the number of edges (or nodes) that
have to be removed to disconnect a graph.

A bridge (if one exists) is an edge whose removal will disconnect a
connected component in a graph.

We expect that large social networks will have a “giant component”
and few bridges.

A local bridge is an edge (A,B) whose removal would cause A and B
to have graph distance (called the span of this edge) greater than
two. Note: span is a dispersion measure, as introduced in the
Backstrom and Kleinberg article regarding Facebook relations.

A local bridges (A,B) plays a role similar to bridges providing access
for A and B to parts of the network that would otherwise be (in a
useful sense) inaccessible.
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Local bridge (A,B)3.2. THE STRENGTH OF WEAK TIES 51

BA
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F H
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Figure 3.4: The A-B edge is a local bridge of span 4, since the removal of this edge would
increase the distance between A and B to 4.

Bridges and Local Bridges. Let’s start by positing that information about good jobs is

something that is relatively scarce; hearing about a promising job opportunity from someone

suggests that they have access to a source of useful information that you don’t. Now consider

this observation in the context of the simple social network drawn in Figure 3.3. The person

labeled A has four friends in this picture, but one of her friendships is qualitatively different

from the others: A’s links to C, D, and E connect her to a tightly-knit group of friends who

all know each other, while the link to B seems to reach into a different part of the network.

We could speculate, then, that the structural peculiarity of the link to B will translate into

differences in the role it plays in A’s everyday life: while the tightly-knit group of nodes A, C,

D, and E will all tend to be exposed to similar opinions and similar sources of information,

A’s link to B offers her access to things she otherwise wouldn’t necessarily hear about.

To make precise the sense in which the A-B link is unusual, we introduce the following

definition. We say that an edge joining two nodes A and B in a graph is a bridge if deleting

the edge would cause A and B to lie in two different components. In other words, this edge

is literally the only route between its endpoints, the nodes A and B.

Now, if our discussion in Chapter 2 about giant components and small-world properties

taught us anything, it’s that bridges are presumably extremely rare in real social networks.

You may have a friend from a very different background, and it may seem that your friendship

is the only thing that bridges your world and his, but one expects in reality that there will

Figure: The edge (A,B) is a local bridge of span 4, since the removal of this
edge would increase the distance between A and B to 4. [E&K Figure 3.4]
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Strong triadic closure property: connecting tie
strength and local bridges

Strong triadic closure property

Whenever (A,B) and (A,C ) are strong ties, then there will be a tie
(possibly only a weak tie) between B and C .

Such a strong property is not likely true in a large social network
(that is, holding for every node A)

However, it is an abstraction that may lend insight.

Theorem

Assuming the strong triadic closure property, for a node involved in at
least two strong ties, any local bridge it is part of must be a weak tie.

Informally, local bridges must be weak ties since otherwise strong triadic
closure would produce shorter paths between the end points.
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Triadic closure and local bridges
3.2. THE STRENGTH OF WEAK TIES 55

BA S
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S

Strong Triadic Closure says 
the B-C edge must exist, but 
the definition of a local bridge 

says it cannot.

Figure 3.6: If a node satifies Strong Triadic Closure and is involved in at least two strong
ties, then any local bridge it is involved in must be a weak tie. The figure illustrates the
reason why: if the A-B edge is a strong tie, then there must also be an edge between B and
C, meaning that the A-B edge cannot be a local bridge.

We’re going to justify this claim as a mathematical statement – that is, it will follow

logically from the definitions we have so far, without our having to invoke any as-yet-

unformalized intuitions about what social networks ought to look like. In this way, it’s

a di�erent kind of claim from our argument in Chapter 2 that the global friendship network

likely contains a giant component. That was a thought experiment (albeit a very convinc-

ing one), requiring us to believe various empirical statements about the network of human

friendships — empirical statements that could later be confirmed or refuted by collecting

data on large social networks. Here, on the other hand, we’ve constructed a small num-

ber of specific mathematical definitions — particularly, local bridges and the Strong Triadic

Closure Property — and we can now justify the claim directly from these.

The argument is actually very short, and it proceeds by contradiction. Take some net-

work, and consider a node A that satisfies the Strong Triadic Closure Property and is involved

in at least two strong ties. Now suppose A is involved in a local bridge — say, to a node

B — that is a strong tie. We want to argue that this is impossible, and the crux of the

argument is depicted in Figure 3.6. First, since A is involved in at least two strong ties,

and the edge to B is only one of them, it must have a strong tie to some other node, which

we’ll call C. Now let’s ask: is there an edge connecting B and C? Since the edge from A to

B is a local bridge, A and B must have no friends in common, and so the B-C edge must

not exist. But this contradicts Strong Triadic Closure, which says that since the A-B and
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Strong triadic closure property continued

Again we emphasize (as the text states) that “Clearly the strong
triadic closure property is too extreme to expect to hold across all
nodes ... But it is a useful step as an abstraction to reality, ...”

Sintos and Tsaparas give evidence that assuming the strong triadic
closure property can help in determining whether a link is a strong or
weak tie.
(http:/(www.cs.uoi.gr/∼tsap/publications/frp0625-sintos.pdf)

We will discuss this paper later in the lecture.

A followup and refinement of the Sintos and Tsaparas 2014
experiments can be found in a relatively a 2018 paper by Adriaens et
al
(http://http://www.mlgworkshop.org/2018/papers/MLG2018 paper 28.pdf)
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Embeddedness of an edge

Just as there are many specific ways to define the dispersion of an edge,
there are different ways to define the embeddedness of an edge.

The general idea is that embeddedness of an edge (u, v) should capture
how much the social circles of u and v “overlap”. The next slide will use a
particular definition for embeddedness.

Why might dispersion be a better discriminator of a romantiic relationship
(especially for marriage) than embeddedness?
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Large scale experiment supporting strength of weak
ties and triadic closure

Onnela et al. [2007] study of who-talks-to-whom network maintained
by a cell phone provider. Large network of cell users where an edge
exists if there existed calls in both directions in 18 weeks.

First observation: a giant component with 84% of nodes.

Need to quantify the tie strength and the closeness to being a local
bridge.

Tie strength is measured in terms of the total number of minutes
spent on phone calls between the two end of an edge.

Closeness to being a local bridge is measured by the neighborhood
overlap of an edge (A,B) defined as the ratio

number of nodes adjacent to both A and B

number of nodes adjacent to at least one of A or B

Local bridges are precisely edges having overlap 0.

The numerator is the embeddedness of the edge.
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Onnela et al. experiment58 CHAPTER 3. STRONG AND WEAK TIES

Figure 3.7: A plot of the neighborhood overlap of edges as a function of their percentile in
the sorted order of all edges by tie strength. The fact that overlap increases with increasing
tie strength is consistent with the theoretical predictions from Section 3.2. (Image from
[334].)

where in the denominator we don’t count A or B themselves (even though A is a neighbor of

B and B is a neighbor of A). As an example of how this definition works, consider the edge

A-F in Figure 3.4. The denominator of the neighborhood overlap for A-F is determined by

the nodes B, C, D, E, G, and J , since these are the ones that are a neighbor of at least one

of A or F . Of these, only C is a neighbor of both A and F , so the neighborhood overlap is

1/6.

The key feature of this definition is that this ratio in question is 0 precisely when the

numerator is 0, and hence when the edge is a local bridge. So the notion of a local bridge

is contained within this definition — local bridges are the edges of neighborhood overlap 0

— and hence we can think of edges with very small neighborhood overlap as being “almost”

local bridges. (Since intuitively, edges with very small neighborhood overlap consist of nodes

that travel in “social circles” having almost no one in common.) For example, this definition

views the A-F edge as much closer to being a local bridge than the A-E edge is, which

accords with intuition.

Figure: A plot of the neighborhood overlap of edges as a function of their
percentile in the sorted order of all edges by tie strength. [E&K Fig 3.7]

The figure shows the relation between tie strength and overlap.
Quantitative evidence supporting the theorem: as tie strength
decreases, the overlap decreases; that is, weak ties are becoming
“almost local bridges” having ovelap almost equal to 0.
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End of Monday, January 14 Lecture

We ended the lecture on slide 18.

Todays agenda

1 Continue the discussion of Chapter 3: strong vs weak ties and the
strength of weak ties

1 Continue with the Onnela et al study
2 The Marlow et al study of different types of ties in the Facebook and

Twitter networks
3 Social captial: bonding capital and bridging capital

2 The Sintos and Tsaparas experiments
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Onnela et al. experiment (shown again)58 CHAPTER 3. STRONG AND WEAK TIES

Figure 3.7: A plot of the neighborhood overlap of edges as a function of their percentile in
the sorted order of all edges by tie strength. The fact that overlap increases with increasing
tie strength is consistent with the theoretical predictions from Section 3.2. (Image from
[334].)

where in the denominator we don’t count A or B themselves (even though A is a neighbor of

B and B is a neighbor of A). As an example of how this definition works, consider the edge

A-F in Figure 3.4. The denominator of the neighborhood overlap for A-F is determined by

the nodes B, C, D, E, G, and J , since these are the ones that are a neighbor of at least one

of A or F . Of these, only C is a neighbor of both A and F , so the neighborhood overlap is

1/6.

The key feature of this definition is that this ratio in question is 0 precisely when the

numerator is 0, and hence when the edge is a local bridge. So the notion of a local bridge

is contained within this definition — local bridges are the edges of neighborhood overlap 0

— and hence we can think of edges with very small neighborhood overlap as being “almost”

local bridges. (Since intuitively, edges with very small neighborhood overlap consist of nodes

that travel in “social circles” having almost no one in common.) For example, this definition

views the A-F edge as much closer to being a local bridge than the A-E edge is, which

accords with intuition.

Figure: A plot of the neighborhood overlap of edges as a function of their
percentile in the sorted order of all edges by tie strength. [E&K Fig 3.7]

The figure shows the relation between tie strength and overlap.
Quantitative evidence supporting the theorem: as tie strength
decreases, the overlap decreases; that is, weak ties are becoming
“almost local bridges” having ovelap almost equal to 0.
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Onnela et al. study continued

To support the hypothesis that weak ties tend to link together more
tightly knit communities, Onnela et al. perform two simulations:

1 Removing edges in decreasing order of tie strength, the giant
component shrank gradually.

2 Removing edges in increasing order of tie strength, the giant
component shrank more rapidly and at some point then started
fragmenting into several components.
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Word of caution in text regarding such studies

Easley and Kleinberg (end of Section 3.3):

Given the size and complexity of the (who calls whom) network,
we cannot simply look at the structure. . . Indirect measures must
generally be used and, because one knows relatively little about
the meaning or significance of any particular node or edge, it
remains an ongoing research challenge to draw richer and more
detailed conclusions. . .
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Strong vs. weak ties in large online social networks
(Facebook and Twitter)

The meaning of “friend” as in Facebook is not the same as one might
have traditionally interpreted the word “friend”.

Online social networks give us the ability to qualify the strength of
ties in a useful way.

For an observation period of one month, Marlow et al. (2009)
consider Facebook networks defined by 4 criteria (increasing order of
strength): all friends, maintained (passive) relations of following a
user, one-way communication, and reciprocal communication.

1 These networks thin out when links represent stronger ties.
2 As the number of total friends increases, the number of reciprocal

communication links levels out at slightly more than 10.
3 How many Facebook friends did you have for which you had a

reciprocal communication in the last month?

23 / 42



Different Types of Friendships: The neighbourhood
network of a sample Facebook individual3.4. TIE STRENGTH, SOCIAL MEDIA, AND PASSIVE ENGAGEMENT 61

All Friends

One-way Communication Mutual Communication

Maintained Relationships

Figure 3.8: Four different views of a Facebook user’s network neighborhood, showing the
structure of links coresponding respectively to all declared friendships, maintained relation-
ships, one-way communication, and reciprocal (i.e. mutual) communication. (Image from
[286].)

Notice that these three categories are not mutually exclusive — indeed, the links classified

as reciprocal communication always belong to the set of links classified as one-way commu-

nication.

This stratification of links by their use lets us understand how a large set of declared

friendships on a site like Facebook translates into an actual pattern of more active social

interaction, corresponding approximately to the use of stronger ties. To get a sense of the

relative volumes of these different kinds of interaction through an example, Figure 3.8 shows

the network neighborhood of a sample Facebook user — consisting of all his friends, and all

links among his friends. The picture in the upper-left shows the set of all declared friendships

in this user’s profile; the other three pictures show how the set of links becomes sparser once

we consider only maintained relationships, one-way communication, or reciprocal communi-
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A limit to the number of strong ties62 CHAPTER 3. STRONG AND WEAK TIES

Figure 3.9: The number of links corresponding to maintained relationships, one-way com-
munication, and reciprocal communication as a function of the total neighborhood size for
users on Facebook. (Image from [286].)

cation. Moreover, as we restrict to stronger ties, certain parts of the network neighborhood

thin out much faster than others. For example, in the neighborhood of the sample user in

Figure 3.8, we see two distinct regions where there has been a particularly large amount of

triadic closure: one in the upper part of the drawing, and one on the right-hand side of the

drawing. However, when we restrict to links representing communication or a maintained

relationship, we see that a lot of the links in the upper region survive, while many fewer of

the links in the right-hand region do. One could conjecture that the right-hand region rep-

resents a set of friends from some earlier phase of the user’s life (perhaps from high school)

who declare each other as friends, but do not actively remain in contact; the upper region,

on the other hand, consists of more recent friends (perhaps co-workers) for whom there is

more frequent contact.

We can make the relative abundance of these different types of links quantitative through

the plot in Figure 3.9. On the x-axis is the total number of friends a user declares, and the

curves then show the (smaller) numbers of other link types as a function of this total. There

are several interesting conclusions to be drawn from this. First, it confirms that even for

users who report very large numbers of friends on their profile pages (on the order of 500),

Figure: The number of links corresponding to maintained relationships, one-way
communication, and reciprocal communication as a function of the total
neighborhood size for users on Facebook. [Figure 3.9, textbook]
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Twitter:Limited Strong Ties vs Followers
3.4. TIE STRENGTH, SOCIAL MEDIA, AND PASSIVE ENGAGEMENT 63

Figure 3.10: The total number of a user’s strong ties (defined by multiple directed messages)
as a function of the number of followees he or she has on Twitter. (Image from [222].)

the number with whom they actually communicate is generally between 10 and 20, and the

number they follow even passively (e.g. by reading about them) is under 50. But beyond this

observation, Marlow and his colleagues draw a further conclusion about the power of media

like Facebook to enable this kind of passive engagement, in which one keeps up with friends

by reading news about them even in the absence of communication. They argue that this

passive network occupies an interesting middle ground between the strongest ties maintained

by regular communication and the weakest ties from one’s distant past, preserved only in

lists on social-networking profile pages. They write, “The stark contrast between reciprocal

and passive networks shows the effect of technologies such as News Feed. If these people

were required to talk on the phone to each other, we might see something like the reciprocal

network, where everyone is connected to a small number of individuals. Moving to an

environment where everyone is passively engaged with each other, some event, such as a new

baby or engagement can propagate very quickly through this highly connected network.”

Tie Strength on Twitter. Similar lines of investigation have been carried out recently on

the social media site Twitter, where individual users engage in a form of micro-blogging by

posting very short, 140-character public messages known as “tweets.” Twitter also includes

social-network features, and these enable one to distinguish between stronger and weaker

ties: each user can specify a set of other users whose messages he or she will follow, and each

user can also direct messages specifically to another user. (In the latter case, the message

Figure: The total number of a user’s strong ties (defined by multiple directed
messages) as a function of the number of followees he or she has on Twitter.
[Figure 3.10, textbook]
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Information spread in a passive network

The maintained or passive relation network (as in the Facebook
network on slide 24) is said to occupy a middle ground between

1 strong tie network (in which individuals actively communicate), and
2 very weak tie networks (all “friends”) with many old (and inactive)

relations.

“Moving to an environment where everyone is passively engaged with
each other, some event, such as a new baby or engagement can
propagate very quickly through this highly connect neighborhood.”

We can add that an event might be a political demonstration.
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Social capital (as discussed in secrion 3.5 of EK
text)

Social capital is a term in increasingly widespread use, but it is a famously
difficult one to define.

The term social capital is designed to suggest its role as part of an array of
different forms of capital (e.g., economic capital) all of which serve as
tangible or intangible resources that can be mobilized to accomplish tasks.

A person can have more or less social capital depending on his or her
position in the underlying social structure or network. A second, related,
source of terminological variation is based on whether social capital is a
property that is purely intrinsic to a group based only on the social
interactions among the groups members or whether it is also based on the
interactions of the group with the outside world.
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“Tightly knit communities” connected by weak ties

The intuitive concept of tightly knit communities occurs several times
in Chapter 3 but is deliberately left undefined.

In a small network we can sometimes visualize the tightly knit
communities but one cannot expect to do this is a large network.
That is, we need algorithms and this is the topic of the advanced
material in Section 3.6.

Recalling the relation to weak ties, the text calls attention to how
nodes at the end of one (or especially more) local bridges can play a
pivotal role in a social network.

These “gatekeeper nodes” between communities stand in contrast to
nodes which sit at the center of a tightly knit community.
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Central nodes vs. gatekeepers
3.5. CLOSURE, STRUCTURAL HOLES, AND SOCIAL CAPITAL 65

B

F

A

E

D

C

Figure 3.11: The contrast between densely-knit groups and boundary-spanning links is re-
flected in the different positions of nodes A and B in the underyling social network.

There is a lot of further insight to be gained by asking about the roles that different nodes

play in this structure as well. In social networks, access to edges that span different groups is

not equally distributed across all nodes: some nodes are positioned at the interface between

multiple groups, with access to boundary-spanning edges, while others are positioned in the

middle of a single group. What is the effect of this heterogeneity? Following the expositional

lead of social-network researchers including Ron Burt [87], we can formulate an answer to

this question as a story about the different experiences that nodes have in a network like the

one in Figure 3.11 — particularly in the contrast between the experience of a node such as

A, who sits at the center of a single tightly-knit group, and node B, who sits at the interface

between several groups.

Embeddedness. Let’s start with node A. Node A’s set of network neighbors has been

subject to considerable triadic closure; A has a high clustering coefficient. (Recall that the

clustering coefficient is the fraction of pairs of neighbors who are themselves neighbors).

To talk about the structure around A it is useful to introduce an additional definition.

We define the embeddedness of an edge in a network to be the number of common neighbors

the two endpoints have. Thus, for example, the A-B edge has an embeddedness of two, since

A and B have the two common neighbors E and F . This definition relates to two notions

from earlier in the chapter. First, the embeddedness of an edge is equal to the numerator in

Figure: The contrast between densely-knit groups and boundary-spanning links is
reflected in the different positions of central node A and gatekeeper node B in
the underlying social network. [Fig 3.11, textbook]
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Social capital of nodes A and B

The edges adjacent to node A all have high embeddedness. Visually
one sees node A as a central node in a tightly-knit cluster. As such,
the social capital that A enjoys is its “bonding capital” in that the
actions of A can (for example) induce norms of behaviour because of
the trust in A.

In contrast, node B is a bridge to other parts of the network. As
such, its social capital is in the form of “brokerage” or “bridging
capital” as B can play the role of a “gatekeeper” (of information and
ideas) between different parts of the network. Furthermore, being
such a gatekeeper can lead to creativity stemming from the synthesis
of ideas.

Some nodes can have both bonding capital and bridging capital.
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Florentine marriages: Bridging capital of the Medici
The Medici are connected to more families, but not by much.
More importantly: Four of the six edges adjacent to the Medici are
bridges or local bridges and the Medici lie on the shortest paths
between most pairs of families.

Figure: see [Jackson, Ch 1]
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A Balanced Min Cut in Graph: Bonding capital of
nodes 1 and 34

Mining Social Network Data

Mining social networks also has long history in social sciences.

E.g. Wayne Zachary’s Ph.D. work (1970-72): observe social
ties and rivalries in a university karate club.

During his observation, conflicts intensified and group split.

Split could be explained by minimum cut in social network.

Jon Kleinberg Challenges in Mining Social Network Data

Note that node 34 also seems to have bridging capital.
Wayne Zachary’s Ph.D. work (1970-72): observed social ties and
rivalries in a university karate club.
During his observation, conflicts intensified and group split.
Could the club boundaries be predicted from the network structure?
Split could almost be explained by minimum cut in social network.
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The Sintos and Tsaparas Study

In their study of the strong triadic closure (STC) property, Sintos and
Tsaparas study 5 small networks. They give evidence as to how the STC
assumption can help determine weak vs strong ties, and how weak ties act
as bridges to different communities.

More specifically, for a social network where the edges are not labelled
they define the following two computational problems: Label the graph
edges (by strong and weak) so as to satisfy the strong triadic closure
property and

1 Either maximize the number of strong edges, or equivalently

2 minimize the number of weak edges
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The computational problem in identifying strong vs
weak ties

For computational reasons (i.e., assuming P 6= NP and showing NP
hardness by reducing the max clique problem to the above
maximization problem), it is not possible to efficiently optimize and
hence they settle for approximations.

Note that even for the small Karate Club network having only m = 78
edges, a brute force search would require trying 278 solutions. Of
course, there may be better methods for any specific network.

The reduction preserves the approximation ratio, so it is also NP-hard
to approximate the maximization problem with a factor of n1−ε.
However, the minimization problem can can reduced (preserving
approximations) to the vertex cover problem which can be
approximated within s factor of 2.

Their computational results are validated against the 5 networks
where the strength of ties is known from the given data.
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The vertex cover algorithms and the 5 data sets
While there are uncovered edges, the (vertex) greedy algorithm selects a
vertex for the vertex cover with maximum current degree. It has worst
case O(log n) approximation ratio. The maximal matching algorithm is a
2-approximation online algorithm that finds an uncovered edge and takes
both endpoints of that edge.

implies that if there was an algorithm with bounded ap-
proximation ratio, then for an input instance for which the
optimal algorithm has cost zero, the algorithm would be able
to produce a solution with zero cost as well; otherwise the
approximation ratio is infinite. However, for k � 3, finding
a k-coloring of a k-colorable graph is NP-hard. Therefore,
it is hard to decide if there is a solution to the minMulti-
STC problem that has cost greater than zero. Therefore,
the problem is hard to approximate, unless P = NP .

We note that for k = 2, the O(log n)-approximation al-
gorithm makes use of linear programming for deriving the
solution. We propose a simpler heuristic in Section 7.

7. EXPERIMENTS
The goal of the experiments is to study if the labeling

we obtain by enforcing the STC property correlates with an
intuitive measure of tie strength in practice. We perform a
variety of experiments towards this end. Our experiments
are on real data, and demonstrate the practical utility of our
formulation and of the proposed algorithms.

7.1 Datasets
We use five di↵erent datsets in our experiments: Actors,

Authors, Les Miserables, Karate Club and Amazon Books.
Table 1 shows some statistics about our datasets. The col-
umn “Weights” indicates whether we can compute weights
for the edges of the graph. The weight of an edge corre-
sponds to the empirical strength of the connection. The col-
umn “Community Structure” indicates whether there exists
a known community structure in the graph.

Table 1: Datasets Statistics.

Dataset Nodes Edges Weights
Community
structure

Actors 1,986 103,121 Yes No
Authors 3,418 9,908 Yes No

Les Miserables 77 254 Yes No
Karate Club 34 78 No Yes

Amazon Books 105 441 No Yes

We now describe the datasets in detail.
The Actors dataset: We create a graph from a movie

dataset collected from IMDB1, consisting of 3,125 movies
made from 1945 to 2010, and 2,171 actors that participate
in these movies. The actor graph contains a node for each
actor in the data, and there is an edge between two actors
if they have collaborated in at least one movie. For each
node of the graph we also have information about the set of
movies in which the actor has played. We prune actors who
participated in less than 5 movies since we do not consider
them to be significant members of the network.

The Authors dataset: This dataset was obtained from
data downloaded from the DBLP site2. It consists of a col-
lection of authors that have published papers in one of the
major Data Mining, Databases or Theory conferences dur-
ing the period between 1994 and 2013. The author graph
contains a node for each author in the data, and there is
an edge between two authors if they have collaborated in at
least one paper. For each node in the graph we also have

1http:www.imdb.com
2http://dblp.uni-trier.de/xml/

information about the set of papers the author has written.
We prune authors who wrote less than 3 papers since we do
not consider them to be significant members of the network.

The Les Miserables dataset: This dataset contains the
network of co-appearances of characters in Victor Hugo’s
novel ”Les Miserables” [13]. Nodes represent characters of
the novel, and there is an edge between two nodes if the
pair of characters appear in the same chapter of the book.
For each edge we have the number of such co-appearances
between the two characters.

The Karate Club dataset: Zachary’s Karate Club
dataset [23] is a social network of friendships between 34
members of a karate club at a US university in the 1970s.
The information about the friendship was derived by ques-
tionnaires filled out by the members of the club.

The Amazon Books dataset: This dataset contains a
set of books about US politics published around the time of
the 2004 presidential election which are sold by the online
bookseller Amazon.com3. Edges between books represent
frequent co-purchasing of the books. In addition, each node
(book) is labeled as “liberal”, “neutral”, or “conservative”,
depending on its political viewpoint. There are 43 liberal,
13 neutral and 49 conservative books in this dataset.

7.2 Algorithms
In Section 5, we proved that minSTC problem on the

graph G can be mapped to the minVertexCover problem
on the dual graph GT . Given the graph G, the dual graph
GT is constructed by creating a node for every edge of G,
and connecting two nodes if the corresponding edges form
an open triangle. The algorithms we consider work by con-
structing an approximate solution to the minVertexCover
problem. We now describe them in detail.

The Greedy Algorithm: The input to the algorithm is
the graph G and its dual GT , and the output is a labeling of
the edges of the graph G as strong or weak. The algorithm
works by constructing a vertex cover of graph GT in a greedy
fashion. Recall that a vertex cover of a graph is a set of
vertices such that every edge of the graph has at least one
endpoint in the set. Let C denotes the set of nodes which are
selected by our algorithm. Initially C = ;. At every step the
algorithm selects the node v with the maximum degree in
GT , and adds it to the set C. It then deletes node v and all
edges incident on v from graph GT . The process is repeated
until there are no more edges in the graph GT . Given the set
of nodes in C, we label the corresponding edges of graph G as
weak. The remain edges are labeled strong. This algorithm
is known to be a O(log n)-approximation algorithm [21].

If at any step of the algorithm more than one nodes have
the same degree, we break ties by choosing the node that
corresponds to the edge in G that participates in the fewest
closed triangles in the graph G. This way, our algorithm
tends to label as weak edges that participate in many open
triangles and few closed triangles, a principle that agrees
with our intuition of what a weak edge should be.

The MaximalMatching Algorithm: The MaximalMatch-
ing algorithm also produces a vertex cover of the graph GT ,
by constructing a maximal matching for the dual graph GT .
A matching of a graph is a collection of non-adjacent edges
of the graph, while a maximal matching is one where no
additional edges can be added. The algorithm constructs
the matching one edge at the time. Let M denote the set

3Available by V. Krebs at http://www.orgnet.com/.

Figure: Weights (respectively, community structure) indicates when explicit edge
weights (resp. a community structure) are known.
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End of Wednesday, January 16 Lecture

We ended the lecture on slide 36. In the Monday, January 21 lecture, we
will finish up the discussion of the Sintos and Tsaparas paper. I am
including the remaining slides for those who want to see some of the
results in that paper. I will also post the paper.
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Tie strength results in detecting strong and weak
ties

of edges selected by our algorithm. Initially M = ;. The
algorithm selects the next edge to add to the set M by first
selecting the node u with the highest degree in GT and then
the neighbor v of u with the highest degree. If more than
one nodes have the same degree then we break ties in the
same way as in the Greedy Algorithm. We add edge (u, v) to
M , and delete u, v and all edges incident on u or v from GT .
The algorithm terminates when there are no more edges in
the graph GT . Let C denote the set of vertices that are
endpoints of the edges in M . Similar to before, we label
as weak the corresponding edges of G, while the remaining
edges are labeled as strong. This algorithm is known to be
a 2-approximation algorithm [21].

Note that for both algorithms if there are vertices in the
graph GT that have no incident edges, then the correspond-
ing edges in the graph G will be labeled strong. These cor-
respond to edges that participate only in closed triangles, or
that are isolated in the graph G.

Table 2 shows the number of edges labeled weak and
strong for the two algorithms on the five datasets we con-
sider in this paper. Despite the better approximation ra-
tio the MaximalMatching algorithm always produces a larger
number of weak edges.

Table 2: Number of strong and weak edges for Greedy
and MaximalMatching algorithms.

Greedy MaximalMatching
Strong Weak Strong Weak

Actors 11,184 91,937 8,581 94,540
Authors 3,608 6,300 2,676 7,232

Les Miserables 128 126 106 148
Karate Club 25 53 14 64

Amazon Books 114 327 71 370

7.3 Measuring Tie Strength
In this section we study the relationship between the as-

signed labels and a notion of tie strength measured in prac-
tice. Our experiments follow the line of experimentation in
prior work [16, 10] where they study how structural features
of an edge correlate with empirical tie strength.

For this experiment, we use the three datasets for which
we can compute weights for the edges: the Actors dataset,
the Les Miserables dataset and the Authors dataset. The
weights on the edges correspond to the strength of the re-
lationships: a strong and enduring collaboration between
two nodes in the case of the Actors and Authors datasets,
and high a�nity in the storyline of the novel in the case
of the Les Miserables dataset. Specifically, for the Actors
dataset, the weight of an edge is the number of times that
the two actors have collaborated; for the Authors dataset
it represents the number of papers that they have written
together; for the Les Miserables dataset, it is the number of
co-appearances between two characters in the same chapter.
The goal of this experiment is to test the validity of the edge
labeling, by examining if there is a correlation between the
assigned label and the weight of the edge. Mathematically,
we will show that there is a statistically significant di↵erence
between the mean weight of strong and weak edges.

Table 3 shows the mean weight for the strong and weak
edges for all the three datasets, using the Greedy and Maxi-
malMatching algorithms. Clearly, for all of the datasets the

strong edges have higher weight than the weak ones. The
t-test reveals that the di↵erence is statistically significant at
a 5% confidence level. We can thus conclude that the label-
ing of our algorithm agrees with the “true” strength of the
network ties.

Table 3: Mean count weight for strong and weak
edges for Greedy and MaximalMatching algorithms.

Greedy MaximalMatching
S W S W

Actors 1.4 1.1 1.3 1.1
Authors 1.341 1.150 1.362 1.167

Les Miserables 3.83 2.61 3.87 2.76

The frequency of common activity (e.g. collaboration) be-
tween two users is obviously a strong indicator of tie strength.
However it may also be an artifact of the general frequent
activity of the two users. For example, two highly prolific
researchers may collaborate on higher-than-average number
of papers, but this may be simply due to the fact that they
produce a lot of publications in general. An alternative mea-
sure of tie strength is the fraction of the activity of the two
users that is devoted to their relationship. We use Jaccard
similarity to capture this idea. Recall that Jaccard similarity
between two sets is defined as the ratio of their intersection
over their union. In our case the sets correspond to the
sets of activities in which the two users engage (e.g., movies,
publications, etc), and the Jaccard similarity measures the
fraction of their activities that are common.

For this experiment we use the Actors and the Authors
datasets. For the Actors dataset the weight of an edge be-
tween two actors is the number of movies in which they have
played together, over the total number of movies in which
at least one of the two actors has participated. Similarly,
the weight of an edge between two authors is defined as the
number of papers that they have written together over the
total number of their papers. We cannot compute Jaccard
similarity for the Les Miserables dataset, since we do not
have the exact chapter appearances for each character.

Table 4 shows the mean Jaccard similarity for the strong
and weak edges using Greedy and MaximalMatching algo-
rithms. Again, for all of the datasets the strong edges have
higher weight than the weak ones and the t-test reveals that
this di↵erence is statistically significant at a 5% confidence
level. We note that in the case of Jaccard similarity, the
gap between strong and weak edges is larger than before.
It seems that our labeling is more adept at capturing this
focused measure of tie strength.

Table 4: Mean Jaccard similarity for strong and
weak edges for Greedy and MaximalMatching algo-
rithms.

Greedy MaximalMatching
S W S W

Actors 0.06 0.04 0.06 0.04
Authors 0.145 0.084 0.155 0.088

Comparing the MaximalMatching and the Greedy algorithm
we observe that they behave very similarly in terms of the
mean weights of strong and weak edges. However, the Greedy
algorithm produces consistently a larger number of strong
edges, and it is intuitively more appealing.

Figure: The number of labelled links.

Although the Greedy algorithm has an inferior (worst case) approximation
ratio, here the greedy algorithm has better performance than Maximal
Matching. (Recall, the goal is to maximize the number of strong ties, or
equivalently minimize the number of weak ties.)
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Results for detecting strong and weak ties

of edges selected by our algorithm. Initially M = ;. The
algorithm selects the next edge to add to the set M by first
selecting the node u with the highest degree in GT and then
the neighbor v of u with the highest degree. If more than
one nodes have the same degree then we break ties in the
same way as in the Greedy Algorithm. We add edge (u, v) to
M , and delete u, v and all edges incident on u or v from GT .
The algorithm terminates when there are no more edges in
the graph GT . Let C denote the set of vertices that are
endpoints of the edges in M . Similar to before, we label
as weak the corresponding edges of G, while the remaining
edges are labeled as strong. This algorithm is known to be
a 2-approximation algorithm [21].

Note that for both algorithms if there are vertices in the
graph GT that have no incident edges, then the correspond-
ing edges in the graph G will be labeled strong. These cor-
respond to edges that participate only in closed triangles, or
that are isolated in the graph G.

Table 2 shows the number of edges labeled weak and
strong for the two algorithms on the five datasets we con-
sider in this paper. Despite the better approximation ra-
tio the MaximalMatching algorithm always produces a larger
number of weak edges.

Table 2: Number of strong and weak edges for Greedy
and MaximalMatching algorithms.

Greedy MaximalMatching
Strong Weak Strong Weak

Actors 11,184 91,937 8,581 94,540
Authors 3,608 6,300 2,676 7,232

Les Miserables 128 126 106 148
Karate Club 25 53 14 64

Amazon Books 114 327 71 370

7.3 Measuring Tie Strength
In this section we study the relationship between the as-

signed labels and a notion of tie strength measured in prac-
tice. Our experiments follow the line of experimentation in
prior work [16, 10] where they study how structural features
of an edge correlate with empirical tie strength.

For this experiment, we use the three datasets for which
we can compute weights for the edges: the Actors dataset,
the Les Miserables dataset and the Authors dataset. The
weights on the edges correspond to the strength of the re-
lationships: a strong and enduring collaboration between
two nodes in the case of the Actors and Authors datasets,
and high a�nity in the storyline of the novel in the case
of the Les Miserables dataset. Specifically, for the Actors
dataset, the weight of an edge is the number of times that
the two actors have collaborated; for the Authors dataset
it represents the number of papers that they have written
together; for the Les Miserables dataset, it is the number of
co-appearances between two characters in the same chapter.
The goal of this experiment is to test the validity of the edge
labeling, by examining if there is a correlation between the
assigned label and the weight of the edge. Mathematically,
we will show that there is a statistically significant di↵erence
between the mean weight of strong and weak edges.

Table 3 shows the mean weight for the strong and weak
edges for all the three datasets, using the Greedy and Maxi-
malMatching algorithms. Clearly, for all of the datasets the

strong edges have higher weight than the weak ones. The
t-test reveals that the di↵erence is statistically significant at
a 5% confidence level. We can thus conclude that the label-
ing of our algorithm agrees with the “true” strength of the
network ties.

Table 3: Mean count weight for strong and weak
edges for Greedy and MaximalMatching algorithms.

Greedy MaximalMatching
S W S W

Actors 1.4 1.1 1.3 1.1
Authors 1.341 1.150 1.362 1.167

Les Miserables 3.83 2.61 3.87 2.76

The frequency of common activity (e.g. collaboration) be-
tween two users is obviously a strong indicator of tie strength.
However it may also be an artifact of the general frequent
activity of the two users. For example, two highly prolific
researchers may collaborate on higher-than-average number
of papers, but this may be simply due to the fact that they
produce a lot of publications in general. An alternative mea-
sure of tie strength is the fraction of the activity of the two
users that is devoted to their relationship. We use Jaccard
similarity to capture this idea. Recall that Jaccard similarity
between two sets is defined as the ratio of their intersection
over their union. In our case the sets correspond to the
sets of activities in which the two users engage (e.g., movies,
publications, etc), and the Jaccard similarity measures the
fraction of their activities that are common.

For this experiment we use the Actors and the Authors
datasets. For the Actors dataset the weight of an edge be-
tween two actors is the number of movies in which they have
played together, over the total number of movies in which
at least one of the two actors has participated. Similarly,
the weight of an edge between two authors is defined as the
number of papers that they have written together over the
total number of their papers. We cannot compute Jaccard
similarity for the Les Miserables dataset, since we do not
have the exact chapter appearances for each character.

Table 4 shows the mean Jaccard similarity for the strong
and weak edges using Greedy and MaximalMatching algo-
rithms. Again, for all of the datasets the strong edges have
higher weight than the weak ones and the t-test reveals that
this di↵erence is statistically significant at a 5% confidence
level. We note that in the case of Jaccard similarity, the
gap between strong and weak edges is larger than before.
It seems that our labeling is more adept at capturing this
focused measure of tie strength.

Table 4: Mean Jaccard similarity for strong and
weak edges for Greedy and MaximalMatching algo-
rithms.

Greedy MaximalMatching
S W S W

Actors 0.06 0.04 0.06 0.04
Authors 0.145 0.084 0.155 0.088

Comparing the MaximalMatching and the Greedy algorithm
we observe that they behave very similarly in terms of the
mean weights of strong and weak edges. However, the Greedy
algorithm produces consistently a larger number of strong
edges, and it is intuitively more appealing.

Figure: The avergae link weight.
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Tie strength results in detecting strong and weak
ties normalized by amount of activity

of edges selected by our algorithm. Initially M = ;. The
algorithm selects the next edge to add to the set M by first
selecting the node u with the highest degree in GT and then
the neighbor v of u with the highest degree. If more than
one nodes have the same degree then we break ties in the
same way as in the Greedy Algorithm. We add edge (u, v) to
M , and delete u, v and all edges incident on u or v from GT .
The algorithm terminates when there are no more edges in
the graph GT . Let C denote the set of vertices that are
endpoints of the edges in M . Similar to before, we label
as weak the corresponding edges of G, while the remaining
edges are labeled as strong. This algorithm is known to be
a 2-approximation algorithm [21].

Note that for both algorithms if there are vertices in the
graph GT that have no incident edges, then the correspond-
ing edges in the graph G will be labeled strong. These cor-
respond to edges that participate only in closed triangles, or
that are isolated in the graph G.

Table 2 shows the number of edges labeled weak and
strong for the two algorithms on the five datasets we con-
sider in this paper. Despite the better approximation ra-
tio the MaximalMatching algorithm always produces a larger
number of weak edges.

Table 2: Number of strong and weak edges for Greedy
and MaximalMatching algorithms.

Greedy MaximalMatching
Strong Weak Strong Weak

Actors 11,184 91,937 8,581 94,540
Authors 3,608 6,300 2,676 7,232

Les Miserables 128 126 106 148
Karate Club 25 53 14 64

Amazon Books 114 327 71 370

7.3 Measuring Tie Strength
In this section we study the relationship between the as-

signed labels and a notion of tie strength measured in prac-
tice. Our experiments follow the line of experimentation in
prior work [16, 10] where they study how structural features
of an edge correlate with empirical tie strength.

For this experiment, we use the three datasets for which
we can compute weights for the edges: the Actors dataset,
the Les Miserables dataset and the Authors dataset. The
weights on the edges correspond to the strength of the re-
lationships: a strong and enduring collaboration between
two nodes in the case of the Actors and Authors datasets,
and high a�nity in the storyline of the novel in the case
of the Les Miserables dataset. Specifically, for the Actors
dataset, the weight of an edge is the number of times that
the two actors have collaborated; for the Authors dataset
it represents the number of papers that they have written
together; for the Les Miserables dataset, it is the number of
co-appearances between two characters in the same chapter.
The goal of this experiment is to test the validity of the edge
labeling, by examining if there is a correlation between the
assigned label and the weight of the edge. Mathematically,
we will show that there is a statistically significant di↵erence
between the mean weight of strong and weak edges.

Table 3 shows the mean weight for the strong and weak
edges for all the three datasets, using the Greedy and Maxi-
malMatching algorithms. Clearly, for all of the datasets the

strong edges have higher weight than the weak ones. The
t-test reveals that the di↵erence is statistically significant at
a 5% confidence level. We can thus conclude that the label-
ing of our algorithm agrees with the “true” strength of the
network ties.

Table 3: Mean count weight for strong and weak
edges for Greedy and MaximalMatching algorithms.

Greedy MaximalMatching
S W S W

Actors 1.4 1.1 1.3 1.1
Authors 1.341 1.150 1.362 1.167

Les Miserables 3.83 2.61 3.87 2.76

The frequency of common activity (e.g. collaboration) be-
tween two users is obviously a strong indicator of tie strength.
However it may also be an artifact of the general frequent
activity of the two users. For example, two highly prolific
researchers may collaborate on higher-than-average number
of papers, but this may be simply due to the fact that they
produce a lot of publications in general. An alternative mea-
sure of tie strength is the fraction of the activity of the two
users that is devoted to their relationship. We use Jaccard
similarity to capture this idea. Recall that Jaccard similarity
between two sets is defined as the ratio of their intersection
over their union. In our case the sets correspond to the
sets of activities in which the two users engage (e.g., movies,
publications, etc), and the Jaccard similarity measures the
fraction of their activities that are common.

For this experiment we use the Actors and the Authors
datasets. For the Actors dataset the weight of an edge be-
tween two actors is the number of movies in which they have
played together, over the total number of movies in which
at least one of the two actors has participated. Similarly,
the weight of an edge between two authors is defined as the
number of papers that they have written together over the
total number of their papers. We cannot compute Jaccard
similarity for the Les Miserables dataset, since we do not
have the exact chapter appearances for each character.

Table 4 shows the mean Jaccard similarity for the strong
and weak edges using Greedy and MaximalMatching algo-
rithms. Again, for all of the datasets the strong edges have
higher weight than the weak ones and the t-test reveals that
this di↵erence is statistically significant at a 5% confidence
level. We note that in the case of Jaccard similarity, the
gap between strong and weak edges is larger than before.
It seems that our labeling is more adept at capturing this
focused measure of tie strength.

Table 4: Mean Jaccard similarity for strong and
weak edges for Greedy and MaximalMatching algo-
rithms.

Greedy MaximalMatching
S W S W

Actors 0.06 0.04 0.06 0.04
Authors 0.145 0.084 0.155 0.088

Comparing the MaximalMatching and the Greedy algorithm
we observe that they behave very similarly in terms of the
mean weights of strong and weak edges. However, the Greedy
algorithm produces consistently a larger number of strong
edges, and it is intuitively more appealing.

Figure: Normalizing the number of interactions by the amount of activity.
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Results for strong and weak ties with respect to
known communities

7.4 Weak edges as bridges
Granovetter, in his seminal paper [8], demonstrated the

importance of weak social ties in connecting individuals with
information that is not readily available in their close social
circle, such as new work opportunities. A possible expla-
nation to this observation is nicely articulated in the book
of David Easley and Jon Kleinberg [4], where they postu-
late that weak ties act as bridges between communities in
the graph. Communities hold di↵erent types of information,
and the only way for an individual to obtain access to infor-
mation from a community di↵erent than her own is through
weak ties.

In accordance to this interpretation, given a labeling of
the edges of a graph with known community structure, we
would like most of the inter-community edges to be labeled
weak, while most of the strong labels to be confined to intra-
community edges. That is, edges that bridge communities
should be labeled weak, while strong edges should serve as
a backbone of the communities.

Formally, let G = (V, E) denote the input graph, and let
C = {C1, ..., Ck} denote a partition of the nodes of the graph
into k communities, which is also given as part of the input.
Let Einter denote the set of edges (u, v) such that u 2 Ci and
v 2 Cj for some i 6= j, and let Eintra denote the set of edges
(u, v) such that u, v 2 Ci for some i. Also given the labeling
LG of the graph G let W denote the set of edges labeled
weak, and let S denote the set of edges labeled strong. We
define the precision PW and recall RW for the weak edges
as follows:

PW =
|W \ Einter|

|W | and RW =
|W \ Einter|

|Einter|
Similarly, we define precision PS and recall RS for strong
edges as follows:

PS =
|S \ Eintra|

|S| and RS =
|S \ Eintra|

|Eintra|
The numbers we are mostly interested in are RW and PS ,
that is, we want the bridging edges to be labeled weak, and
the strong edges to be confined within the communities.

To test our hypothesis we need graphs with known com-
munity structure. To this end, we use the Karate Club and
Amazon Books datasets. For the Karate Club dataset it
is well known [4] that there were two fractions within the
members of the club, centered around the two trainers, that
eventually led to the breakup of the club. For the Amazon
Books dataset the communities are given by the political
viewpoint of the books.

Table 5: Precision and Recall for strong and weak
edges for Greedy and MaximalMatching algorithms.

Greedy
PS RS PW RW

Karate Club 1 0.37 0.19 1
Amazon Books 0.81 0.25 0.15 0.69

MaximalMatching
PS RS PW RW

Karate Club 1 0.2 0.16 1
Amazon Books 0.73 0.14 0.14 0.73

Table 5 shows the results for the two datasets for the
Greedy and MaximalMatching algorithms. The two algo-

rithms behave similarly, but the Greedy algorithm performs
better overall in terms of both precision and recall. We now
study the labeling of the Greedy algorithm in more detail.

For the Karate Club dataset we observe that we have per-
fect precision for the strong edges, and perfect recall for the
weak edges. We visualize the results of the Greedy algorithm
in Figure 1. The nodes are colored white and gray depend-
ing on the community to which they belong. The thick red
edges correspond to the edges labeled strong, and the thin
blue edges to the edges labeled weak. We can see that strong
edges appear only between nodes of the same group, while
all edges that cross communities are labeled weak.

Figure 1: Karate Club graph. Blue light edges rep-
resent the weak edges, while red thick edges repre-
sent the strong edges.

For the Amazon Books dataset the Greedy algorithm char-
acterizes 114 edges as strong, out of which 92 connect books
of the same type, thus yielding precision PS = 0.81. On
the other hand, there are 70 edges that connect nodes from
di↵erent groups, and 48 of those are labeled weak, yielding
recall RW = 0.69. Of the remaining 22 edges that cross
communities and are labeled strong, 20 are edges with one
of the two endpoints being a book labeled as neutral. It
is intuitive that people would co-purchase books of neutral
viewpoint with liberal or conservative books, thus leading to
strong connections. There are only two edges that connect
a liberal and a conservative pair of books, and are labeled
strong by our algorithm. These pairs are: (“America Un-
bound”, “Rise of the Vulcans”), and (“The Choice”, “Rise of
the Vulcans”). After some investigation, we found out that,
for the first pair, although the books “America Unbound”
and “Rise of the Vulcans” belong to di↵erent categories (lib-
eral and conservative respectively), they are both about the
exact same issue: George W. Bush’s foreign policy. There-
fore, there is a di↵erent latent dimension that groups them
together, which can explain the strong relationship between
them.

7.5 STC with added edges
In this section we conduct experiments for the minSTC+

problem, where except for labeling edges as strong or weak,
we can also add edges to the graph. To this end we use the
greedy algorithm we described in Section 6. The algorithm
works iteratively. At each step of the algorithm a pair of
nodes (u, v) is selected which covers the most remaining open
triangles. This pair is either an edge not currently in the
graph, which, when added, closes the most remaining open
triangles, or an existing edge, which, when labeled weak,

Figure: Precision and recall with respect to the known communities.
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The meaning of the precision-recall table

The precision and recall for the weak edges are defined as follows:

PW =
|W∩Einter|
|W | and RW =

|W∩Einter|
|Einter |

PS =
|S∩Eintra|
|S | and RS =

|S∩Eintra|
|Eintra|

Ideally, we want RW = 1 indicating that all edges between
communities are weak; and we want PS = 1 indicating that strong
edges are wll within a community.

For the Karate Club data set, all the strong links are within one of the
two known communities and hence all links between the communities
are all weak links.

For the Amazon Books data set, there are three communities
corresponding to liberal, neutral, conservative viewpoints. Of the 22
strong tie edges crossing communities, 20 have one node labeled as
neutral and the remaining two inter-community strong ties both deal
with the same issue.
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Strong and weak ties in the karate club network

7.4 Weak edges as bridges
Granovetter, in his seminal paper [8], demonstrated the

importance of weak social ties in connecting individuals with
information that is not readily available in their close social
circle, such as new work opportunities. A possible expla-
nation to this observation is nicely articulated in the book
of David Easley and Jon Kleinberg [4], where they postu-
late that weak ties act as bridges between communities in
the graph. Communities hold different types of information,
and the only way for an individual to obtain access to infor-
mation from a community different than her own is through
weak ties.

In accordance to this interpretation, given a labeling of
the edges of a graph with known community structure, we
would like most of the inter-community edges to be labeled
weak, while most of the strong labels to be confined to intra-
community edges. That is, edges that bridge communities
should be labeled weak, while strong edges should serve as
a backbone of the communities.

Formally, let G = (V, E) denote the input graph, and let
C = {C1, ..., Ck} denote a partition of the nodes of the graph
into k communities, which is also given as part of the input.
Let Einter denote the set of edges (u, v) such that u ∈ Ci and
v ∈ Cj for some i "= j, and let Eintra denote the set of edges
(u, v) such that u, v ∈ Ci for some i. Also given the labeling
LG of the graph G let W denote the set of edges labeled
weak, and let S denote the set of edges labeled strong. We
define the precision PW and recall RW for the weak edges
as follows:

PW =
|W ∩ Einter|

|W | and RW =
|W ∩ Einter|

|Einter|
Similarly, we define precision PS and recall RS for strong
edges as follows:

PS =
|S ∩ Eintra|

|S| and RS =
|S ∩ Eintra|

|Eintra|
The numbers we are mostly interested in are RW and PS ,
that is, we want the bridging edges to be labeled weak, and
the strong edges to be confined within the communities.

To test our hypothesis we need graphs with known com-
munity structure. To this end, we use the Karate Club and
Amazon Books datasets. For the Karate Club dataset it
is well known [4] that there were two fractions within the
members of the club, centered around the two trainers, that
eventually led to the breakup of the club. For the Amazon
Books dataset the communities are given by the political
viewpoint of the books.

Table 5: Precision and Recall for strong and weak
edges for Greedy and MaximalMatching algorithms.

Greedy
PS RS PW RW

Karate Club 1 0.37 0.19 1
Amazon Books 0.81 0.25 0.15 0.69

MaximalMatching
PS RS PW RW

Karate Club 1 0.2 0.16 1
Amazon Books 0.73 0.14 0.14 0.73

Table 5 shows the results for the two datasets for the
Greedy and MaximalMatching algorithms. The two algo-

rithms behave similarly, but the Greedy algorithm performs
better overall in terms of both precision and recall. We now
study the labeling of the Greedy algorithm in more detail.

For the Karate Club dataset we observe that we have per-
fect precision for the strong edges, and perfect recall for the
weak edges. We visualize the results of the Greedy algorithm
in Figure 1. The nodes are colored white and gray depend-
ing on the community to which they belong. The thick red
edges correspond to the edges labeled strong, and the thin
blue edges to the edges labeled weak. We can see that strong
edges appear only between nodes of the same group, while
all edges that cross communities are labeled weak.

Figure 1: Karate Club graph. Blue light edges rep-
resent the weak edges, while red thick edges repre-
sent the strong edges.

For the Amazon Books dataset the Greedy algorithm char-
acterizes 114 edges as strong, out of which 92 connect books
of the same type, thus yielding precision PS = 0.81. On
the other hand, there are 70 edges that connect nodes from
different groups, and 48 of those are labeled weak, yielding
recall RW = 0.69. Of the remaining 22 edges that cross
communities and are labeled strong, 20 are edges with one
of the two endpoints being a book labeled as neutral. It
is intuitive that people would co-purchase books of neutral
viewpoint with liberal or conservative books, thus leading to
strong connections. There are only two edges that connect
a liberal and a conservative pair of books, and are labeled
strong by our algorithm. These pairs are: (“America Un-
bound”, “Rise of the Vulcans”), and (“The Choice”, “Rise of
the Vulcans”). After some investigation, we found out that,
for the first pair, although the books “America Unbound”
and “Rise of the Vulcans” belong to different categories (lib-
eral and conservative respectively), they are both about the
exact same issue: George W. Bush’s foreign policy. There-
fore, there is a different latent dimension that groups them
together, which can explain the strong relationship between
them.

7.5 STC with added edges
In this section we conduct experiments for the minSTC+

problem, where except for labeling edges as strong or weak,
we can also add edges to the graph. To this end we use the
greedy algorithm we described in Section 6. The algorithm
works iteratively. At each step of the algorithm a pair of
nodes (u, v) is selected which covers the most remaining open
triangles. This pair is either an edge not currently in the
graph, which, when added, closes the most remaining open
triangles, or an existing edge, which, when labeled weak,

Note that all the strong links are within one of the two known
communities and hence all links between the communities are weak
links.
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