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Course Organization

Course Instructor: Allan Borodin

Office phone: 416 978 6416

Office: (Sandford Fleming) SF 2303B

Course-related email: instr303s19@cs.toronto.edu

Other email: bor@cs.toronto.edu

Teaching Assistant: Tyrone Strangway
Email : TAs303s19@cs.toronto.edu
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Communications and Course Materials
Communication:

1 Course Web page: source of first resort
http://www.cs.toronto.edu/∼csc303s19/

2 Discussion board: piazza for questions of general interest
http://piazza.com/utoronto.ca/winter2019/csc303s19
Instructor and TA will monitor and respond as appropriate. I welcome
(encourage) questions and responses to questions in class which leads
to less confusion especially with regard to technical questions.

3 Office hours: TBA

Course Materials: CSC303 is based on the text by Easley and
Kleinberg, previous parts of (now discontinued) CSC200 by Borodin
and Craig Boutilier, and the current course developed by Ashton
Anderson at UTSC.

1 Text: D. Easley, J. Kleinberg. Networks, Crowds, and Markets:
Reasoning About a Highly Connected World. Cambridge University
Press, 2010. Online version available at
http://www.cs.cornell.edu/home/kleinber/networks-book/

2 We will supplement with some topics and material not in the text.
3 Additional materials will be linked to course web page.

3 / 56



Lecture/Tutorial/Course Structure

Times for lectures and tutorials
I Usually, Lectures Monday and Wednesday; Tutorials on Fridays.
I However, if necessary, we will sometimes rearrange schedule between

tutorial time and lecture times.

More generally
I Readings posted on web site usually one or two weeks in advance.
I Read assigned sections prior to class, come prepared to discuss!
I Lecture slides (some detailed, some less so) will usually be posted one

or two days after the class.
But the slides are not a reason to miss lectures or tutorials; the
class discussions are part of the course and you are responsible
(ie can be tested) for information that occurs in lectures and
tutorials.

I The term test is tentatively scheduled for Friday, March 1.
I You should be comfortable with very basic probability and discrete

math concepts (some basic graph theory) as would be covered in the
prerequisites. I have posted a probability primer on the course web
page.
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Grading scheme and schedule

Grading Scheme

1 Assignments: Two, each worth 15% = 30%
Tentative due dates: February 15 and March 29

2 One critical review of a current article: Worth 10%
Tentative due date: March 15

3 Term Test: Worth 20%
Tentative date: March 1

4 Final Exam: Worth 40%
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Policies
1 No late submissions accepted. But I do make an alternative grading

to accomodate medical and other legitimate issues (e.g. a University
sponsored event).

2 All requests for remarking must be submitted on Markus within one
week of work being graded. The only exception is for any calculation
errors in adding up grades.

3 Collaboration and Plagarism: In general, we encourage discussion of
course materials. However, any work submitted must be your own!
Advice: do not take away written notes from discussions about any
work you will be submitting. Any material you obtain from a
published source must be properly cited.

4 The “20%” rule: For any question or subquestion on any quiz, test,
assignment or the final exam, you will recieve 20% of the assigned
question credit if you state “I do not know how to answer this
question”. That is, it is important to know what you do not know. If
you have partial ideas then provide them; but no credit will be given
for answers that do not show any understanding of the question.
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What’s in a name? Graphs or Networks?
Networks are graphs with (for some people) different terminology where
graphs have vertices connected by edges, and networks have nodes
connected by links. I do not worry about this “convention”, to the extent
it is really a convention.

Here is one explanation for the different terminology: We use networks to
for settings where we think of links transmitting or transporting “things”
(e.g. information, physical objects).

Many different types of networks

Social networks

Information networks

Transportation networks

Communication networks

Biological networks (e.g., protein interactions)

Neural networks
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Visualizing Networks

nodes: entities (people, countries, companies, organizations, . . . )

links (may be directed or weighted): relationship between entities
I friendship, classmates, did business together, viewed the same web

pages, . . .
I membership in a club, class, political party, . . .

Figure: Initial internet: Dec. 1970 [E&K, Ch.2]
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December 1970 internet visualized geographically
[Heart et al 1978]
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The first social network analysis
In his 1934 book Who Shall Survive: A New Approach to the Problem of
Human Interrelations, Jacob Moreno (Romanian-US psychiatrist)
introduced sociograms and used these graphs/networks to understand
relationships. In one study (that was repeated to test changes) he asked
each child in varous elementary grades at a public school to choose two
children to sit next to in class. He used this to study inter-gender
relationships (and other relationships). Here boys are depicted by triangles
and girls by circles.

Moreno’s sociograms, 1934

Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

1st grade 4th grade 8th grade
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A closer look at grade 1 in Moreno sociogramEVOLUTION OF GROUPS

Class Structure, 1st Grade

21 hoys and 14 girls. Unchosen, 18, GO, PR, CA, SH, FI, RS, DC, GA.
SM. BB, TS, VVI, KI. TA, HP, SA, SR, KR ; Pairs, 3, EI-GO. WO-CE,
CE-HN; Stars, 5, CE, WO, HC, FA, MB; Chains, 0; Triangles, 0;

Inter-sexual Attractions. 22.

Figure: 21 boys, 14 girls. Directed graph. Every node has out-degree 2. 18
unchosen having in-degree 0. Note also that there are some “stars” with high
in-degree. 11 / 56



A closer look at grade 4 in Moreno sociogram
EVOLUTION OF GROUPS

Class Structure, 4th Grade

17 boys and 16 girls. Unchosen, 6, BP, RY, EL, FA, SI, CF; Pairs, 17,

GR-SI, GR-LI, MR-LN, LN-SM, YL-KN, AB-BA, BA-BR, KI-KN,
AB-PN, FC-VN, BU-CV, LN-WI, LN-MR, BR-MC, BR-RS, WI-MR,
MC-RS; Stars, 2, LN, VN ; Chains, 0; Triangles, 2, BR-RS-MC; LN-

WI-MR ; Intcr-scxual Attractions, 1.

38

Figure: 17 boys, 16 girls. Directed graph with 6 unchosen having in-degree 0.
Moreno depicted his graphs to emphasize inter-gender relations. Note only one
edge from a boy to a girl. 12 / 56



A closer look at grade 8 in Moreno sociogramEVOLUTION OF GROUPS

Class Structure, 8th Grade

22 boys and 22 girls. Unchosen, 12, KP, GL, SN, LI, SL, MT, KE, SO,

ZL, KI, HA, RA; Pairs, 13, BT-MR, SM-SK, GI-ZF, HF-MM, MM-YD,
HF-YD, ZF-PR, BT-KR, GL-PL, SE-HR, HS-OI, BA-ML, FN-LR,
Stars, 2, SM, PL; Chains, 0; Triangle, 1, HF-MM-YD; Inter-sexual

Attractions, 8.

42

Figure: 22 boys, 22 girls. Directed graph with 12 unchosen having in-degree 0.
Some increase in inter-gender relations. Double stars and circles above line
indicte different “groups”.

G
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Todays agenda

More network examples. Note: Any numbers being stated may not be
very currrent. Social and information networks are usually very
dynamic and the numbers change rapidly.

What is this course about?

Basic concepts in graph theory

14 / 56



Romantic Relationships [Bearman et al, 2004]

Figure: Dating network in US high school over 18 months.

Illustrates common structural properties of many networks

What predictions could you use this for?
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Kidney Exchange: Swap Chains
Waiting list for kidney donation: approximately 100K in US and
growing (i.e., new patients added but many deaths while waiting).
The wait for a deceased donor could be 5 years and longer.
Live kidney donations becoming somewhat more common in N.A. to
get around waiting list problems: requires donor-recipient pairs
Exchange: supports willing pairs who are incompatible

1 allows multiway-exchange
2 supported by sophisticated algorithms to find matches

But what if someone renegs? ⇒ Cyclyes require simultaneous
transplantation; Paths require altruisitic an donor!

Figure: Dartmouth-Hitchcock Medical Center, NH, 2010
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Karate club splits

Karate Club social network, Zachary 1977

3.6. ADVANCED MATERIAL: BETWEENNESS MEASURES AND GRAPH PARTITIONING71
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Figure 3.13: A karate club studied by Wayne Zachary [421] — a dispute during the course
of the study caused it to split into two clubs. Could the boundaries of the two clubs be
predicted from the network structure?

A second example, in Figure 3.13, is a picture of the social network of a karate club studied

by Wayne Zachary [421] and discussed in Chapter 1: a dispute between the club president

(node 34) and the instructor (node 1) led the club to split into two. Figure 3.13 shows the

network structure, with the membership in the two clubs after the division indicated by the

shaded and unshaded nodes. Now, a natural question is whether the structure itself contains

enough information to predict the fault line. In other words, did the split occur along a weak

interface between two densely connected regions? Unlike the network in Figure 3.12, or in

some of the earlier examples in the chapter, the two conflicting groups here are still heavily

interconnected. So to identify the division in this case, we need to look for more subtle

signals in the way in which edges between the groups e↵ectively occur at lower “density”

than edges within the groups. We will see that this is in fact possible, both for the definitions

we consider here as well as other definitions.

A. A Method for Graph Partitioning

Many di↵erent approaches have been developed for the problem of graph partitioning, and

for networks with clear divisions into tightly-knit regions, there is often a wide range of

methods that will prove to be e↵ective. While these methods can di↵er considerably in their

specifics, it is useful to identify the di↵erent general styles that motivate their designs.

Figure: Karate club splis into two clubs
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2004 Political blogsphere

Figure 1: Community structure of political blogs (expanded set), shown using utilizing a GEM
layout [11] in the GUESS[3] visualization and analysis tool. The colors reflect political orientation,
red for conservative, and blue for liberal. Orange links go from liberal to conservative, and purple
ones from conservative to liberal. The size of each blog reflects the number of other blogs that link
to it.

longer existed, or had moved to a different location. When looking at the front page of a blog we did
not make a distinction between blog references made in blogrolls (blogroll links) from those made
in posts (post citations). This had the disadvantage of not differentiating between blogs that were
actively mentioned in a post on that day, from blogroll links that remain static over many weeks [10].
Since posts usually contain sparse references to other blogs, and blogrolls usually contain dozens of
blogs, we assumed that the network obtained by crawling the front page of each blog would strongly
reflect blogroll links. 479 blogs had blogrolls through blogrolling.com, while many others simply
maintained a list of links to their favorite blogs. We did not include blogrolls placed on a secondary
page.

We constructed a citation network by identifying whether a URL present on the page of one blog
references another political blog. We called a link found anywhere on a blog’s page, a “page link” to
distinguish it from a “post citation”, a link to another blog that occurs strictly within a post. Figure 1
shows the unmistakable division between the liberal and conservative political (blogo)spheres. In
fact, 91% of the links originating within either the conservative or liberal communities stay within
that community. An effect that may not be as apparent from the visualization is that even though
we started with a balanced set of blogs, conservative blogs show a greater tendency to link. 84%
of conservative blogs link to at least one other blog, and 82% receive a link. In contrast, 74% of
liberal blogs link to another blog, while only 67% are linked to by another blog. So overall, we see a
slightly higher tendency for conservative blogs to link. Liberal blogs linked to 13.6 blogs on average,
while conservative blogs linked to an average of 15.1, and this difference is almost entirely due to
the higher proportion of liberal blogs with no links at all.

Although liberal blogs may not link as generously on average, the most popular liberal blogs,
Daily Kos and Eschaton (atrios.blogspot.com), had 338 and 264 links from our single-day snapshot

4
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Email communication

HP Research email communication network (436 employees)
Figure: Email communication amongst 436 employees of Hewlett Packard
Research Lab, superimposed on the Lab organizational hierarchy
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Protein-protein interaction network

Metabolic networks
Nodes: Metabolites and enzymes 

Edges: Chemical reactions

Protein-Protein Interaction Networks
Nodes: Proteins

Edges: ‘physical’ interactions
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The web as a directed graph of hyperlinks

Figure: A schematic picture of the bow tie structure of the 1999 Web. Although
the numbers are outdated, the structure has persisted. [Fig 13.7, EK textbook]
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Why study networks

Clearly there are complex systems and networks that we are in
contact with daily.

The population of the world can be thought of as social network of
approximately 7 billion people. AS OF 2018, The people on Facebook
are a subnetwork of approximatley 2.27 billion active monthly users of
which 1.5 billion are daily users.

The language of networks and graph analysis provides a common
language and framework to study systems in diverse disciplines.
Moreover, networks relating to diverse disciplines may sometimes
share common features and analysis.

The availablity and ability to process massive amounts of data, makes
computational aspects of networks essential.

The current impact of social and information networks will almost
surely continue to escalate (even if Facebook and other social
networks are under increasing presure to protect privacy and eliminate
“bad actors”).
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What can one accomplish by studying networks

We use networks as a model of real systems. As such, we always have to
keep in mind the goals of any model which neceessarily simplifies things to
make analysis possible.
In studying social and information networks we can hopefully

Discover interesting phenomena and statistical properties of the
network and the system it attempts to model.

Formulate hypotheses as to say how networks form and evolve over
time

Predict behaviour for the system being modeled.
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End of Monday, January 7 Lecture

We ended the lecture on slide 24.
Todays agenda will be to review basic graph theory terminology and a few
basic facts. We will do so in terms of some artificial small networks as well
as some actual networks from the last lecture plus some new ones.
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And how do we accomplish stated goals
Much of what people do in this field is empirical analysis. We formulate
our network model, hypotheses and predictions and then compare against
real world (or sometimes synthetically generated) data.

Sometimes we can theoretically analyze properties of a network and then
again compare to real or synthetic data.

What are the challenges?

Real world daya is sometimes hard to obtain. For example, search
engine companys treat much of what they do as proprietary.
Many graph theory problems are known to be computationally
difficult (i.e., NP hard) and given the size of many networks, results
can often only be approximated and even then this may require a
significant amount of specialized heuristics and approaches to help
overcome (to some extent) computational limitations.
And we are always faced with the difficulty of bridging the
simplification of a model with that of the many real world details that
are lost in the abstraction.
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Network concepts used in this course

Two main mathematical subjects of primary relevance to this course:
1 graph theoretic concepts
2 probability

In motivating the course, we have already seen a number of examples
of networks and hinted at some basic graph-theoretic concepts. We
will now continue that discussion (i.e. material from Chapter 2 of the
text) and for part of the next lecture before moving on to Chapter 3.

We use the previous examples and some new ones to illustrate the
basic graph concepts and terminology we will be using.
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Graphs: come in two varieties

1 undirected graphs (graph usually means an undirected graph.)

a

b c

d e

f g

2 directed graphs (often called di-graphs).

a

b c

d e

f g
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Visualizing Networks as Graphs

nodes: entities (people, countries, companies, organizations, . . . )

links (may be directed or weighted): relationship between entities
I friendship, classmates, did business together, viewed the same web

pages, . . .
I membership in a club, class, political party, . . .

Figure: Internet: Dec. 1970 [E&K, Ch.2]
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Adjacency matrix for graph induced by eastern sites
in alphabetical order) in 1970 internet graph:
another way to represent a graph

A(G ) =




0 0 0 1 1 0 0
0 1 0 0 1 0
1 1 0 0 0 0
0 0 1 0 0 1
1 0 0 1 1 0




This node induced subgraph is a 6 node regular graph of degree 2. It
is a simple graph in that there are no self-loops or multiple edges.

Note that the adjacency matrix of an (undirected) simple graph is a
symmetric matrix (i.e. Ai ,j = Aj ,i ) with {0,1} entries.

To specify distances, we would need to give weights to the edges to
represent the distances. (As you will see, I will use bot edges and
links as terminology.)
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Kidney Exchange: Swap Cycles

Live kidney donation common in N.A. to get around waiting list
problems: donor-recipient pairs are nodes and links are directed.
Exchange: supports willing pairs who are incompatible

1 allows multiway-exchange
2 supported by sophisticated algorithms to find matches

But what if someone reneges? ⇒ require simultaneous
transplantation! Non-cyclic paths can be started by an altruistic
donor!

Figure: Dartmouth-Hitchcock Medical Center, NH, 2010
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Recall: undirected graphs vs. directed graphs

a

b c

d e

f g

a

b c

d e

f g
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More definitions and terminology

In order to refer to the nodes and edges of a graph, we define graph
G = (V ,E ), where

I V is the set of nodes (often called vertices)
I E is the set of edges (sometimes called links or arcs)

Undirected graph: an edge (u, v) is an unordered pair of nodes.

Directed graph: an edge (u, v) is an ordered pair of nodes 〈u, v〉.
I However, we usually know when we have a directed graph and just

write (u, v).
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Basic definitions continued

First start with undirected graphs G = (V,E).

A path between two nodes, say u and v is a sequence of nodes, say
u1, u2, . . . , uk , where for every 1 ≤ i ≤ k − 1,

I the pair (ui , ui+1) is an edge in E,
I u = u1 and v = uk

The length of a path is the number of edges on that path.

A graph is a connected if there is a path between every pair of nodes.
For example, the following graph is connected.

a

b c

d e

f g
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Romantic Relationships [Bearman et al, 2004]

Figure: Dating network in US high school over 18 months.

Illustrates common structural properties of many networks

What predictions could you use this for?
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More basic definitions

Observation

Many connected components including one “giant component”

We will use this same graph to illustrate some other basic concepts.

A cycle is path u1, u2, . . . , uk such that u1 = uk ; that is, the path
starts and ends at the same node.
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Simple paths and simple cycles
Usually only consider simple paths and simple cycles: no repeated
nodes (other than the start and end nodes in a simple cycle.)

Observation

There is one big simple cycle and (as far as I can see) three small
simple cycles in the “giant component”.

Only one other connected component has a cycle: a triangle having
three nodes. Note: this graph is “almost” bipartite and “almost”
acyclic.
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Example of an acyclic bipartite graph94 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

John 

Doerr
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General 

Electric

Al Gore

Shirley 

Tilghman

Susan 

Hockfield

Arthur 

Levinson

Andrea 

Jung

Steve 

Jobs

Figure 4.4: One type of affiliation network that has been widely studied is the memberships
of people on corporate boards of directors [301]. A very small portion of this network (as of
mid-2009) is shown here. The structural pattern of memberships can reveal subtleties in the
interactions among both the board members and the companies.

A very simple example of such a graph is depicted in Figure 4.3, showing two people (Anna

and Daniel) and two foci (working for a literacy tutoring organization, and belonging to a

karate club). The graph indicates that Anna participates in both of the foci, while Daniel

participates in only one.

We will refer to such a graph as an affiliation network, since it represents the affiliation of

people (drawn on the left) with foci (drawn on the right) [78, 323]. More generally, affiliation

networks are examples of a class of graphs called bipartite graphs. We say that a graph is

bipartite if its nodes can be divided into two sets in such a way that every edge connects a

node in one set to a node in the other set. (In other words, there are no edges joining a pair

of nodes that belong to the same set; all edges go between the two sets.) Bipartite graphs

are very useful for representing data in which the items under study come in two categories,

and we want to understand how the items in one category are associated with the items

in the other. In the case of affiliation networks, the two categories are the people and the

foci, with each edge connecting a person to a focus that he or she participates in. Bipartite

Figure: [E&K, Fig 4.4] One type of affiliation network that has been widely
studied is the memberships of people on corporate boards of directors. A very
small portion of this network (as of mid-2009) is shown here.
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Florentine marriages and shortest paths
Medici connected to more families, but not by much
More importantly: lie between most pairs of families

I shortest paths between two families: coordination, communication
I Medici lie on 52% of all shortest paths; Guadagni 25%; Strozzi 10%

Figure: see [Jackson, Ch 1]
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Breadth first search and path lengths [E&K, Fig 2.8]2.3. DISTANCE AND BREADTH-FIRST SEARCH 33

you

distance 1

distance 2

distance 3

your friends

friends of friends

friends of friends

of friends

all nodes, not already discovered, that have an 

edge to some node in the previous layer

Figure 2.8: Breadth-first search discovers distances to nodes one “layer” at a time; each layer
is built of nodes that have an edge to at least one node in the previous layer.

a path’s length, we can talk about whether two nodes are close together or far apart in a

graph: we define the distance between two nodes in a graph to be the length of the shortest

path between them. For example, the distance between linc and sri is three, though to

believe this you have to first convince yourself that there is no length-1 or length-2 path

between them.

Breadth-First Search. For a graph like the one in Figure 2.3, we can generally figure

out the distance between two nodes by eyeballing the picture; but for graphs that are even

a bit more complicated, we need some kind of a systematic method to determine distances.

The most natural way to do this — and also the most efficient way to calculate distances

for a large network dataset using a computer — is the way you would probably do it if you

Figure: Breadth-first search discovers distances to nodes one layer at a time.
Each layer is built of nodes adjacent to at least one node in the previous layer.
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The Small World Phenomena

The small world phenomena suggests that in a connected social network
any two individuals are likely to be connected (i.e. know each other
indirectly) by a short path.

Later in the course we will study 1967 Milgram’s small world experiment
where he asked random people in Omaha Nebraska to forward a letter to a
specified individual in a suburn of Boston which became the origin of the
idea of six degrees of separation.
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Small Collaboration Worlds

For now let us just consider collaboration networks like that of
mathematicians or actors. For mathematicians (or more generally say
scientists) we co-authorhsip on a published paper. For actors, we can form
a collaboration network where an edge represents actors perfoming in the
same movie. For mathematicians one considers their Erdos number which
is the length of the shortest path ito Paul Erdos. For actors, a popular
notion is ones Bacon number, the shortest path to Kevin Bacon.
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Erdos collaboration graph drawn by Ron Graham
[http:/www.oakland.edu/enp/cgraph.jpg]
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Analogous concepts for directed graphs

We use the same notation for directed graphs, i.e. denoting a
di-graph as G = (V ,E ), where now the edges in E are directed.

Formally, an edge 〈u, v〉 ∈ E is now an ordered pair in contrast to an
undirected edge (u, v) which is unordered pair.

I However, it is usually clear from context if we are discussing undirected
or directed graphs and in both cases most people just write (u, v).

We now have directed paths and directed cycles. Instead of
connected components, we have strongly connected components.

a

b c

d e

f g
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Weighted graphs

We will often consider weighted graphs. Lets consider a (directed or
undirected) graph G = (V ,E ). Example:

a

b c

d e

f g

10

3 7

2 1

12

9

7

8
5

9 7

515

6 8

9

11

I red numbers: edge weights

I blue numbers: vertex weights

We can have a weight w(v) for each node v ∈ V and/or a weight
w(e) for each edge e ∈ E .

For example, in a social network whose nodes represent people, the
weight w(v) of node v might indicate the importance of this person.

The weight w(e) of edge e might reflect the strength of a friendship.
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Edge weighted graphs

When considering edge weighted graphs, we often have edge weights
w(e) = w(u, v) which are non negative (with w(e) = 0 meaning no
edge).

In some cases, weights can be either positive or negative. A positive
(resp. negative) weight reflects the intensity of connection (resp.
repulsion) between two nodes (with w(e) = 0 being a neutral
relation).

Sometimes (as in Chapter 3) we will only have a qualitative (rather
than quantitative) weight, to reflect a strong or weak relation (tie).

Analogous to shortest paths in an unweighted graph, we often wish to
compute least cost paths, where the cost of a path is the sum of
weights of edges in the path.
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Detecting the romantic relation in Facebook

As previously mentioned, there is an interesting paper by Backstrom
and Kleinberg (http://arxiv.org/abs/1310.6753) on detecting “the”
romantic relation in a subgraph of facebook users who specify that
they are in such a relationship.

Backstrom anbd Kleinberg construct two datasets of randomly
sampled Facebook users: (i) an extended data set consisting of 1.3
million users declaring a spouse or relationship partner, each with
between 50 and 2000 friends and (ii) a smaller data set extracted
from neighbourhoods of the above data set (used for the more
computationally demanding experimental studies).

The main experimental results are nearly identical for both data sets.
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Detecting the romantic relation (continued)

They consider various graph strucutral features of edges, including
1 the embeddedness of an edge (A,B) which is the number of mutual

friends of A and B.
2 various forms of a new dispersion measure of an edge (A,B) where high

dispersion intuitively means that the mutual neighbours of A and B are
not “well-connected” to each other (in the graph without A and B).

3 One definition of dispersion given in the paper is the number of pairs
(s, t) of mutual friends of u and v such that (s, t) /∈ E and s, t have no
common neighbours except for u and v .

They also consider various “interaction features” including

1 the number of photos in which both A and B appear.
2 the number of profile views within the last 90 days.
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Embeddedness and disperison example from paper

Figure 1. A network neighborhood, contributed by a Facebook em-
ployee (drawn as the circled node at the center), and displayed as an
example in the work of Marlow et al [21]. Two clear clusters with highly
embedded links are visible at the top and right of the diagram; in the
lower left of the diagram are smaller, sparser clusters together with a
node that bridges between these clusters.

gests a natural predictor for identifying a user u’s partner: se-
lect the link from u of maximum embeddedness, and propose
the other end v of this link as u’s partner.

We will evaluate this embeddedness-based predictor, and oth-
ers, according to their performance: the fraction of instances
on which they correctly identify the partner. Under this mea-
sure, embeddedness achieves a performance of 24.7% —
which both provides evidence about the power of structural
information for this task, but also offers a baseline that other
approaches can potentially exceed.

Next, we show that it is possible to achieve more than twice
the performance of this embeddedness baseline using our new
network measure, dispersion. In addition to this relative im-
provement, the performance of our dispersion measure is very
high in an absolute sense — for example, on married users in
our sample, the friend who scores highest under this disper-
sion measure is the user’s spouse over 60% of the time. Since
each user in our sample has at least 50 friends, this perfor-
mance is more than 30 times higher than random guessing,
which would produce a performance of at most 2%.

Theoretical Basis for Dispersion.
We motivate the dispersion measure by first highlighting a
basic limitation of embeddedness as a predictor, drawing on
the theory of social foci [10]. Many individuals have large
clusters of friends corresponding to well-defined foci of in-
teraction in their lives, such as their cluster of co-workers or
the cluster of people with whom they attended college. Since
many people within these clusters know each other, the clus-
ters contain links of very high embeddedness, even though
they do not necessarily correspond to particularly strong ties.
In contrast, the links to a person’s relationship partner or other
closest friends may have lower embeddedness, but they will
often involve mutual neighbors from several different foci, re-
flecting the fact that the social orbits of these close friends are

b

c f

d

h

k
j

e

a

u

i

g

Figure 2. A synthetic example network neighborhood for a user u; the
links from u to b, c, and f all have embeddedness 5 (the highest value in
this neighborhood), whereas the link from u to h has an embeddedness
of 4. On the other hand, nodes u and h are the unique pair of interme-
diaries from the nodes c and f to the nodes j and k; the u-h link has
greater dispersion than the links from u to b, c, and f .

not bounded within any one focus — consider, for example, a
husband who knows several of his wife’s co-workers, family
members, and former classmates, even though these people
belong to different foci and do not know each other.

Thus, instead of embeddedness, we propose that the link be-
tween an individual u and his or her partner v should display a
‘dispersed’ structure: the mutual neighbors of u and v are not
well-connected to one another, and hence u and v act jointly
as the only intermediaries between these different parts of the
network. (See Figure 2 for an illustration.)

We now formulate a sequence of definitions that captures this
idea of dispersion. To begin, we take the subgraph Gu in-
duced on u and all neighbors of u, and for a node v in Gu we
define Cuv to be the set of common neighbors of u and v. To
express the idea that pairs of nodes in Cuv should be far apart
in Gu when we do not consider the two-step paths through
u and v themselves, we define the absolute dispersion of the
u-v link, disp(u, v), to be the sum of all pairwise distances
between nodes in Cuv , as measured in Gu − {u, v}; that is,

disp(u, v) =
∑

s,t∈Cuv

dv(s, t),

where dv is a distance function on the nodes of Cuv . The
function dv need not be the standard graph-theoretic distance;
different choices of dv will give rise to different measures
of absolute dispersion. As we discuss in more detail below,
among a large class of possible distance functions, we ulti-
mately find the best performance when we define dv(s, t) to
be the function equal to 1 when s and t are not directly linked
and also have no common neighbors in Gu other than u and
v, and equal to 0 otherwise. For the present discussion, we
will use this distance function as the basis for our measures
of dispersion; below we consider the effect of alternative dis-
tance functions. For example, in Figure 2, disp(u, h) = 4 un-
der this definition and distance function, since there are four
pairs of nodes in Cuh that are not directly linked and also
have no neighbors in common in Gu − {u, h}. In contrast,
disp(u, b) = 1 in Figure 2, since a and e form the only pair
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Qualitative results from Backstrom and Kleinberg
The goal is to predict (for each user in the data set) which of their
friendship edges is the romantic relation. Note that each user has
between 50 and 2000 friends and assuming say a median of 200 users,
a random guess would have prediction accuracy of 1/200 = .5%

Various disperson measures do better than the embeddedness measure
in its ability to predict the correct romantic relationship. Why would
high dispersion be a better measure than high embeddedness?
By itself, dispersion outperforms various interaction features.
For most measures, performance is better for male users and also
better for data when restricted to marriage as the relationship.
By combining many features, structural and interaction, the best
performance is achieved using machine learning classification
algorithms based on these many features.
There are a number of other interesting observations but for me the
main result is the predictive power provided by graph structure
although there will generally be a limit to what can be learned solely
from graph structure.
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Some experimental results for the fraction of correct
predictions

Recall that we argue that the fraction might be .005 when randomly
choosing an edge. Do you find anything surprising?
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Figure 3. Performance of (disp(u, v) + b)↵/(emb(u, v) + c) as a func-
tion of ↵, when choosing optimal values of b and c.

type embed rec.disp. photo prof.view.
all 0.247 0.506 0.415 0.301
married 0.321 0.607 0.449 0.210
married (fem) 0.296 0.551 0.391 0.202
married (male) 0.347 0.667 0.511 0.220
engaged 0.179 0.446 0.442 0.391
engaged (fem) 0.171 0.399 0.386 0.401
engaged (male) 0.185 0.490 0.495 0.381
relationship 0.132 0.344 0.347 0.441
relationship (fem) 0.139 0.316 0.290 0.467
relationship (male) 0.125 0.369 0.399 0.418

Figure 4. The performance of different measures for identifying spouses
and romantic partners: the numbers in the table give the precision at the
first position — the fraction of instances in which the user ranked first by
the measure is in fact the true partner. Averaged over all instances, re-
cursive dispersion performs approximately twice as well as the standard
notion of embeddedness, and also better overall than measures based on
profile viewing and presence in the same photo.

of non-neighboring nodes in Cub that have no neighbors in
common in Gu � {u, b}.

Strengthenings of Dispersion.
We can learn a function that predicts whether or not v is
the partner of u in terms of the two variables disp(u, v)
and emb(u, v), where the latter denotes the embeddedness
of the u-v link. We find that performance is highest for
functions that are monotonically increasing in disp(u, v) and
monotonically decreasing in emb(u, v): for a fixed value of
disp(u, v), increased embeddedness is in fact a negative pre-
dictor of whether v is the partner of u. A simple combina-
tion of these two quantities that comes within a few percent
of more complicated functional forms can be obtained by the
expression disp(u, v)/emb(u, v), which we term the normal-
ized dispersion norm(u, v) since it normalizes the absolute
dispersion by the embeddedness. Predicting u’s partner to
be the individual v maximizing norm(u, v) gives the correct
answer in 48.0% of all instances.

There are two strengthenings of the normalized dispersion
that lead to increased performance. The first is to rank nodes
by a function of the form (disp(u, v) + b)↵/(emb(u, v) + c).
Searching over choices of ↵, b, and c leads to maximum per-
formance of 50.5% at ↵ = 0.61, b = 0, and c = 5; see
Figure 3. Alternately, one can strengthen performance by ap-

type embed rec.disp. photo prof.view.
all 0.391 0.688 0.528 0.389
married 0.462 0.758 0.561 0.319
married (fem) 0.488 0.764 0.538 0.350
married (male) 0.435 0.751 0.586 0.287
engaged 0.335 0.652 0.553 0.457
engaged (fem) 0.375 0.674 0.536 0.492
engaged (male) 0.296 0.630 0.568 0.424
relationship 0.277 0.572 0.460 0.498
relationship (fem) 0.318 0.600 0.440 0.545
relationship (male) 0.239 0.546 0.479 0.455

Figure 5. The performance of the four measures from Figure 4 when
the goal is to identify the partner or a family member in the first position
of the ranked list. The difference in performance between the genders
has largely vanished, and in some cases is inverted relative to Figure 4.

plying the idea of dispersion recursively — identifying nodes
v for which the u-v link achieves a high normalized disper-
sion based on a set of common neighbors Cuv who, in turn,
also have high normalized dispersion in their links with u. To
carry out this recursive idea, we assign values to the nodes
reflecting the dispersion of their links with u, and then update
these values in terms of the dispersion values associated with
other nodes. Specifically, we initially define xv = 1 for all
neighbors v of u, and then iteratively update each xv to be

P
w2Cuv

x2
w + 2

P
s,t2Cuv

dv(s, t)xsxt

emb(u, v)
.

Note that after the first iteration, xv is 1+2 ·norm(u, v), and
hence ranking nodes by xv after the first iteration is equiv-
alent to ranking nodes by norm(u, v). We find the highest
performance when we rank nodes by the values of xv after
the third iteration. For purposes of later discussion, we will
call this value xv in the third iteration the recursive disper-
sion rec(u, v), and will focus on this as the main examplar
from our family of related dispersion-based measures. (See
the Appendix for further mathematical properties of the re-
cursive dispersion.)

PERFORMANCE OF STRUCTURAL AND INTERACTION
MEASURES
We summarize the performance of our methods in Figure 4.
Looking initially at just the first two columns in the top row of
numbers (‘all’), we have the overall performance of embed-
dedness and recursive dispersion — the fraction of instances
on which the highest-ranked node under these measures is
in fact the partner. As we will see below in the discussion
around Figure 6, recursive dispersion also has higher perfor-
mance than a wide range of other basic structural measures.

We can also compare these structural measures to features de-
rived from a variety of different forms of real-time interaction
between users — including the viewing of profiles, sending of
messages, and co-presence at events. The use of such ‘inter-
action features’ as a comparison baseline is motivated by the
way in which tie strength can be estimated from the volume of
interaction between two people [8, 17]. Within this category
of interaction features, the two that consistently display the
best performance are to rank neighbors of u by the number of

type max. max. all. all. comb.
struct. inter. struct. inter.

all 0.506 0.415 0.531 0.560 0.705
married 0.607 0.449 0.624 0.526 0.716
engaged 0.446 0.442 0.472 0.615 0.708
relationship 0.344 0.441 0.377 0.605 0.682

Figure 10. The performance of methods based on machine learning
that combine sets of features. The first two columns show the highest
performing individual structural and interaction features; the third and
fourth columns show the highest performance of machine learning clas-
sifiers that combine structural and interaction features respectively; and
the fifth column shows the performance of a classifier that combines all
structural and interaction features together.

links over their time on Facebook, and it is also correlated
with the time since the relationship was first reported. (As we
will see later in Figure 11, performance varies as a function
of this latter quantity as well.) To understand whether there
is any effect of a user’s time on site beyond its relation to
these other parameters, we consider a subset of users where
we restrict the neighborhood size to lie between 100 and 150,
and the time since the relationship was reported to lie between
100 and 200 days. Figure 9 shows that for this subset, there is
a weak increase in performance as a function of time on site;
while the effect is not strong, it points to a further source of
enhanced performance for users with mature neighborhoods.

COMBINING FEATURES USING MACHINE LEARNING
Different features may capture different aspects of the user’s
neighborhood, and so it is natural to ask how well we can pre-
dict partners when combining information from many struc-
tural or interaction features via machine learning.

Machine Learning Techniques.
For our machine learning experiments, we compute 48 struc-
tural features and 72 interaction features for all of the nodes
in the neighborhoods from our primary dataset. This gives us
a total of approximately 18.7 million labeled instances with
120 features each — each instance consists of a node v in
a neighborhood Gu, with a positive label indicating v is the
partner of u, or a negative label indicating v is not.

The 48 structural features are the absolute and normalized
dispersion based on six distinct distance functions defined for
Figure 6, as well as the recursive versions using iterations 2
through 7 (recall that the recursive dispersion corresponds to
the third iteration, and is hence included). The 72 interac-
tion features represent a broad range of properties including
the number of photos in which u and v are jointly tagged,
the number of times u has viewed v’s profile over the last 30,
60, and 90 days, the number of messages sent from u to v,
the number of times that u has ‘liked’ v’s content and vice
versa, and measures based on a number of forms of interac-
tion closely related to these.

To improve the performance of the learning algorithms, we
transformed each of the 120 features into 4 different versions:
(a) the raw feature, (b) a normalized version of the feature
with mean 0 and standard deviation 1, (c) a rank version of
the feature (where the individual with highest score on this
feature has rank 1, and other individuals are sorted in ascend-
ing rank order from there), and (d) a rank-normalized version

where we divide (c) by total number of friends a user has.
Thus, the input to our machine learning algorithms has 480
features derived from 120 values per instance. In addition to
the full set of features, we also compute performance using
only the structural features, and only the interaction features.

We performed initial experiments with different machine
learning algorithms and found that gradient tree boosting [13]
out-performed logistic regression, as well as other tree-based
methods. Thus, all of our in-depth analysis is conducted with
this algorithm. In our experiments, we divide the data so that
50% of the users go into a training set and 50% go into a test
set. We perform 12 such divisions into sets A and B; for each
division we train on set A and test on B, and then train on B
and test on A. For each user u, we average over the 12 runs in
which u was a test user to get a final prediction.

Performance of Machine Learning Methods.
We find (Figure 10) that by using boosted decision trees to
combine all of the 48 structural features we analyzed, we can
increase performance from 50.8% to 53.1%. We can use the
same technique to predict relationships based on interaction
features. We find that, overall, interaction features perform
slightly better than structural features (56.0% vs. 53.1%),
though for married users, structural features do much better
(62.4% vs. 52.6%). In addition, on all categories we find that
the combination of interaction features and structural features
significantly outperforms either on its own. When combining
all features with boosted trees, the top predicted friend is the
user’s partner 70.5% of the time.

Machine Learning to Predict Relationship Status.
Earlier we noted that our focus is on the problem of identify-
ing relationship partners for users where we know that they
are in a relationship. It is natural to ask about the connec-
tion to a related but distinct question — estimating whether
an arbitrary user is in a relationship or not.

This latter question is quite a different issue, and it seems
likely to be more challenging and to require a different set of
techniques. To see why, consider a user u who has a link of
high dispersion to a user v. If we know that u is in a rela-
tionship, then v is a good candidate to be the partner. But our
point from the outset has been that methods based on disper-
sion are useful more generally to identify individuals v with
interesting connections to u, in the sense that they have been
introduced into multiple foci that u belongs to. A user u can
and generally will have such friends even when u is not in
a romantic relationship. For example, Figure 5 suggests that
family members often have this property, and this can apply
to users who are not in romantic relationships as well as to
users in such relationships. Thus, simply knowing that u has
links of high dispersion should not necessarily give us much
leverage in estimating whether u is in a relationship.

We now describe some basic machine-learning results that
bear out this intuition. We took approximately 129,000 Face-
book users, sampled uniformly over all users of age at least
20 with between 50 and 2000 friends. 40% of these users
were single, while the remaining were either in a relation-
ship, engaged, or married. We attempt two different predic-
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Graph Anatomy: summary thus far

 

 

Glossary A substantial amount of nomenclature is associated with graphs. Most of 
the terms have straightforward definitions, and, for reference, we consider them in one 
place: here.

adjacent When there is an edge connecting two vertices, we say that the vertices are    
to one another and that the edge is   incident to both vertices. The    degree of a vertex is the 
number of edges incident to it. A  subgraph is a subset of a graph’s edges (and associated 
vertices) that constitutes a graph. Many computational tasks 
involve identifying subgraphs of various types. Of particular 
interest are edges that take us through a sequence of vertices 
in a graph.

 

 Definition. A    path in a graph is a sequence of vertices 
connected by edges. A  simple path is one with no repeated 
vertices. A   cycle is a path with at least one edge whose first 
and last vertices are the same. A  simple cycle is a cycle with 
no repeated edges or vertices (except the requisite repeti-
tion of the first and last vertices). The  length of a path or 
a cycle is its number of edges.

Most often, we work with simple cycles and simple paths and 
drop the simple modifer; when we want to allow repeated ver-
tices, we refer to general paths and cycles. We say that one vertex is   connected to another 
if there exists a path that contains both of them. We use notation like u-v-w-x to repre-
sent a path from u to x and u-v-w-x-u to represent a cycle from u to v to w to x and back 
to u again. Several of the algorithms that we consider find paths and cycles. Moreover, 
paths and cycles lead us to consider the structural properties of a graph as a whole:

 Definition. A graph is   connected if there is a path from every vertex to every other 
vertex in the graph. A graph that is not connected consists of a set of   connected com-
ponents, which are maximal connected subgraphs. 

Intuitively, if the vertices were physical objects, such as knots or beads, and the edges 
were physical connections, such as strings or wires, a connected graph would stay in 
one piece if picked up by any vertex, and a graph that is not connected comprises two or 
more such pieces. Generally, processing a graph necessitates processing the connected 
components one at a time.

Anatomy of a graph

cycle of
length 5

vertex

vertex of
degree 3

edge

path of
length 4

connected
components

5194.1  Undirected Graphs

[from Algorithms, 4th Edition by Sedgewick and Wayne]
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Acyclic graphs (forests)

A graph that has no cycles is called a forest.

Each connected component of a forest is a tree.

I A tree is a connected acyclic graph.

I Question: Why are such graphs
called trees?

I Fact: There are always n − 1 edges
in an n node tree.

An    acyclic graph is a graph with no cycles. Several of 
the algorithms that we consider are concerned with find-
ing acyclic subgraphs of a given graph that satisfy certain 
properties. We need additional terminology to refer to 
these structures:

 Definition. A    tree is an acyclic connected graph. A dis-
joint set of trees is called a    forest. A   spanning tree of a 
connected graph is a subgraph that contains all of that 
graph’s vertices and is a single tree. A    spanning forest of 
a graph is the union of spanning trees of its connected 
components. 

 

This definition of tree is quite general: with suitable refine-
ments it embraces the trees that we typically use to model pro-
gram behavior (function-call hierarchies) and data structures 
(BSTs, 2-3 trees, and so forth). Mathematical properties of 
trees are well-studied and intuitive, so we state them without 
proof. For example, a graph G with V vertices is a tree if and 
only if it satisfies any of the following five conditions: 

G has V!1 edges and no cycles. 
G has V!1 edges and is connected. 
G is connected, but removing any edge disconnects it.
G is acyclic, but adding any edge creates a cycle. 
Exactly one simple path connects each pair of vertices in G. 

Several of the algorithms that we consider find spanning trees and forests, and these 
properties play an important role in their analysis and implementation.

The density of a graph is the propor-
tion of possible pairs of vertices that are 
connected by edges. A     sparse graph has 
relatively few of the possible edges pres-
ent; a  dense graph has relatively few of 
the possible edges missing. Generally, 
we think of a graph as being sparse if 
its number of different edges is within 
a small constant factor of V and as be-
ing dense otherwise. This rule of thumb 

A tree

acyclic

19 vertices
18 edges

connected

A spanning forest

sparse  (E = 200) dense  (E = 1000)

Two graphs (V = 50)
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Thus, a forest is simply a collection of trees.
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Another tree [E&K Figure 4.4]

The bipartite graph from last class
(depicting membership on corporate
boards) is also an example of a tree.

In general, bipartite graphs can have
cycles.

Question: is an acyclic graph always
bipartite?

94 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

John 

Doerr

Amazon

Google

Apple

Disney

General 

Electric

Al Gore

Shirley 

Tilghman

Susan 

Hockfield

Arthur 

Levinson

Andrea 

Jung

Steve 

Jobs

Figure 4.4: One type of affiliation network that has been widely studied is the memberships
of people on corporate boards of directors [301]. A very small portion of this network (as of
mid-2009) is shown here. The structural pattern of memberships can reveal subtleties in the
interactions among both the board members and the companies.

A very simple example of such a graph is depicted in Figure 4.3, showing two people (Anna

and Daniel) and two foci (working for a literacy tutoring organization, and belonging to a

karate club). The graph indicates that Anna participates in both of the foci, while Daniel

participates in only one.

We will refer to such a graph as an affiliation network, since it represents the affiliation of

people (drawn on the left) with foci (drawn on the right) [78, 323]. More generally, affiliation

networks are examples of a class of graphs called bipartite graphs. We say that a graph is

bipartite if its nodes can be divided into two sets in such a way that every edge connects a

node in one set to a node in the other set. (In other words, there are no edges joining a pair

of nodes that belong to the same set; all edges go between the two sets.) Bipartite graphs

are very useful for representing data in which the items under study come in two categories,

and we want to understand how the items in one category are associated with the items

in the other. In the case of affiliation networks, the two categories are the people and the

foci, with each edge connecting a person to a focus that he or she participates in. Bipartite

Facts

It is computationally easy to decide if a graph is acyclic or bipartite.

However, we (in CS) strongly “believe” it is not easy to determine if a
graph is tripartite (i.e. 3-colourable).
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Analogous concepts for directed graphs

We now have directed paths and directed cycles.

Instead of the degree of a node, we have the in-degree and out-degree
of a node.

different ways in which two vertices might be related in a digraph: no edge; an edge 
v->w from v to w; an edge w->v from w to v; or two edges v->w and w->v, which indicate 
connections in both directions. 

 
 

  Definition. A    directed path in a digraph is a sequence of vertices in which there is 
a (directed) edge pointing from each vertex in the sequence to its successor in the 
sequence. A    directed  cycle is a directed path with at least one edge whose first and 
last vertices are the same. A  simple cycle is a cycle with no repeated edges or vertices 
(except the requisite repetition of the first and last vertices). The  length of a path or 
a cycle is its number of edges.

  
 

As for undirected graphs, we assume that directed paths 
are  simple unless we specifically relax this assumption by 
referring to specific repeated vertices (as in our definition 
of directed cycle) or to general directed paths. We say that 
a vertex w is    reachable from a vertex v if there is a directed 
path from v to w. Also, we adopt the convention that each 
vertex is reachable from itself. Except for this case, the fact 
that w is reachable from v in a digraph indicates nothing 
about whether v is reachable from w. This distinction is 
obvious, but critical, as we shall see.

Understanding the algorithms in this section requires an appreciation of the dis-
tinction between reachability in digraphs and connectivity in undirected graphs. De-
veloping such an appreciation is more complicated than you might think. For example, 

although you are likely to be able to tell at a glance 
whether two vertices in a small undirected graph are 
connected, a directed path in a digraph is not so easy 
to spot, as indicated in the example at left. Processing 
digraphs is akin to traveling around in a city where 
all the streets are one-way, with the directions not 
necessarily assigned in any uniform pattern. Getting 
from one point to another in such a situation could 
be a challenge indeed. Counter to this intuition is 
the fact that the standard data structure that we use 
for representing digraphs is simpler than the corre-
sponding representation for undirected graphs!Is w reachable from v in this digraph?

v

w

Anatomy of a digraph

directed
cycle of
length 3

vertex

vertex of
indegree 3 and 

outdegree 2

directed
edge

directed
path of
length 4

5674.2  Directed Graphs

Figure: Directed graph antonomy [from Sedgewick and Wayne]
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More analogous concepts for directed graphs
Acyclic mean no directed cycles.
Instead of connected components, we have strongly connected
components.

[from http://scientopia.org/blogs/goodmath/]

Instead of trees, we have directed (i.e. rooted) trees which have a
unique root node with in-degree 0 and having a unique path from the
root to every other node.
Question: What is a natural example of a rooted tree?
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