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Announcements and agenda

Announcements

@ The critical reviews are due today (any time).

@ | have now posted the remaining questions for the final assignment
which is due March 29. If we do not get to discuss the stable marriage
problem this week, | may make take that question off the assignment.

Todays agenda.

@ We will complete chapter 21 with the discussion of genetic
inheritance and “Mitochondrial Eve”

@ This week we mainly will discuss Chapter 12, Bargaining in a Network
Exchange Model.

© For the remainder of the course, we will discuss the Stable Marriage
problem and then Congestion Networks and Braess' paradox.

N
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Genetic inheritance and networks

Chapter 21 turns its attention to the issue of genetic inheritance, viewed
as a random process taking place on a (directed acyclic) network of
organisms (species, parts of a genome, etc).

Section 12.7 starts off with a very motivating example. In 1987, Cann,
Stoneking and Wilson published a very striking and to many a very
controversial paper. They asserted that if one traces their maternal lineage
back in time, everyones lineage traces back to a single woman (called
Mitochondrial Eve), living sometime between 100,000 and 200,000 years
ago and probably living Africa.

The chapter ignores the issue of the location of Mitochondrial Eve and
focuses on the basis (i.e. a model based on various assumptions) for this
bold assertion of a common ancestry.

Note: | suggest reading the text as to the caveats about the model.



Modeling the Mitochondrial Eve assertion

To understand the assertion, we have to make some simplifying biological
assumptions. Later to understand the assertion more precisely (as in the
advanced section 21.8 B) we also need to make some simplifying
mathematical assumptions. These latter assumptions are easy to justify
and do not change any of the conclusions.

The biological assumptions are beyond the scope of the course but we will
accept them as they have been generally accepted in the sense that
qualitatively they do not change the conclusions.

The biological basis for the model is that mitochondrial DNA (is to a first
approximation) passed on to children entirely from their mothers.
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Mitochodrial Eve continued

Once we focus on mitochondrial DNA and accept that it is inherited only
from ones mother, we are then able to consider a single parent ancestry
model.

This model will conclude that our common mitochondrial DNA ancestry
must have originated with with a single female Mitochondrial Eve and the
mathematical analysis will give an estimate for the time period in which
she lived.

This does not say that Mitochondrial Eve was the only female (or male)
alive at this time but just that our mitochondrial DNA traces back to such
a female. And of course our genomic makeup does come from both
parents.



The Wright-Fisher single parent ancestry model

There are additional simplifying assumptions that need to be made to
make the model more tractable. The model not only applies to
mitochondrial lineage but also to reproduction in asexual reproduction and
(with some further assumptions) to specific nucleotides in our genome.

We assume a fixed population of N individuals throughout the entire
period of time. This is inconsistent with the fact that world population is
growing. But we will argue that this does not change the nature of the
conclusions or even the nature of the analysis.

In fact, once we accept that populations are growing, it is clear that
certain individuals must be having multiple children which is also part of
the model.
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Single parent ancestry model continued

We assume that generations are completely synchronized, the generation
of N individuals at some time t give rise to the next generation of N
individuals at time t + 1.

Each individual at time t+1 has its single parent chosen uniformly at
random from the previous generation, a significant assumption given
geography, ethnicity, etc. To reconcile this (with respect to the assertion
of a single Mitochondrial Eve), we need to understand the extent to which
individual communities can be isolated. But the timing for when common
ancestry would have taken place is not impacted by this assumption.

O O current generation
new generation

each offspring comes from
asingle parent chosen
uniformly at random

Figure: [Fig 21.11, E&K]
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The analysis for estimating the time that the model
coalesces on Mitochodrial Eve

Section 21.8B provides a mathematical analysis for estimating the time
when a common ancestor (in the single parent model) will be reached.
Along the way, some simplifying mathematical assumptions are made but
these assumptions are easily defended and are not of the same nature as
biological assumptions.

Suppose we have a total population of N and at some point of time t + 1
that we are down to k candidates (lineages) for a common ancestor. We
want to consider the probability that two lineages will collide so that there
be (at most) k — 1 candidates. .
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The analysis

We want to determine an estimate for the number of generations for a
lineage having k individuals will shrink down to k — 1 individulas.

Case: k = 2. Say the active lineage is individuals {a, b}. Let a trace back
to some individual ¢ (one of the N in the entire population). Then the
probability that b will not trace back to the same cis 1 — %

Case: k > 2. Lets consider the probability that there will be no collapsing
into k — 1 lineages. There will be no collapsing if the second node doesnt
collide with the first, the third doesnt collide with the first two, etc, so this
means that the probability of no collapsing is :

1 2 k—1

(1= (=) (1= )
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The analysis continued

The previous product

1 2 k—1
(1= A=) (=)

is at most:

14+2+4--+k—1\ g(k)
- ( ) e

where g(k) depends only on k and not on N. For any fixed k, the latter
term i(s re;atively negligble and we can say that the probability is

k(k—1
1— =55
Moreover, we have ignored the probability that three or more lineages
collide at the same node or that different paths collide, all of which would
speed up the process.
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The analysis continued

Fact: If we have a binary random variable Yj (i.e., a heads coin flip) that
is repeated independently each time with probability p, then the expected
time E[X] for X to occur is exactly 1/p. Of course, if the probability is
at least p, then the expected time can only be shorter.

Therefore, letting Xy denote the time to collapse from k to k — 1 lineages,
then E[X] is approximated by k(k )

Note: Initially when k is large, the decrease is expected every generation
going back. But when k is a small constant, then the expected number of
generations to show a decrease is proportional to N.
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Depiction of the lineages colliding

From2to 1:
waiting for an event
of prob. 1/N

A

From 3to 2: 4
waiting for an event
of prob. 3/N

Y

From 4 to 3:
waiting for an event I

of prob. 6/N

From 5to 4:
waiting for an event

of prob. 10/N

From 6 to 5:
waiting for an event J
of prob. 15/N ]

Figure: Assuming no threee lineages collide simultaneously. [Fig 21.1(a), E&K]
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Finishing the analysis

Let XK = Xy + Xi_1 + - - + Xo be the number of generation to reach a
common ancestor starting from a lineage of k individuals.

1

Since E[xj] = j(jil) and J.(J.il) = 1%1 — =, by linearity of expectations we
have:

N
E[XH] = Y 2

i)

Note: Further more detailed analysis is consistent with the basic analysis
that was presented in the text.

x| =

Il

N

=
N T
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Chapter 12: Bargaining and Power in Networks

We begin a subtle and fascinating topic, namely how individuals in a
network come to agreement on an outcome. This chapter is part of a
larger subject called cooperative game theory and to some extent touches
on behavioural game theory. . As previously discussed, we have a course
(CSC304) which covers game theory and in our course we will only present
what is necessary regarding game theory. What we need is rather minimal
(e.g., as when we were discussing network coordination in chapter 19).

But perhaps here is a good place to mention some basic game theory
concepts to keep in mind (and again we have at least implicitly seen these
concepts in our discussions to date). The following is a very brief set of
informal comments.

@ Individuals (agents) have strategies or actions and employ a (pure or
mixed /randomized) strategy so as to act in self interest, always trying
to maximize benefit or minimize cost.
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A few more comments on game theory concepts

o Note: There is a lot of subtlety in how one understands benefits and
costs as it often cannot be explained simply in monetary terms (or at
least one has to have some way to assign monetary values to more
subjective values, such as fairness, pride, reputation, etc.)

@ The fact that agents are acting in self interest implies that their
actions are decentralized. Mechanism design concerns how a central
agent can introduce incentives so as to influence the actions of agents.

@ A central concept in game theory is that of an equilibrium, which are
states in which no agent has an incentive to change their strategy
assuming no one else is changing. And again, we have also seen this
concept, for example when considering the Schelling segregation
model in Chapter 4, structural balance in Chapter 5, and self-fulfilling
expectations in Chapter 17. Equilibria will again be an important
concept in Chapter 12 and the study of relative power.
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Power as a relative relation between people

The chapter deals with individuals in a barganining network and the
relative power between any two people in this network.

Power between individuals can come from two distinct sources:

@ The relative reputation, status, official position, exceptional atributes
(intelligence, finances), etc.

@ The pivotal position of the person in the network.

In the first week of the term we mentioned the network of Florentine
marriages and the centrality of the Medici family that was said to have
conferred power to the Medicis. In the second week of the course we
discussed the bridging capital of a node, such as node B in Figure 3.11 of
the text, as well as the bonding capital and centrality of a node such as
node A in Figure 13.1 or nodes 34 and 1 in the Karate Club in Figure 3.13.
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Bridging and bonding capital of nodes

The early chapters of the text provided some insights about the

importance of centrality and bonding and bridging capital with regard to
the flow of information.
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Power arising from asymmetries in pairwise relations

In contrast to these earlier discussions as to the pivotal relation of certain
nodes in a network, Chapter 12 considers power in terms of the pivotal
relation between two individuals that results in different values being
conferred upon them corresponding to the imbalance in their relative
power.

Note: In this context, centrality can sometimes be misleading.

Clearly, the above paragraph is vague and does not give us a definition of
power. But, in fact, the study of power in this context (of imbalance) is a
well studied concept that has led to applicable precise definitions. Here we
emphasize that we are isolating power in terms of the position in a
network and ignoring status aspects.

For motivation and following the text, we first present some simple but
illustrative network examples. This will be followed by a social experiment
that will provide insight as to the power imbalances in these simple
networks. This in turn will lead to precise defintions.
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Some illustrative examples

We will soon carefully describe the social experiment but briefly think a $1
being placed on each edge of the network, and then each node trying to
reach an agreement (within a fixed amount of time) with at most one
other adjacent node as to how to split the dollar. (This pairing up of
nodes is called a matching in graph theoretic terms. Formally, a matching
M in a graph is a subset of edges such that no node is adjacent to more
than one edge in the matching.)

Who will have relative power (i.e., receive more than half a dollar in the
following networks)?

Let's start with the simplest possible network:

(a) 2-Node Path

Does either party have an advantage? 2149
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A three node path

O Ozun©

(b) 3-Node Path

What matching might occur and who each holds power?
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A three node path

O Ozun©

(b) 3-Node Path

What matching might occur and who each holds power?

Clearly since we need a matching, either A and C will have to be left out.
Intuitively then, node B holds much more power than A or C. The basic
theory and experiments support this intuition.

What fraction of the $ would you expect B to obtain in negotiating
between A and C7
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A three node path

W—E—O

(b) 3-Node Path

What matching might occur and who each holds power?

Clearly since we need a matching, either A and C will have to be left out.
Intuitively then, node B holds much more power than A or C. The basic
theory and experiments support this intuition.

What fraction of the $ would you expect B to obtain in negotiating
between A and C?

There is a difference between the basic theory and the social experiments.
In the experiments , B gets a (%)th fraction of the $. The basic theory
would predict that B gets all almost all of the $. Why the difference?
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End of Monday, March 18 lecture

Todays agenda

@ We ended the last lecture as we were beginning to consider a four
node path and that is there we will start today.

o Complete Chapter 12
@ Stable marriage problem and the Gale Shapley algorithm
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A four node path

O—C—C0—0©
(¢) 4-Node Path

What matching might occur and how might the money be split? Would B
get more or less in this four node network than in the previous three node
path?

24/ 49



A four node path

O—C—C0—0©
(¢) 4-Node Path

What matching might occur and how might the money be split? Would B

get more or less in this four node network than in the previous three node
path?

: : h d
Here the experiments show that B gets a fraction of between 2% and %r

2
of the $, less than what we obtained in the three node network. \Why?
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The stem graph in figure 12.3

What matching might occur and how might the money be split? Would B
get more or less in this stem network than in the previous three and four
node paths?
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The stem graph in figure 12.3

What matching might occur and how might the money be split? Would B

get more or less in this stem network than in the previous three and four
node paths?

Experiments show that B in the stem graph makes slightly more money
than B in the four node path (but less than in the three node path). Why?
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A five node path

(d) 5-Node Path

Does C have any power (i.e. fraction of money obtained) compared to
other nodes?
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A five node path

(d) 5-Node Path

Does C have any power (i.e. fraction of money obtained) compared to
other nodes?

Intuitively B and D have most of the power in the five node path network.
The text states that in experiments, C has slightly more power than A or

E.
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A five node path

(d) 5-Node Path

Does C have any power (i.e. fraction of money obtained) compared to
other nodes?

Intuitively B and D have most of the power in the five node path network.
The text states that in experiments, C has slightly more power than A or
E.

Note that C is the most central node in terms of being on all shortest
paths. However, this has not translated into substantial power.
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The network exchange social experiment

The following network exchange social experiment (and variants) is
repeated a number of rounds so that some form of learning is taking place.
There are many variants and the text presents one particular setting.

@ Individuals (not knowing each other since we want to foucs on the
network aspects and not on the status, etc. of individuals) are placed
at computer terminals and can interact wtth certain other indivudals.

@ In a complete information setting, one might see the entire network.
The text considers the setting where an individual only knows and
negotiates with their neighbouring nodes.

@ For some known duration on time for a given round, negotiations take
place for sharing say one $ on each edge. (We could allow larger and
different sums for each edge). Once a pair have decided how to share
the $, they leave the game.

@ There is one more important condition on the experiment; namely in
any given round, the outcome has to be a matching. This is called
the I-exchange rule.
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How much do these experimental findings depend
on the exact setting.

We would, of course, like to have results that are robust and do not differ
that much in the exact “details”.

It turns out that results are reasonably robust with regard to how much
network information is available. And experiments carried out in dfferent
countries and different cultures are consistent.

On the other hand, the 1-exchange rule is a definite factor impacting the
results. In certain networks, substantially different findings would result if
individuals could be negoatiating two or more exchanges in a round. (In
graph theory terms, this is called a b-matching when nodes can be be
adjacent to upo to b edges in the matching.)

Anonymity is important. In particular, when knowing status, individuals of
higher status tend to inflate their “options” and those of lower status tend
to underplay their options.
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Do all experiments converge in a consistent manner?
Another interesting observation is that for these simple networks, each

round tends to come to consistent outcomes within the specified time
limits.

However, there are networks where this is not the case. Consider the
following triangle graph:

Note that any two of the nodes can wind up excluding the other. Hence

we would expect that the final outcome in any round will be determined by
the two nodes who get to settle just before the time deadline.
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A mathematical perspective: The Nash Bargaining
Solution

It would be good to have a model that will give us some insight into the
kinds of results we see in the pure 1-exchange experiments (with
anonymous participants).

John Nash (the same Nash who showed that all finite games have mixed
equilibria) introduced the Nash Bargaining Solution. This will allow us to
understand which outcomes will be stable. Note that without having a
stable outcome, we cannot hope for participants to converge in any
consistent way.

Conversely, we would expect that over enough rounds, participants would
learn to converge to a stable outcome. Stable outcomes are equilibria and
like most games, there can be many stable outcomes for a network
exchange process.
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Stable outcomes

We have already been implicitly discussing the idea of an outcome but for
definiteness here is the definition for the case when every edge is worth 1$.
An outcome in a network exchange process on a graph G = (V, W) is a
pair (M, v) where M C E is a matching and the value function
vV — [0, 1] satsifies:

o For every edge e = (x,y) € M, vy +v, = 1.

o If a node x € V is not part of the matching M (i.e. does not appear
as a vertex in any edge (x, —)), then v, = 0.

And we are now ready to define a stable outcome.

Stable Outocmes

An outcome (M, v) for a network exchange proces is stable if for every
edgee=(x,y) € E\M, vy +v, =1.
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Why are stable outcomes needed for an equibrium?

Since we are assuming that each edge has exactly one $ on each edge,
clearly vy + v, <1 for each edge (x,y) € M, the matching.

Suppose x + y < 1 for an edge (x,y) € M. Then there is a surplus of
s =1 — x — y that can be shared between x and y and there is no reason
for them not to share this surplus so as to improve both their values.

But what if x and y have other options other than to be in the matching?
Suppose that x (respectively, y) has an “outside option” of o, (resp. o).
Then o, + 0, < 1 or else (x,y) could not be in a stable matching since
they would eventually both take their outside options.

The Nash bargaining solution would be to put (x,y) in the matching and
equally divide up any surplus from the outside options. That is, if

1—
s=1— o, — oy, then set vX:oX—l—gzw% and
17
Vs =0y + 5= °y+2 % And hence we get:

vx + v, = 1 with (x, y) in the matching.
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Why extreme outcomes are not real outcomes

As stated earlier in this chapter, in the three node path example, the
theory thus far would predict that B will obtain the entire $. But we are
told that in experiments, more typically B gets a fraction % and one other
node gets a fraction %.
This can be explained once we understand that indivudals (i.e., real
people) are not driven solely by monetary payments. The “real value” to
an individual may include some notion of fairness, pride, etc. Once we
incorporate this into the framework, we can see why in these experiemnts,
exteme solutions (which sometomes are the only stable solutions when
viewed entirely in terms of monetary values) is not the outcome in these
experiments.

In the following ultimatum game, we can perhaps better understand why
participants tend to think beyond monetary rewards.
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Another network exchange game: the so-called

“Ultimatum Game”

We again are considering how two individuals divide a $. But now we have
the following experiment:

@ One person (say A) is given one $ and is told to propose a division of
it to person B.

@ Person B is then given the option of accepting the share offered or
rejecting the offer.

o If B accepts, the game is over with the division as given by A. If B
refuses then each person gets nothing.
Aside: This is a little like the "I cut-you choose 2-person cake cutting
algorithm” which insure “fairness”.

This is a one-shot experiment between people who do not know each
other. What do we expect to happen?
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Another network exchange game: the so-called

“Ultimatum Game”

We again are considering how two individuals divide a $. But now we have
the following experiment:

@ One person (say A) is given one $ and is told to propose a division of
it to person B.

@ Person B is then given the option of accepting the share offered or
rejecting the offer.

o If B accepts, the game is over with the division as given by A. If B
refuses then each person gets nothing.
Aside: This is a little like the "I cut-you choose 2-person cake cutting
algorithm” which insure “fairness”.

This is a one-shot experiment between people who do not know each
other. What do we expect to happen?

Now in strictly monetary terms, person B should accept any offer (even a
$.01). But this is not what happens in experiments. In experiments, A
tends to offer B about one third of the $. Why?
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Not all stable outcomes are “natural”

As we stated, there can be many stable outcomes for a given network. But
some do not appear as natural as others and, in particular, stable
outcomes can but “extreme solutions” that do not represent what we

beleive to be more realistic. Which of the following stable outcomes might
be more expected “in practice”?

12 12 12 12

/ /l ‘\ \\
/ / \
outside outside outside outside

option option option option
0 172 172 0

\

113 213 213 113
(A——E—Cr—®

outside outside outside outside
option option option option
0 13 0

114 34 34 114
()

outside outside outside outside
option option option option
0 14 0
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Balanced outcomes

It turns out that the %,% split between A and B and also betweeen C and
D is what happens more in experiments and can be comsidered “more

natural” in the following way.

The equal % split amongst all parties does not at all reflects the relative
much better bargaining position of B and C. In contrast, the %,% split
between A and B and also betweeen C and D, seems to be giving B and
D too much power given what we have been saying about how humans

behave when taking say fairness, pride, etc into account.

Can we give a mathematical explanation for why the %, % split should be a
likely outcome?

It turns out that the %, % split is the Nash Bargaining solution which we
argued seemed like a fair way to divide up surpluses.
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What is a balanced outcome?

Balanced outcomes

An outcome (M, v) is balanced if for every edge in the matching M, the
split of money {v,} is the Nash bargaining solution for each node x, given
the (best) outside options for each node.

Fact: For every exchange network, there is a balanced network.
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Balanced and unbalanced outcomes for the four
node path

12 12 12
/ / \ \

/ / \ \

/ / \ \
outside outside outside outside
option option option option

0 12 12 0
(a) Not a balanced outcome
13 2/3 2/3 13
/ / \ \

/ / \ \

/ / \ \
outside outside outside outside
option option option option

0 113 113 0
(b) A balanced outcome
1/4 3/4 3/4 1/4
/ / \ \

/ / \ \

/ / \ \
outside outside outside outside
option option option

0 1/4

option

1/4 0
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Checking that the balanced outcome is the Nash
Bargaining solution

Let's check that the balanced outcome is indeed the Nash Bargaining
solution.

1/3 2/3 2/3 13
/ / \ \
’ ’
/ / \ \
outside outside outside outside
option option option option
0 13 13 0

Why is the best outside option for B (and similarly for C) equal to 3?
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Checking that the balanced outcome is the Nash
Bargaining solution

Let's check that the balanced outcome is indeed the Nash Bargaining
solution.

1/3 2/3 2/3 13
/ / \ \
’ ’
/ / \ \
outside outside outside outside
option option option option
0 13 13 0

Why is the best outside option for B (and similarly for C) equal to 1?

B has the option of offering % (or maybe % + € for some small € > 0) to
entice C to leave its current match with D. Of course, A has nomoutside
option so we we can calculate that surplus for the matched edge (A, B) is

s=1—o0p—o0= % and hence the Nash bargaining solution would be:
ova=oa+5=0+3=
ovg=og+5=3+3=3
which is consistent with the balanced outcome.

“\th—l
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New topic: The stable marriage problem

Note: This material is not in the text. | am not sure if this can viewed as
part of social choice theory, but | know it has been covered in CSC304.

However, | do think it fits in nicely with the focus of CSC303. Namely, as
in our last topic we will be concerned with graph matching but now
restricted to bipartite graphs. And we will also be led to another important
example of a “coalition equilibrium”.

The stable marriage problem and the Gale Shapley algorithm, is interesting
for a number of reasons.

@ Mainly because it has practical application, and it is stil actively
considered due to variants arising from applications.

@ The algorithm is elegant and the analysis is interesting.
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End of Week 10

We ended at slide 40, just beginning to introduce the stable marriage
problem and the Gale Shapley Deferred Acceptance algorithm. | am
leaving in the remainder of my slides. | will soon augment them and the
post slides for Week 11 in advance.
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Preferences vs utilities

In game theory and mechanism design, individual valuations are numeric
utilites (e.g., money). In contrast in social choice theory (e.g., forming
consensus as in voting) and in the stable marriage problem, individuals
have preferences (that do not necessarily get translated in numeric values).

A preference over a set A of alternatives (e.g., candidates) is a total or
partial order (also called an ordering or ranking) of the alternatives.

In many cases, we may have a hard time placing values on alternatives but
we may surely know that we like alternative a; relative to alternative as.

Suppose A = {a1,a1,...,an}. Consider an individual (say k). We will use
>k (or <) to denote k's preference between alternatives when k has such
a preference. That is, a; > aj (alternatively aj <k a;) if k definitely
prefers a; to a;.
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Total orders vs partial orders

Of course, sometimes we are not so sure about our preferences. We can
use a; = a; to indicate that k likes a; at least as much as a;. And it is
often the case that there are two alternatives for which we have no relative
opinion.

A total order > on a set of alternatives A = {aj, ap, ..., an} satisfies the
following:

@ - is transitive; that is, a; = aj and a; > a, implies a; > ay.
@ There is a permutation 7 such that a, (1) >« ax(1)--- >k an(n)-
A partial order - satisfies the following:

@ >~ is transitive

@ There is a way to extend the order (i.e., to all a;, aj such that neither
aj > aj nor aj > a; is given) so as to make > into a total order.
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Two-sided matching markets
In a two-sided matching market, we are interested in a matching in a
graph/network where :

@ There are two sets of agents X and Y.
Note: X and Y can be the same set in some applications. This was
the situation in the study of network exchanges under the 1-exchange
rule assumption. It is also the situation in a kidney exchange market.

@ The goal is to match agents in X to agents in Y to satisfy some
objective.

@ Agents have the ability to leave unfavourable matches so as to obtain
a more favourable match.

Note: As we remarked in our discussion of network exchanges, we are
generally interested in b matchings in many applications where say agents
(and in the biprtite case, maybe only agents on one side of the graph) can
be involved in up to b edges. But for now, and in keeping with the
terminology of a marriage, let us restrict our attention to the standard

definition of a matching.
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The bipartite case and the stable marriage problem
In the stable marriage problem, we are interested in matchings in a
bipartite graph G = (V, E) where V = X U Y. Furthermore, we assume
that every agent X has a total preference order over Y and every Y has a
total preference order over X. This total order assumption, and the
restriction to matchingis and not b-matchings, can be eliminated (say for
the basic Gale-Shapley stable marriage algorithm) but they can present
issues in some applications.

Applications:

@ Matching employess to specific positions (or tasks). In particular,
match medical schooll graduates to specific residence positions.

@ Matching Men and Women in marriages. This is the classical
terminology used and we will stay with that terminology which at least
motivates the assumption of a matching rather than a b-matching.

Aside: Arguably the most important application of the Gale-Shapley
algorithm for the stable marriage problem (and variants of that problem

and algorithm) is in matching doctors to residency positions at hospitals.
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Stable marriages

First some notation:

Let the set of men be M (with m € M) and let W be the set of women
(with w € W). For simplicity, we will assume |M| = |W/|.

Let 1 denote a matching; that is, p(m) is the woman matched to m and
p~1(w) is the man matched to w. Abusing notation, we will just use

w: M — W as a 1-1 mapping between men and women.

Similar to the issue of stability in the network exchange process, the most
basic objective is to find a maximum (in this case perfect since we assume
M| = |W|) matching between M and W that is stable in the following
sense:

A stable matching in the stable matching problem

. A matching p is unstable if there exists an unstable (also called
blocking) pair (m,w) such that m prefers w to his current match p(m)
and w prefers m to her current match p(w). In this case, m and w will
leave their current matches to be with each other. A match is stable if it
contains no unstable (blocking) pairs.
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Some examples of stable and unstable mathces

We have to check for the presense or absense of a blocking pair; that is, a
pair (m, w) such that w >p, u(m) and m >, p(w).

Here are a set of preferences for the men and women

Man 1st 2nd | 3rd Woman | 1st | 2nd | 3rd
X a b c a y X z
y b a c b X y z
z a b c c X y z

Which of the following matchings are stable/unstable?

@ Matching 1: a—x,b—y,c—z

Stable?
o Matching2: a—y,b—x,c—2z Stable?
@ Matching 3: a—z,b—y,c—x Stable?
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We have to check for the presense or absense of a blocking pair; that is, a
pair (m, w) such that w >p, u(m) and m >, p(w).

Here are a set of preferences for the men and women

Man 1st 2nd | 3rd Woman | 1st | 2nd | 3rd
X a b c a y X z
y b a c b X y z
z a b c c X y z

Which of the following matchings are stable/unstable?

@ Matching 1: a—x,b—y,c—z

Stable?
o Matching2: a—y,b—x,c—2z Stable?
@ Matching 3: a—z,b—y,c—x Stable?

In Matching 3, we can see that (b, x) is a blocking pair. What other
blocking pairs exist?
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Stability as an equilibrium

Stability is an equilibrium concept. But like stability in the network
exchange setting, and unlike Nash equilibiruam, it takes two people to
conspire to deviate. In the network exchange setting that was built into
the experiments.

This is a form of coalitional stability

In some versions of the stable matching problem, we allow individuals to
remain “unmarried”. This can be incorporated into the problem
formulation by letting each man m (respectively, each woman) to put
himself (respectively, herself) into his (resp, her) preference ordering >,
(resp. >w).

For example, if we have my >, mo >, w >, ms... >, m, then w would
rather be by herself than with anyone other than m; and m.
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Do stable matchings always exist and, if so, how do

we find them?

Aside: When there are n men and women, there are n! possible matchings
so we certainly cannot exhaustively check all matchings. And even if we
could for a given instance of the problem (ie.e, a set of preferences for
each man and woman) that would not determine if there is always a stable
matching.

Fortunately, we have the Gale Shapley algorithm which constructively and
efficiently shows how to compute a stable matching for any instance.

There are two standard analogous varieties of the Gale Shapley algorithm:

@ Man proposes, woman disposess. Also called Male Proposing
Deferred Acceptacne (MPDA)

© Female proposes, man disposes. Also called Female Proposing
Deferred Acceptance (FPDA)

The FPDA and MPDA are completely analogous But in general, they will

produce different matchings.
49 /49



The FPDA algorithm

@ The algorithm will proceed in rounds, at the end of each round, each
women will have a set P,, of people to whom they have previously
proposed. There will also be a set C of current engagements. Both
sets are initally empty.

@ In each round t, every unengaged woman w proposes to the man
m ¢ P, that is highest in her preference ranking >,,. If every woman
is engaged at the start of a round, the algorithm terminates.

@ After a round of female proposals, every man m will consider his set
Ppm.¢ of current proposals (if any).

We consider what each man m does in this round.
Q P+ =, then m does not do anything in this round.
So now consider the case that Py, ; # @ ,and let w* be the most
prefered woman in Py, ;. Thatis, w* >, w’ for every w’ € Pp, ;.
@ If mis not currently engaged, he will become engaged to w* and C is
updated accordingly. .
© If mis currently engaged to w (i.e., (m, w) € C), then he will break

this engagement if and only if w* >, w and will then become engaged
to w*. In this case, C := C\ {(m,w)} U {(m,w*)}
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