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Abstract

We give a simple proof that the RANKING algorithm of Karp, Vazirani and Vazirani [KVV90] is
1-1/e competitive for the online bipartite matching problem. The proof is via a randomized primal-dual
argument. Primal-dual algorithms have been successfully used for many online algorithm problems,
but the dual constraints are always satisfied deterministically. This is the first instance of a non-trivial
randomized primal-dual algorithm in which the dual constraints only hold in expectation. The approach
also generalizes easily to the vertex-weighted version considered by Agarwal et al. [AGKM11]. Further
we show that the proof is very similar to the deterministic primal-dual argument for the online budgeted
allocation problem with small bids (also called the AdWords problem) of Mehta et al. [MSVV05].

1 Introduction

The online bipartite matching problem is as follows. An instance of the problem is a bipartite graph G =
(L,R,E) and the objective is to find a matching of greatest cardinality in the graph. The “online” nature
of the problem is that the graph is revealed over time: in each step a vertex j in R arrives and all the edges
incident to it are revealed. The algorithm has to make decisions online as well; that is, the algorithm must
decide the neighbor that j is matched to (if any) before the next vertex in R arrives. Matches once made
cannot be revoked.

An obvious greedy algorithm for this problem matches each vertex with an arbitrary unmatched neighbor
whenever such a choice is possible. This algorithm always succeeds in choosing a matching which is set-
wise maximal, and therefore has at least half as many edges as the maximum matching. In a seminal paper
in 1990, Karp, Vazirani, and Vazirani [KVV90] presented a randomized algorithm known as RANKING that
improves this guarantee, ensuring that in expectation the algorithm chooses at least 1 − 1

e fraction of the
edges in the maximum matching. An easy lower bound construction in [KVV90] shows that no randomized
online algorithm can achieve a better worst-case approximation ratio.

The RANKING algorithm is extremely simple — it simply selects a random total ordering of the ele-
ments of L, and when matching a newly arrived vertex j ∈ R to an unmatched neighbor, it selects the
one that occurs earliest in this ordering — but the analysis in the original paper by Karp, Vazirani, and
Vazirani was surprisingly complicated. Subsequent papers by Goel and Mehta [GM08] and Birnbaum and
Mathieu [BM08] simplified the analysis considerably.

In this short paper, we provide what we believe to be the simplest analysis yet of the RANKING algorithm,
interpreting it as a randomized online primal-dual algorithm. By laying bare the primal-dual foundations of
the RANKING algorithm, our analysis unifies and synthesizes two fundamental strands of research on online
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matching algorithms, one originating from the analysis of the integral version of the problem and the other
from the online fractional matching problem.

1.1 Overview of online matching algorithms

Essentially two kinds of online matching problems studied in the prior literature are within the scope1 of
this paper. The first kind is online integral matching and the second kind is online fractional matching. The
algorithm of Karp, Vazirani, and Vazirani [KVV90] is designed for unweighted online integral matching.
Here we already know that any deterministic algorithm cannot be better than 1

2 -competitive in the worst
case. Simple examples show that for the integral version of the problem, randomization is essential for
any competitive ratio above 1

2 . The randomized algorithm of [KVV90], also known as RANKING, is essen-
tially the only known randomized approach attaining optimal worst-case performance. The same approach
RANKING is also used in [AGKM11] for online vertex-weighted integral matching; that paper essentially
summarizes all progress to date on the integral version of the problem, since it encompasses [KVV90] as
a special case. The algorithm we analyze in this paper is also exactly the same RANKING algorithm when
applied to both the unweighted and vertex-weighted integral matching problems. Thus, the novelty of our
approach lies in the analysis alone, not in the algorithm or performance guarantee.

The other type of algorithm, which is more suitable for online fractional matching, was introduced
by Kalyanasundaram and Pruhs [KP00]. They framed their problem as the online b-matching problem, in
which each node can be matched up to b times, where b is typically large. As b→∞, their scenario becomes
equivalent to online fractional matching. Since the fractional version of the problem can only be easier than
the integral version, far more progress has been made for this set of problems. The primary approach for
this set of problems, known as WATERLEVEL, is a deterministic approach; for fractional matching problems,
randomization does not offer any additional power. The WATERLEVEL algorithms maintain a level (or
potential, or time, the choice of terminology is immaterial) for each node on the offline side, L. When a new
node on the online side, R, arrives, it is brought into the algorithm in small pieces (either as an assumption
or within the flexibility of fractional assignment). The WATERLEVEL algorithms then apply an appropriate
function of two inputs on each node of the offline side. One input is the existing level of the node and the
other input is the weight of the edge between the node and the arriving node. The arriving node is assigned
to whichever neighbor maximizes the value of this function. The essential difficulty in this set of problems
thus lies in constructing the functions that combine the level of the node and the weight of the edge.

The algorithms of [MSVV05] and [BJN07] follow the same pattern, as does the algorithm of [KP00].
When the algorithms of [MSVV05] and [BJN07] are restricted to the unweighted version, they become
equivalent to [KP00] (and not [KVV90]). The algorithm of [BJN07] showed how to systematically obtain
the requisite two-variable function using the primal-dual schema. This systematic approach then turned out
to be useful in the algorithm of [DJ12], which is currently the state of the art for online fractional matching
problems.

As discussed, there are two streams of problems, integral and fractional. There are likewise two sets
of approaches: RANKING for the integral version and WATERLEVEL (= PRIMAL-DUAL) for the fractional
version. So far these two problems and the two approaches have been mostly disconnected, despite their
similarity and the intriguing coincidence that the optimal competitive ratio for both problems is 1− 1

e . A big
open problem in the area which generalizes both [KVV90] and [MSVV05] is the online (integral) budgeted
allocation problem. We make concrete progress in this paper by unifying the two approaches, which we
believe will be useful in attacking the general problem.

1For example, online matching with stochastic assumptions is widely studied but lies outside our paper’s scope.
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1.2 Our contribution in a nutshell

We provide a reinterpretation of the RANKING algorithm as a randomized Primal-Dual algorithm. Under
this interpretation, the algorithm combines the Primal-Dual fractional matching schema of [BJN07, DJ12]
with a novel dual-based online randomized rounding step.2 The technique for constructing primal and dual
solutions bears a strong resemblance to the fractional matching algorithms in [BJN07, DJ12], with a crucial
twist: our randomized algorithm does not construct a feasible dual solution; instead it outputs a random dual
vector that is feasible in expectation. Relaxing dual feasibility to hold only in expectation is vital to the goal
of constructing the integer primal and fractional dual solutions jointly in an online fashion.

To describe the algorithm in a bit more detail, it is necessary to recall the basic Primal-Dual fractional
matching framework of [BJN07]. That algorithm keeps track, for each vertex i ∈ L on the offline side, of
the total fractional weight yi that has been assigned to i. One can visualize yi as a “water level” associated
to i, initially set to zero. The fractional allocation of vertex j is computed by continuously “filling water”
into the neighboring vertices with the lowest water level, until either one unit has been allocated in total or
the water level in every neighboring vertex reaches 1. While computing this fractional primal solution, the
algorithm also associates a dual value to each vertex which depends on its own water level (if the vertex
belongs to the offline side) or the water level of the neighboring vertices (if it belongs to the online side).
The function g that relates water levels to dual values is obtained by solving an integral equation that is
carefully chosen to ensure dual feasibility.

Our randomized Primal-Dual interpretation of the RANKING algorithm can also be visualized as a water-
filling process, but with a different stopping condition. Instead of stopping the process deterministically
when one unit has been assigned, each vertex i has a uniformly random threshold Yi and the water-filling
process for node j stops the first time the water level reaches the threshold of an unmatched neighbor i. At
that time, the edge (i, j) is added to the matching and the dual variables corresponding to vertices i and j are
set according to the water level at i, using the same function g as in the fractional matching algorithm. The
dual variables of the other unmatched neighbors of j remain at zero, potentially leading to dual infeasibility.
We are able to prove, however, that the expected values of the dual variables constitute a feasible dual
solution, by appealing to the same integral equation that underpins the Primal-Dual analysis of the online
fractional matching algorithm.

It is worth pointing out that in our Primal-Dual interpretation of the RANKING algorithm, the randomized
procedure for computing the edge-set of the matching is integrated into the online Primal-Dual algorithm
that computes the fractional primal and dual solutions. This is in contrast to simpler approaches that treat
the fractional matching algorithm as a black box and apply online randomized rounding to the output of the
fractional algorithm. Since the online fractional matching algorithms of [KP00, BJN07, DJ12] are (1− 1

e )-
competitive, and since the fractional matching that they output can be represented as a convex combination
of integral matchings, it is tempting to hope that there is an online randomized rounding procedure that
constructs an integral matching whose expected size equals the weight of the fractional matching computed
by the WATERLEVEL algorithm. In fact, there are simple examples3 that demonstrate that this is impossible,
for instance an 8-cycle in which the fractional solution places a value of 1

2 on each edge and the first two
arriving vertices are diametrically opposite one another.

Our equivalent formulation of RANKING opens itself up to potential generalizations, e.g., the general-
ization to the vertex-weighted matching algorithm of [AGKM11] is quite easy and natural. Our Dominance
and Monotonicity Lemmas — Lemmas 1 and 2 — are stated within the framework of duals, but the essence
of these lemmas is also present in [KVV90] (though not the lemmas themselves as stated).4 Much closer

2It is worth mentioning that, unlike many other randomized rounding procedures, ours does not output a solution whose expected
value is a scaled copy of the given fractional solution.

3The earliest such example that was presented to us is due to Nick Harvey [Har06].
4The [KVV90] analysis was based on showing that the upper triangular graph is the worst case graph.
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versions of these lemmas are also present in [GM08] and [BM08], both of which give alternate proofs
of [KVV90]. Finally, we note that a blog post [Mat11] by Claire Mathieu, who is also the second author of
the second paper, gives an (informal but complete) explanation of our framework.

2 Algorithm and Analysis

We begin with a reinterpretation of the RANKING algorithm, in a way that is conducive to our analysis.
Instead of picking a random total ordering of the vertices in L, each vertex in L picks a random number in
[0, 1] and a vertex j ∈ R, upon its arrival, is assigned to the unmatched neighbor who picked the lowest
number. The algorithm is presented as Algorithm 1 below.

Algorithm 1: The RANKING algorithm.

foreach i ∈ L do
Pick Yi ∈ [0, 1] uniformly at random

foreach j ∈ R do
When j arrives, let N(j) denote the set of unmatched neighbors of j;
if N(j) = ∅ then

j remains unmatched
else

Match j to argmin{Yi : i ∈ N(j)}

To analyze the algorithm, we note the standard LP relaxation for matching and its dual.

maximize
∑

(i,j)∈E

xij s.t. minimize
∑
i∈L

αi +
∑
j∈R

βj s.t.

∀ i ∈ V,
∑

j:(i,j)∈E

xij ≤ 1. ∀ (i, j) ∈ E,αi + βj ≥ 1.

∀ (i, j) ∈ E, xij ≥ 0. ∀ i, j, αi, βj ≥ 0.

Our analysis constructs a dual solution which is also randomized. The duals we construct may not
always be feasible. The competitive ratio of F ∈ [0, 1] will follow from the fact that the value of the dual
solution is always a factor 1/F of the size of the matching found, and that the expectation of the duals is
feasible.

Our construction of the duals depends on a monotone non-decreasing function g : [0, 1] → [0, 1]. We
later identify other properties of g that we need in order to prove a competitive ratio of F . Whenever i is
matched to j, let

αi = g(Yi)/F, βj = (1− g(Yi))/F.

For all unmatched i and j, set αi = βj = 0. It will be useful to interpret the algorithm as follows: on
matching i to j, we generate a value of 1 for the primal, which translates to a value of 1/F for the dual.
Each unmatched vertex i ∈ L that is a neighbor of j offers (1− g(Yi))/F of this value to j (to be assigned
to βj), while keeping the rest to itself (to be assigned to αi). Then j is matched to the vertex that makes the
highest offer.

Before we show that the expectation of the duals is feasible, we need certain properties of the algorithm
specified by the following two lemmas. These properties are well-known and form the basis of all the earlier
proofs. Let (i, j) ∈ E be any edge in the graph. Consider an instance of the algorithm on G \ {i}, with the

4



same choice of Yi′ for all other i′ ∈ L. Let yc be the value of Yi′ for the i′ that is matched to j. Define yc

to be 1 if j is not matched. Let βcj be the value of βj in this run. We further impose that g(1) = 1, which
implies βcj = (1− g(yc))/F .

Lemma 1 (Dominance Lemma) Given Yi′ for all other i′ ∈ L, i gets matched if Yi < yc.

Proof: Suppose i is not matched when j arrives. This means that the run of the algorithm until then is
identical to the run without i. From the definition of yc, in the run without i, j is matched to i′ such that
Yi′ = yc. Since Yi < yc, j is matched to i. 2

Lemma 2 (Monotonicity Lemma) Given Yi′ for all other i′ ∈ L, for all choices of Yi, βj ≥ βcj .

Proof: Consider executing the algorithm on graphs G and G \ {i} in parallel. At the start of every step
of the two parallel executions, the unmatched vertices in L for the G execution constitute a superset of the
unmatched vertices in L for the G \ {i} execution. This statement is easily proven by induction: given that
it holds at the start of one step, the only way it could be violated at the start of the next step is if the G
execution chooses a vertex i′ ∈ L that is also unmatched, but is not chosen, in the G\{i} execution. Instead
the G \ {i} execution must choose some other vertex i′′ such that Yi′′ < Yi′ . By our induction hypothesis i′′

was also unmatched in the G execution, contradicting the fact that the algorithm chose i′ instead.
When node j arrives, its unmatched neighbors in the G execution form a superset of its unmatched

neighbors in the G \ {i} execution, so in the both executions j has an unmatched neighbor whose Y -value
is yc. If the algorithm instead chooses another neighbor of j, its Y -value can be at most yc and hence, by
the monotonicity of g, we have βj ≥ βcj . 2

We now show that for any g that satisfies a certain integral equation, the above properties imply a com-
petitive ratio of F for RANKING. This integral equation is also at the heart of the deterministic primal-dual
analysis for the fractional matching problem. We will later give a short proof of this as well, in Section 3.2.

Lemma 3 RANKING is F -competitive, if g and F are such that

∀ θ ∈ [0, 1]

∫ θ

0
g(y) dy + 1− g(θ) ≥ F. (1)

Proof: Whenever i is matched to j, αi + βj = 1/F . Therefore the ratio of the primal solution to the dual is
always F . We show that the dual is feasible in expectation. In particular, we show that for all (i, j) ∈ E,

EYi [αi + βj ] ≥ 1

for all choices of Yi′ for all i′ 6= i ∈ L. By the Dominance Lemma (Lemma 1) i is matched whenever
Yi ≤ yc. Hence

EYi [αi] ≥
∫ yc

0
g(y) dy/F.

By the Monotonicity Lemma (Lemma 2), βj ≥ βcj = (1− g(yc))/F for all choices of Yi. The lemma now
follows from condition (1) in the hypothesis. 2

It is easy to solve the integral equation (1) along with the boundary condition g(1) = 1 to get an explicit
function g. (1) does not have a solution for all values of F ; one can also calculate the largest value of F for
which it does have a solution, which turns out to be 1− 1/e.

Theorem 4 RANKING is 1− 1/e competitive.

Proof: One may verify that the function g(y) = ey−1 and F = 1− 1
e satisfy the condition in Lemma 3. 2

5



3 Extensions

In this section we show how our approach easily generalizes to the vertex-weighted version of the problem.
We also give an analysis of the deterministic primal-dual algorithm for the fractional matching problem (and
its generalization, the online budgeted allocation problem) that highlights the similarity to the foregoing
analysis of the RANKING algorithm.

3.1 The Vertex-Weighted Case

In the vertex-weighted version of the problem, each vertex i ∈ L has a weight vi and the objective function
is the sum of weights of matched vertices in L. Agarwal et al. [AGKM11] gave a 1 − 1

e competitive
algorithm for this problem, generalizing the RANKING algorithm. The analysis presented in the previous
section extends easily to their algorithm as well, as we shall see in this section.

Algorithm 2: Vertex-weighted version of the RANKING algorithm.

foreach i ∈ L do
Pick Yi ∈ [0, 1] uniformly at random

foreach j ∈ R do
When j arrives, let N(j) denote the set of unmatched neighbors of j;
if N(j) = ∅ then

j remains unmatched
else

Match j to argmax{vi(1− g(Yi)) : i ∈ N(j)}

Algorithm 2 presents the modification of the RANKING algorithm for the vertex-weighted case. The
only change is that we now select the neighbor of j that maximizes vi(1 − g(Yi)), rather than minimizing
Yi. The function g is defined by g(y) = ey−1 as in the previous section. (When the weights vi are identical,
maximizing vi(1 − g(Yi)) is identical to minimizing Yi since g is monotone increasing.) As before, we
analyze the algorithm using the LP relaxation for vertex-weighted matching and its dual.

maximize
∑

(i,j)∈E

vixij s.t. minimize
∑
i∈L

αi +
∑
j∈R

βj s.t.

∀ i ∈ V,
∑

j:(i,j)∈E

xij ≤ 1. ∀ (i, j) ∈ E,αi + βj ≥ vi.

∀ (i, j) ∈ E, xij ≥ 0. ∀ i, j, αi, βj ≥ 0.

Our random dual solution is constructed as follows. For a vertex i ∈ L define functions

ai(y) = vig(y)/F, bi(y) = vi(1− g(y))/F.

Whenever i is matched to j, let αi = ai(Yi), βj = bi(Yi). For all unmatched i and j, set αi = βj = 0.
As before, one can interpret the duals by envisioning that i makes an offer of bi(Yi) to j, and j accepts the
highest offer.

In every iteration of the algorithm, the change in the dual objective is always 1/F times the change in
the primal objective. To finish the analysis of the algorithm, we must prove that the expectation of the dual
solution is feasible, i.e. that for all (i, j) ∈ E, E[αi + βj ] ≥ vi.
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For an edge (i, j) and for a fixed choice of (Yi′ : i′ ∈ L\{i}), we may ask: for what values y is it the case
that running the algorithm with Yi = y results in matching i either to j or to an earlier vertex? As before,
the answer is that there is a critical value yc ≤ 1 such that this happens if y < yc and not if y > yc. (At
y = yc the answer depends on tie-breaking.) In the vertex-weighted case, the value of yc may be determined
by running the algorithm on the graph G\{i} with the same values of Yi′ (i′ 6= i). Denoting by i′ the vertex
that is matched to j in this execution, yc is the unique value in [0, 1] such that bi(yc) = bi′(Yi′). (If j remains
unmatched when the algorithm is run on G \ {i} then we define yc to equal 1.)

Under this definition of yc, the Dominance and Monotonicity Lemmas (Lemmas 1 and 2) remain true,
with only the following modification to the proofs: anywhere that a relation such as Yi′ = yc or Yi′′ < Yi′

appears, it should instead be rewritten by applying the relevant functions bi, bi′ , etc., and reversing the sign
of the inequality. Thus, for example, Yi′′ < Yi′ becomes bi′′(Yi′′) > bi′(Yi′), and Yi′ = yc becomes
bi′(Yi′) = bi(y

c).
By the Dominance Lemma, i is matched whenever Yi ≤ yc, hence

E[αi] ≥
∫ yc

0
vig(y) dy/F.

By the Monotonicity Lemma, βj ≥ βcj = vi(1 − g(yc))/F for all choices of Yi. Hence, making use of
integral equation (1),

E[αi + βj ] ≥
vi
F

[∫ yc

0
g(y) dy + 1− g(yc)

]
≥ vi,

which verifies dual feasibility in expectation.

3.2 Fractional Matching and Online Budgeted Allocation (AdWords)

The online budgeted allocation problem with small bids (also called the AdWords problem) of Mehta et.
al. [MSVV05] is as follows. The weights are on the edges, edge (i, j) has weight vij . The vertices in L
have budget constraints instead of matching constraints, that is, for every i ∈ L, the sum of the weights
of the edges matched to it cannot exceed Bi, which is given in the beginning. Notice that this problem
generalizes vertex-weighted fractional matching, because the special case of online budgeted allocation in
which all edges incident to i ∈ L have weight vi, and the budget Bi equals Bvi for some large integer B,
approximates fractional vertex-weighted matching in the limit as B →∞.

[BJN07] gave a deterministic algorithm with primal-dual analysis proving a competitive ratio approach-
ing 1 − 1/e for this problem, as the ratio of edge weights to budgets tends to zero. We now give a short
version of this proof, which highlights its similarity to the analysis of the RANKING algorithm in the previous
section. The primal and dual linear programs are as follows.

maximize
∑

(i,j)∈E

vijxij s.t. minimize
∑
i∈L

αiBi +
∑
j∈R

βj

∀ i ∈ L,
∑

j:(i,j)∈E

vijxij ≤ Bi. ∀ (i, j) ∈ E, vijαi + βj ≥ vij .

∀ j ∈ R,
∑

i:(i,j)∈E

xij ≤ 1. ∀ i, j, αi, βj ≥ 0.

∀ (i, j) ∈ E, xij ≥ 0.

The algorithm is as before, except that a vertex i ∈ L now offers vij(1−g(yi))/F where yi is the fraction
of i’s budget consumed at that point. Vertex j is matched to the highest bidder, βj is set to vij(1−g(yi))/F ,
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and αi is incremented by vijg(yi)/(BiF ). Thus when j is matched to i the total increment in the primal is
vij and that in the dual is vij/F . We only need that the dual is feasible. Since the bid to budget ratio is small,
vij/Bi can be thought of as an infinitesimal increase in yi, and αi can be approximated as

∫ yi
0 g(y) dy/F . It

is now easy to see that dual feasibility follows from equation (1) in Lemma 3. (We need g(1) = 1 to ensure
that we don’t match to a vertex whose budget is already exhausted.)

Finally, it has been brought to our notice by Aman Dhesi [Dhe12] that the competitive analysis of the
greedy algorithm for the (fractional) online budgeted allocation problem when the vertices in R arrive in
a random order (giving a competitive ratio of 1 − 1/e) presented in [GM08] can also be simplified and
analyzed in our framework. The difference is that it is the vertices in R that draw a number uniformly at
random from [0, 1]. These numbers are then used to set the duals in a similar way, such that the ratio of
primal to dual is always F . The proof is completed by showing that once again the duals are feasible in
expectation.
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