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Course Organization

Course Instructor: Allan Borodin
@ Office phone: 416 978 6416
e Office: (Sandford Fleming) SF 2303B
@ Course-related email: instr303s19@cs.toronto.edu
@ Other email: bor@cs.toronto.edu

Teaching Assistant: Tyrone Strangway
Email : TAs303s19@cs.toronto.edu
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Communications and Course Materials

o Communication:
© Course Web page: source of first resort
http://www.cs.toronto.edu/~csc303s19/
@ Discussion board: piazza for questions of general interest
http://piazza.com/utoronto.ca/winter2019/csc303s19
Instructor and TA will monitor and respond as appropriate. | welcome
(encourage) questions and responses to questions in class which leads
to less confusion especially with regard to technical questions.
© Office hours: TBA
@ Course Materials: CSC303 is based on the text by Easley and
Kleinberg, previous parts of (now discontinued) CSC200 by Borodin
and Craig Boutilier, and the current course developed by Ashton
Anderson at UTSC.

© Text: D. Easley, J. Kleinberg. Networks, Crowds, and Markets:
Reasoning About a Highly Connected World. Cambridge University
Press, 2010. Online version available at
http://www.cs.cornell.edu/home/kleinber/networks-book/

@ We will supplement with some topics and material not in the text.

© Additional materials will be linked to course web page.
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Lecture/Tutorial/Course Structure

@ Times for lectures and tutorials

» Usually, Lectures Monday and Wednesday; Tutorials on Fridays.
» However, if necessary, we will sometimes rearrange schedule between
tutorial time and lecture times.

@ More generally

» Readings posted on web site usually one or two weeks in advance.

» Read assigned sections prior to class, come prepared to discuss!

> Lecture slides (some detailed, some less so) will usually be posted one
or two days after the class.

But the slides are not a reason to miss lectures or tutorials; the
class discussions are part of the course and you are responsible
(ie can be tested) for information that occurs in lectures and
tutorials.

» The term test is tentatively scheduled for Friday, March 1.

» You should be comfortable with very basic probability and discrete
math concepts (some basic graph theory) as would be covered in the
prerequisites. | have posted a probability primer on the course web
page.
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Grading scheme and schedule

Grading Scheme

o

2]
o
o

Assignments: Two, each worth 15% = 30%
Tentative due dates: February 15 and March 29

One critical review of a current article: Worth 10%
Tentative due date: March 15

Term Test: Worth 20%

Tentative date: March 1

Final Exam: Worth 40%
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Policies

o

2]

No late submissions accepted. But | do make an alternative grading
to accomodate medical and other legitimate issues (e.g. a University
sponsored event).

All requests for remarking must be submitted on Markus within one
week of work being graded. The only exception is for any calculation
errors in adding up grades.

Collaboration and Plagarism: In general, we encourage discussion of
course materials. However, any work submitted must be your own!
Advice: do not take away written notes from discussions about any
work you will be submitting. Any material you obtain from a
published source must be properly cited.

The “20%" rule: For any question or subquestion on any quiz, test,
assignment or the final exam, you will recieve 20% of the assigned
question credit if you state “l do not know how to answer this
question”. That is, it is important to know what you do not know. If
you have partial ideas then provide them; but no credit will be given
for answers that do not show any understanding of the question.
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What's in a name? Graphs or Networks?

Networks are graphs with (for some people) different terminology where
graphs have vertices connected by edges, and networks have nodes
connected by links. | do not worry about this “convention”, to the extent
it is really a convention.

Here is one explanation for the different terminology: We use networks to
for settings where we think of links transmitting or transporting “things”
(e.g. information, physical objects).

Many different types of networks

@ Social networks

@ Information networks

@ Transportation networks

o Communication networks

@ Biological networks (e.g., protein interactions)
°

Neural networks
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Visualizing Networks

@ nodes: entities (people, countries, companies, organizations, .. .)
@ links (may be directed or weighted): relationship between entities
» friendship, classmates, did business together, viewed the same web

pages, ...
» membership in a club, class, political party, ...

Figure: Initial internet: Dec. 1970 [E&K, Ch.2]
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December 1970 internet visualized geographically
[Heart et al 1978]
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The first social network analysis
In his 1934 book Who Shall Survive: A New Approach to the Problem of
Human Interrelations, Jacob Moreno (Romanian-US psychiatrist)

introduced sociograms and used these graphs/networks to understand

relationships. In one study (that was repeated to test changes) he asked
each child in varous elementary grades at a public school to choose two

children to sit next to in class. He used this to study inter-gender
relationships (and other relationships). Here boys are depicted by triangles

and girls by circles.

1st grade

4th grade

8th grade
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A closer look at grade 1 in Moreno sociogram

Figure: 21 boys, 14 girls. Directed graph. Every node has out-degree 2. 18
unchosen having in-degree 0. Note also that there are some “stars” with high
in-degree. 1156



A closer look at grade 4 in Moreno sociogram

Figure: 17 boys, 16 girls. Directed graph with 6 unchosen having in-degree 0.
Moreno depicted his graphs to emphasize inter-gender relations. Note only one
edge from a boy to a girl. 12/56



A closer look at grade 8 in Moreno sociogram

Figure: 22 boys, 22 girls. Directed graph with 12 unchosen having in-degree 0.
Some increase in inter-gender relations. Double stars and circles above line
indicte different “groups”. 13 /56



Todays agenda

@ More network examples. Note: Any numbers being stated may not be
very currrent. Social and information networks are usually very
dynamic and the numbers change rapidly.

@ What is this course about?
@ Basic concepts in graph theory
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Romantic Relationships [Bearman et al, 2004]
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Figure: Dating network in US high school over 18 months.

@ lllustrates common structural properties of many networks
@ What predictions could you use this for?
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Kidney Exchange: Swap Chains

o Waiting list for kidney donation: approximately 100K in US and
growing (i.e., new patients added but many deaths while waiting).
The wait for a deceased donor could be 5 years and longer.

@ Live kidney donations becoming somewhat more common in N.A. to
get around waiting list problems: requires donor-recipient pairs

@ Exchange: supports willing pairs who are incompatible
© allows multiway-exchange

@ supported by sophisticated algorithms to find matches

16

56



Kidney Exchange: Swap Chains

o Waiting list for kidney donation: approximately 100K in US and
growing (i.e., new patients added but many deaths while waiting).
The wait for a deceased donor could be 5 years and longer.

@ Live kidney donations becoming somewhat more common in N.A. to
get around waiting list problems: requires donor-recipient pairs

@ Exchange: supports willing pairs who are incompatible

© allows multiway-exchange
@ supported by sophisticated algorithms to find matches

@ But what if someone renegs? = Cyclyes require simultaneous

transplantation; Paths require altruisitic an donor!

Kidney Swap Chain Involving Four Donor-Recipient Pairs

DONORS —* @\ ° @
RECIPIENTS  —> @ ° @ @

Figure: Dartmouth-Hitchcock Medical Center, NH, 2010
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Karate club splits

Karate Club social network, Zachary 1977

Figure: Karate club splis into two clubs



2004 Political blogsphere

Figure 1: Community structure of political blogs (expanded set), shown using utilizing a GEM
layout [11] in the GUESS|[3] visualization and analysis tool. The colors reflect political orientation,
red for conservative, and blue for liberal. Orange links go from liberal to conservative, and purple
ones from conservative to liberal. The size of each blog reflects the number of other blogs that link
to it.
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Email communication

Figure: Email communication amongst 436 employees of Hewlett Packard
Research Lab, superimposed on the Lab organizational hierarchy
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Protein-protein interaction network

Protein-Protein Interaction Networks
Nodes: Proteins
Edges: ‘physical’ interactions

20/
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Metabolic network
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Metabolic networks
Nodes: Metabolites and enzymes
Edges: Chemical reactions
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The web as a directed graph of hyperlinks

Central core
56 million pages

Figure: A schematic picture of the bow tie structure of the 1999 Web. Although
the numbers are outdated, the structure has persisted. [Fig 13.7, EK textbook]
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Why study networks

Clearly there are complex systems and networks that we are in
contact with daily.

The population of the world can be thought of as social network of
approximately 7 billion people. AS OF 2018, The people on Facebook
are a subnetwork of approximatley 2.27 billion active monthly users of
which 1.5 billion are daily users.

The language of networks and graph analysis provides a common
language and framework to study systems in diverse disciplines.
Moreover, networks relating to diverse disciplines may sometimes
share common features and analysis.

The availablity and ability to process massive amounts of data, makes
computational aspects of networks essential.

The current impact of social and information networks will almost
surely continue to escalate (even if Facebook and other social
networks are under increasing presure to protect privacy and eliminate
“bad actors”).
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What can one accomplish by studying networks

We use networks as a model of real systems. As such, we always have to

keep in mind the goals of any model which neceessarily simplifies things to
make analysis possible.

In studying social and information networks we can hopefully

@ Discover interesting phenomena and statistical properties of the
network and the system it attempts to model.

@ Formulate hypotheses as to say how networks form and evolve over
time

@ Predict behaviour for the system being modeled.
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End of Monday, January 7 Lecture

We ended the lecture on slide 24.

Todays agenda will be to review basic graph theory terminology and a few
basic facts. We will do so in terms of some artificial small networks as well
as some actual networks from the last lecture plus some new ones.
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And how do we accomplish stated goals

Much of what people do in this field is empirical analysis. We formulate
our network model, hypotheses and predictions and then compare against
real world (or sometimes synthetically generated) data.

Sometimes we can theoretically analyze properties of a network and then
again compare to real or synthetic data.

What are the challenges?

@ Real world daya is sometimes hard to obtain. For example, search
engine companys treat much of what they do as proprietary.

@ Many graph theory problems are known to be computationally
difficult (i.e., NP hard) and given the size of many networks, results
can often only be approximated and even then this may require a
significant amount of specialized heuristics and approaches to help
overcome (to some extent) computational limitations.

@ And we are always faced with the difficulty of bridging the
simplification of a model with that of the many real world details that

are lost in the abstraction.
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Network concepts used in this course

@ Two main mathematical subjects of primary relevance to this course:

@ graph theoretic concepts
© probability

@ In motivating the course, we have already seen a number of examples
of networks and hinted at some basic graph-theoretic concepts. We
will now continue that discussion (i.e. material from Chapter 2 of the
text) and for part of the next lecture before moving on to Chapter 3.

@ We use the previous examples and some new ones to illustrate the
basic graph concepts and terminology we will be using.
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Graphs: come in two varieties

© undirected graphs (graph usually means an undirected graph.)

a

/
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N
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@ directed graphs (often called di-graphs).
a
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y \e/
/N
f—8&
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Visualizing Networks as Graphs

@ nodes: entities (people, countries, companies, organizations, .. .)
@ links (may be directed or weighted): relationship between entities
» friendship, classmates, did business together, viewed the same web

pages, ...
» membership in a club, class, political party, ...

Figure: Internet: Dec. 1970 [E&K, Ch.2]
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Adjacency matrix for graph induced by eastern sites
in alphabetical order) in 1970 internet graph:
another way to represent a graph

A(G) =

= O = O O
OO == O
O =R OO O
_H O OO =
= O O
O =R OO O

@ This node induced subgraph is a 6 node regular graph of degree 2. It
is a simple graph in that there are no self-loops or multiple edges.

@ Note that the adjacency matrix of an (undirected) simple graph is a
symmetric matrix (i.e. A;jj = A;;) with {0,1} entries.

@ To specify distances, we would need to give weights to the edges to

represent the distances. (As you will see, | will use bot edges and
links as terminology.)
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Kidney Exchange: Swap Cycles

@ Live kidney donation common in N.A. to get around waiting list
problems: donor-recipient pairs are nodes and links are directed.
@ Exchange: supports willing pairs who are incompatible
© allows multiway-exchange
@ supported by sophisticated algorithms to find matches
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Kidney Exchange: Swap Cycles

@ Live kidney donation common in N.A. to get around waiting list
problems: donor-recipient pairs are nodes and links are directed.
@ Exchange: supports willing pairs who are incompatible
© allows multiway-exchange
@ supported by sophisticated algorithms to find matches
@ But what if someone reneges? =- require simultaneous
transplantation! Non-cyclic paths can be started by an altruistic
donor!

Kidney Swap Chain Involving Four Donor-Recipient Pairs

DONORS —* @\ ° @
RECIPIENTS —* @ o @ @

Figure: Dartmouth-Hitchcock Medical Center, NH, 2010
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Recall: undirected graphs vs. directed graphs

Q.

/N/

_h
0
0
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More definitions and terminology

@ In order to refer to the nodes and edges of a graph, we define graph
G = (V,E), where
» V is the set of nodes (often called vertices)
» E is the set of edges (sometimes called links or arcs)
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More definitions and terminology

@ In order to refer to the nodes and edges of a graph, we define graph
G = (V,E), where
» V is the set of nodes (often called vertices)
» E is the set of edges (sometimes called links or arcs)

@ Undirected graph: an edge (u, v) is an unordered pair of nodes.
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More definitions and terminology

@ In order to refer to the nodes and edges of a graph, we define graph
G = (V,E), where
» V is the set of nodes (often called vertices)
» E is the set of edges (sometimes called links or arcs)

@ Undirected graph: an edge (u, v) is an unordered pair of nodes.

@ Directed graph: an edge (u,v) is an ordered pair of nodes (u, v).

» However, we usually know when we have a directed graph and just
write (u, v).
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Basic definitions continued

@ First start with undirected graphs G = (V,E).
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Basic definitions continued

@ First start with undirected graphs G = (V,E).

@ A path between two nodes, say v and v is a sequence of nodes, say
ui, Us, ..., Ug, where for every 1 </ < k —1,
» the pair (v, uj11) is an edge in E,
» u=uy and v = uy
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Basic definitions continued

@ First start with undirected graphs G = (V,E).

@ A path between two nodes, say v and v is a sequence of nodes, say
ui, Us, ..., Ug, where for every 1 </ < k —1,
» the pair (v, uj11) is an edge in E,
» u=uy and v = uy

@ The length of a path is the number of edges on that path.
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Basic definitions continued

First start with undirected graphs G = (V,E).

A path between two nodes, say v and v is a sequence of nodes, say
ui, Us, ..., Ug, where for every 1 </ < k —1,

» the pair (v, uj11) is an edge in E,

» u=uy and v = uy

The length of a path is the number of edges on that path.

A graph is a connected if there is a path between every pair of nodes.
For example, the following graph is connected.

a

Q.

/N/

N
AN

b c
f g
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Romantic Relationships [Bearman et al, 2004]

ols
v '-_::2-—
W b & ?
v YR ETT P
- “:“ :"_.‘".- ’z‘ A ® X
" J)Fx‘él'ﬁ"'*:‘* ZS..'—-r{"‘ 0—> r’{“‘
Ry
e SR b /
-
:3""3,,* U S
o sy oo e O
‘ L3
“54u O =t T
¢ X, LN : \";
\ ';\ + 8 V
< + — .I‘:\I:\;

Figure: Dating network in US high school over 18 months.

@ lllustrates common structural properties of many networks
@ What predictions could you use this for?
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initions

More basic def

e
N
——

Many connected components including one “giant component

Observation

36 /56



More basic definitions
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Many connected components including one “giant component” J

@ We will use this same graph to illustrate some other basic concepts.

@ A cycle is path v, up, ..., ux such that u; = uy; that is, the path
starts and ends at the same node.
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Simple paths and simple cycles

@ Usually only consider simple paths and simple cycles: no repeated
nodes (other than the start and end nodes in a simple cycle.)
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Simple paths and simple cycles

@ Usually only consider simple paths and simple cycles: no repeated
nodes (other than the start and end nodes in a simple cycle.)
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Observation

@ There is one big simple cycle and (as far as | can see) three small
simple cycles in the “giant component”.

@ Only one other connected component has a cycle: a triangle having
three nodes. Note: this graph is “almost” bipartite and “almost”
acyclic.
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Example of an acyclic bipartite graph

Amazon

Shirley
Tilghman
Arthur
Levinson

General
Electric

Susan
Hockfield

Figure: [E&K, Fig 4.4] One type of affiliation network that has been widely
studied is the memberships of people on corporate boards of directors. A very
small portion of this network (as of mid-2009) is shown here.
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Florentine marriages and shortest paths

@ Medici connected to more families, but not by much
@ More importantly: lie between most pairs of families

» shortest paths between two families: coordination, communication
» Medici lie on 52% of all shortest paths; Guadagni 25%; Strozzi 10%
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Figure: see [Jackson, Ch 1]
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Breadth first search and path lengths [E&K, Fig 2.8]

distance 1 your friends

distance 2 friends of friends

friends of friends
of friends

distance 3

all nodes, not already discovered, that have an
edge to some node in the previous layer

Figure: Breadth-first search discovers distances to nodes one layer at a time.

Each layer is built of nodes adjacent to at least one node in the previous layer.
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The Small World Phenomena

The small world phenomena suggests that in a connected social network
any two individuals are likely to be connected (i.e. know each other
indirectly) by a short path.

Later in the course we will study 1967 Milgram's small world experiment
where he asked random people in Omaha Nebraska to forward a letter to a
specified individual in a suburn of Boston which became the origin of the
idea of six degrees of separation.
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Small Collaboration Worlds

For now let us just consider collaboration networks like that of
mathematicians or actors. For mathematicians (or more generally say
scientists) we co-authorhsip on a published paper. For actors, we can form
a collaboration network where an edge represents actors perfoming in the
same movie. For mathematicians one considers their Erdos number which
is the length of the shortest path ito Paul Erdos. For actors, a popular
notion is ones Bacon number, the shortest path to Kevin Bacon.
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Erdos collaboration graph drawn by Ron Graham

[http: /www.oakland.edu/enp/cgraph.jpg]
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Analogous concepts for directed graphs

@ We use the same notation for directed graphs, i.e. denoting a
di-graph as G = (V/, E), where now the edges in E are directed.
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Analogous concepts for directed graphs

@ We use the same notation for directed graphs, i.e. denoting a
di-graph as G = (V/, E), where now the edges in E are directed.

e Formally, an edge (u, v) € E is now an ordered pair in contrast to an
undirected edge (u, v) which is unordered pair.

» However, it is usually clear from context if we are discussing undirected
or directed graphs and in both cases most people just write (u, v).
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Analogous concepts for directed graphs

@ We use the same notation for directed graphs, i.e. denoting a
di-graph as G = (V/, E), where now the edges in E are directed.

e Formally, an edge (u, v) € E is now an ordered pair in contrast to an
undirected edge (u, v) which is unordered pair.

» However, it is usually clear from context if we are discussing undirected
or directed graphs and in both cases most people just write (u, v).

@ We now have directed paths and directed cycles. Instead of
connected components, we have strongly connected components.
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Weighted graphs

@ We will often consider weighted graphs. Lets consider a (directed or
undirected) graph G = (V, E). Example:

\ » red numbers: edge weights
/ \ > blue numbers: vertex weights

8§ ©
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Weighted graphs

@ We will often consider weighted graphs. Lets consider a (directed or
undirected) graph G = (V, E). Example:

/

8

C@

/ \ » red numbers: edge weights
\ > blue numbers: vertex weights

g@

@ We can have a weight w(v) for each node v € V and/or a weight
w(e) for each edge e € E.
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Weighted graphs

@ We will often consider weighted graphs. Lets consider a (directed or
undirected) graph G = (V, E). Example:

>
/ \ » red numbers: edge weights
\ / > blue numbers: vertex weights

@ We can have a weight w(v) for each node v € V and/or a weight
w(e) for each edge e € E.

@ For example, in a social network whose nodes represent people, the
weight w(v) of node v might indicate the importance of this person.
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Weighted graphs
@ We will often consider weighted graphs. Lets consider a (directed or
undirected) graph G = (V, E). Example:
>
/ \ » red numbers: edge weights
\ / > blue numbers: vertex weights

@ We can have a weight w(v) for each node v € V and/or a weight
w(e) for each edge e € E.

@ For example, in a social network whose nodes represent people, the
weight w(v) of node v might indicate the importance of this person.

@ The weight w(e) of edge e might reflect the strength of a friendship.
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Edge weighted graphs

@ When considering edge weighted graphs, we often have edge weights
w(e) = w(u, v) which are non negative (with w(e) = 0 meaning no
edge).

@ In some cases, weights can be either positive or negative. A positive
(resp. negative) weight reflects the intensity of connection (resp.
repulsion) between two nodes (with w(e) = 0 being a neutral
relation).

@ Sometimes (as in Chapter 3) we will only have a qualitative (rather
than quantitative) weight, to reflect a strong or weak relation (tie).

@ Analogous to shortest paths in an unweighted graph, we often wish to
compute least cost paths, where the cost of a path is the sum of
weights of edges in the path.
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Detecting the romantic relation in Facebook

@ As previously mentioned, there is an interesting paper by Backstrom
and Kleinberg (http://arxiv.org/abs/1310.6753) on detecting “the”
romantic relation in a subgraph of facebook users who specify that
they are in such a relationship.

@ Backstrom anbd Kleinberg construct two datasets of randomly
sampled Facebook users: (i) an extended data set consisting of 1.3
million users declaring a spouse or relationship partner, each with
between 50 and 2000 friends and (ii) a smaller data set extracted
from neighbourhoods of the above data set (used for the more
computationally demanding experimental studies).

@ The main experimental results are nearly identical for both data sets.
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Detecting the romantic relation (continued)

@ They consider various graph strucutral features of edges, including

@ the embeddedness of an edge (A, B) which is the number of mutual
friends of A and B.

@ various forms of a new dispersion measure of an edge (A, B) where high
dispersion intuitively means that the mutual neighbours of A and B are
not “well-connected” to each other (in the graph without A and B).

© One definition of dispersion given in the paper is the number of pairs
(s, t) of mutual friends of u and v such that (s, t) ¢ E and s, t have no
common neighbours except for u and v.

@ They also consider various “interaction features” including

© the number of photos in which both A and B appear.
@ the number of profile views within the last 90 days.
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Embeddedness and disperison example from paper

Figure 2. A synthetic example network neighborhood for a user u; the
links from v to b, ¢, and f all have embeddedness 5 (the highest value in
this neighborhood), whereas the link from « to h has an embeddedness
of 4. On the other hand, nodes v and h are the unique pair of interme-
diaries from the nodes c and f to the nodes j and k; the u-h link has
greater dispersion than the links from v to b, ¢, and f.
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Qualitative results from Backstrom and Kleinberg

@ The goal is to predict (for each user in the data set) which of their
friendship edges is the romantic relation. Note that each user has
between 50 and 2000 friends and assuming say a median of 200 users,
a random guess would have prediction accuracy of 1/200 = .5%
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@ The goal is to predict (for each user in the data set) which of their
friendship edges is the romantic relation. Note that each user has
between 50 and 2000 friends and assuming say a median of 200 users,
a random guess would have prediction accuracy of 1/200 = .5%

@ Various disperson measures do better than the embeddedness measure
in its ability to predict the correct romantic relationship. Why would
high dispersion be a better measure than high embeddedness?

@ By itself, dispersion outperforms various interaction features.

@ For most measures, performance is better for male users and also
better for data when restricted to marriage as the relationship.

@ By combining many features, structural and interaction, the best
performance is achieved using machine learning classification
algorithms based on these many features.

@ There are a number of other interesting observations but for me the
main result is the predictive power provided by graph structure
although there will generally be a limit to what can be learned solely
from graph structure.
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Some experimental results for the fraction of correct

predictions

Recall that we argue that the fraction might be .005 when randomly

choosing an edge. Do you find anything surprising?

type embed | rec.disp. | photo | prof.view.
all 0.247 0.506 | 0415 0.301
married 0.321 0.607 | 0.449 0.210
married (fem) 0.296 0.551 | 0.391 0.202
married (male) 0.347 0.667 | 0.511 0.220
engaged 0.179 0.446 | 0.442 0.391
engaged (fem) 0.171 0.399 | 0.386 0.401
engaged (male) 0.185 0.490 | 0.495 0.381
relationship 0.132 0.344 ] 0.347 0.441
relationship (fem) | 0.139 0.316 | 0.290 0.467
relationship (male) | 0.125 0.369 | 0.399 0.418
type max. | max. all all. | comb.
struct. | inter. | struct. | inter.
all 0.506 | 0.415 | 0.531 | 0.560 | 0.705
married 0.607 | 0.449 | 0.624 | 0.526 | 0.716
engaged 0.446 | 0.442 | 0.472 | 0.615 | 0.708
relationship | 0.344 | 0.441 | 0.377 | 0.605 | 0.682
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Graph Anatomy: summary thus far

vertex
chclehof edlge
ength 5 \\
path of
« length 4
vertex of
degree 3\

N connected
components

[from Algorithms, 4th Edition by Sedgewick and Wayne]
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Acyclic graphs (forests)

@ A graph that has no cycles is called a forest.

@ Each connected component of a forest is a tree.

19 vertices
18 edges

acyclic

» A tree is a connected acyclic graph.

» Question: Why are such graphs
called trees?

» Fact: There are always n — 1 edges
in an n node tree.

connected

@ Thus, a forest is simply a collection of trees.
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Another tree [E&K Figure 4.4]

Amazon

Shirley
Tilghman
Arthur
Levinson

@ The bipartite graph from last class
(depicting membership on corporate
boards) is also an example of a tree.

@ In general, bipartite graphs can have
cycles.

General
Electric

@ Question: is an acyclic graph always
bipartite?

Susan
Hockfield

Facts
@ It is computationally easy to decide if a graph is acyclic or bipartite.

@ However, we (in CS) strongly “believe” it is not easy to determine if a
graph is tripartite (i.e. 3-colourable).

54 /56



Analogous concepts for directed graphs

@ We now have directed paths and directed cycles.

@ Instead of the degree of a node, we have the in-degree and out-degree

of a node.

directed
edge
direlctejocl l vertex
cycle o
le}r/1gth 3 \
directed
. ® \« pathof
vertex o length 4
indegree 3 and -
outdegree 2

Figure: Directed graph antonomy [from Sedgewick and Wayne]
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More analogous concepts for directed graphs

@ Acyclic mean no directed cycles.
@ Instead of connected components, we have strongly connected
components.
[from http://scientopia.org/blogs/goodmath/]

Sy

& o T

@ Instead of trees, we have directed (i.e. rooted) trees which have a
unique root node with in-degree 0 and having a unique path from the
root to every other node.

@ Question: What is a natural example of a rooted tree?
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