
Online Matching in Advertisement Auctions ∗

Nikhil R. Devanur Aranyak Mehta

1 Introduction

Advertising has become a large source of revenue for many internet services, and
at the same time internet technologies have completely transformed advertising.
At the time of writing, worldwide digital advertising spend is estimated to be
close to half a trillion dollars per year, and accounts for a majority of all media ad
spending. It is the ad revenue that allows internet services companies to offer for
free invaluable services such as search, social media, news, video, email, maps,
operating systems, and all kinds of apps.

Among the different channels in internet advertising, search advertising de-
serves special mention. When a user issues a search query with the intent to
look for certain goods or services, the platform matches them to firms selling
those goods or services, by displaying the relevant ads. Thus, firms are more
certain to have their advertising budget spent on opportunities which are likely
to result in a good return. Indeed, payment from an advertiser to a search en-
gine is usually per-click, which is already a strong indication that the user has
found the ad useful. Even display and video advertising have moved to a world
of real-time bidding, which allows sophisticated algorithms to differentially eval-
uate every single ad opportunity. Whenever user activity generates an ad-slot,
ads compete in a fully automated auction to win that slot.

Given the size of the ad market and its importance to online commerce,
deeper understanding and optimization of the underlying mechanisms has an
out-sized impact. In this chapter, we will describe an important aspect of this
market design, namely that of online matching in the auction context.

Auctions: Being a market of a highly heterogeneous set of goods (e.g., the
huge range of possible queries in search advertising), ads are sold via auctions
rather than fixed prices. For each new ad-slot, retrieval and machine learning
systems find the relevant ad candidates with their bids and quality scores, and
an auction determines which ad gets shown, and how much the advertiser pays.

∗This chapter will appear in:
Online and Matching-Based Market Design. Federico Echenique, Nicole Immorlica and Vijay
V. Vazirani, Editors. Cambridge University Press. c© 2021

1

Figure 1: A bad instance for the straightforward auction approach

Online matching: As such, auctions for any two ad-slots are independent of
each other. However, demand constraints from the advertisers connect the dif-
ferent auctions. A very commonly used demand constraint is a budget: Besides
a per-click bid for each ad-slot (expressed via keywords), an advertiser can also
express an overall budget, denoting the maximum they are willing to pay in
a time-period (typically a day). Consequently, decisions taken in one auction
affect other auctions. The obvious way for the platform to deal with budgets is
to run a simple auction in which each ad-slot goes to the highest bidder, and re-
move advertisers from consideration as they finish their budgets. However, this
approach is not ideal: Advertisers would end up finishing their budgets early in
the day, giving them a biased sample of ad opportunities. Further, this would
lead to uneven competition in the auctions with competition thinning out later
in the day. This dynamic can be clearly seen in the following extreme example:

Example 1. There are two advertisers (A and B) and 200 queries (see Fig. 1).
The advertisers have the same budget, BA = BB = 100. The first 100 queries
Q1 are identical (e.g., adslots for the keyword “flowers”) for which A and B
both bid similarly: bAj = 0.99, bBj = 1, ∀j ∈ Q1. The second 100 queries
Q2 are also identical (the keyword “gifts”), with only B interested in them:
bAj = 0, bBj = 1, ∀j ∈ Q2. The straightforward auction approach matches all
j ∈ Q1 to B, at which point spendB = BB (for simplicity assume first price).
Now when queries in Q2 arrive, B can not be matched any more, while A bids
0 for them. This results in a revenue of 100. An optimal matching instead
matches all j ∈ Q1 to A and all j ∈ Q2 to B, with a revenue of 199.

Thus, running the straightforward auction and simply imposing the budget
constraints leads to suboptimal efficiency and revenue; we need to explicitly
consider the interactions across auctions and pace the spend over the day. This
leads to an online bipartite matching formulation: The two sides of the bipartite
graph are the demand (advertisers) and the supply (ad-slots), edges codify the
bids and quality scores, and the budgets place constraints on each advertiser
vertex. Note that the problem is necessarily online, i.e., each ad-slot needs to be
matched to an advertiser as soon as it arrives, without knowledge of the future.
We clarify here that we use the term matching in the more general sense of an
allocation, determining which ads are shown for which queries; e.g., we are not

2

necessarily constrained to match each advertiser vertex to exactly one neighbor.

Centralized vs Decentralized solutions: There are two different approaches
to solving this matching problem: A centralized approach treats the problem as
an (online) optimization problem, and makes the matching decisions in each
auction. We begin this chapter with a focus on the centralized approach, de-
scribing the problem, algorithms, and results. A decentralized approach consid-
ers the problem from a bidding perspective, in which each advertiser changes its
bids under its budget constraints to optimize for itself. This raises the question
of what happens when all advertisers bid in this way. What kind of matching
would that result in? We will discuss this approach in Sec. 7.

2 The AdWords problem

We formulate the centralized matching question as the following online budgeted
allocation problem, referred to in the literature as the AdWords problem.

Definition 2. In the AdWords problem, there is a bipartite graph of n
advertisers and m queries. Advertiser i has a budget of Bi on its total spend.
The bid of advertiser i for query j is denoted by bij , which can be considered
the weight of the edge (i, j). Consider a matching M of queries to advertisers
where M(i) denotes the set of queries matched to advertiser i. The total reward
of M (we will also refer to this as the revenue) is defined as∑

i∈[n]

min{Bi,
∑

j∈M(i)

bij} (1)

The algorithm starts off knowing only the set of advertisers and their budgets,
but not the set of queries, which arrive sequentially, nor the potential bids.
When a query j arrives, the algorithm is revealed the bids bij , for all i, and
has to immediately decide to match j to one advertiser (or leave j unmatched),
irrevocably. The goal is to maximize the reward (1) at the end of the sequence.

We can also define the problem iteratively as follows. Initially, the spend
of each advertiser i, spendi, is 0. When a query j arrives, if the algorithm can
match it to some advertiser i with spendi < Bi. The algorithm accrues a reward
of min{bij , Bi − spendi}, and spendi increases by the same amount.

Remark 3. Note that the AdWords problem as defined above is quite general.
For example, if we set every budget Bi to 1, and every bid bij to either 0 or 1,
then we recover the online bipartite matching problem from Chapter ??. The
general problem is hard to solve exactly even in an offline setting, i.e., when
we know the entire graph in advance: it is NP-hard to approximate the optimal
solution with a multiplicative approximation factor better than 15

16 .

3

Competitive Analysis: We evaluate an algorithm by its competitive ratio,
which is the minimum ratio (over all instances of the problem) of the reward
obtained by the algorithm to the optimal achievable reward in hindsight, i.e., if
we knew the entire graph. We will refer to the latter as OPT throughout.

Let us recall the straightforward strategy of picking the highest bidder among
those with remaining budget.

Highest-bidder: Match the arriving query j to the advertiser i with the
highest value of min{bij , Bi − spendi}.

In Example 1, we saw that this strategy achieves no more than a half of the
optimal matching in hindsight (to be precise, we get to a half by increasing the
value of the budgets and the length of the query sequences). This means the
competitive ratio of Highest-bidder is no more than 1/2; in fact it is precisely
1/2 as it can be shown that it achieves at least half of OPT in every instance.

In light of this example, the goal is to find an algorithm with a competitive
ratio strictly better than a half. It turns out that this is a very difficult problem
in general, and the first such algorithm, achieving a slightly improved ratio of
0.5016, was discovered only very recently. Instead, we make the following rea-
sonable practical assumption, which results in a much more tractable problem,
allowing for an algorithm with a much improved competitive ratio, and also
yielding a heuristic with significant impact in practice.

Definition 4. Let ρ = maxi∈[n],j∈[m]
bij
Bi

. In the small-bids assumption, we
assume that ρ is small, i.e., every bid is much smaller than the corresponding
budget. The performance of the algorithms is evaluated as ρ→ 0.

Remark 5. With this assumption, the AdWords problem no longer captures the
online bipartite matching problem. Further, the offline version becomes much
more approximable: solving the corresponding Linear Program optimally yields
an almost integral solution, and the few fractional matches can be discarded
without any significant loss in reward.

Remark 6. Arrival Models. We have not assumed anything about the query
sequence in Definition 2. In the most general model called the adversarial
model, the sequence is allowed to be completely arbitrary (as in Example 1;
we consider this model in Sec. 4). We will also consider stochastic models of
the query sequence (in Sec. 5), in which we can get algorithms with competitive
ratio close to 1.

3 A family of algorithms

In this section we introduce a family of algorithms that are simple, intuitive,
and often give near-optimal competitive ratios.

Definition 7. Auction-based algorithms: These algorithms have an inter-
pretation as an auction, where a query j is allocated to the advertiser with the
highest normalized bid νibij . Each advertiser i maintains a bid normalizer νi,

4

which we may update after each query is matched. Different algorithms in this
family differ on how the normalizers are initialized, and how they are updated.
The spend of the advertiser is still incremented by the original bid bij . The
normalized bid is only used to make the allocation decision.

For the sake of simplicity, if we match query j to advertiser i where bij >
Bi − spendi > 0, we assume that the algorithm’s reward is bij . This may result
in at most a ρ difference in the competitive ratio, because these extra credits
may account for at most a ρ fraction of the algorithm’s revenue. Since we have
made the small-bids assumption, this difference is not significant.

Intuition: Auction-based algorithms have a simple intuition. The bid nor-
malizers provide a simple lever to make the budget of an advertiser last longer:
the lower the normalizer of an advertiser, the fewer the queries matched to the
advertiser, and the longer the budget lasts. They allow us to trade off an im-
mediate gain of bij with a future advantage of keeping the budget of advertiser
i alive.

We can interpret such algorithms as a generalization of the algorithm in
Chapter ??, where the value generated from a match is broken down into a
revenue component and a utility component. In this context, the advertiser can
be thought of as making an offer of νibij (the revenue component) to the query,
and the query chooses the advertiser with the highest offer.

Linear Programming (LP) duality: The family of Auction-based algo-
rithms is not too restrictive because there exist fixed normalizers for each ad-
vertiser such that the resulting algorithm is almost optimal. This fact follows
from the theory of strong LP duality, but we will not prove it here.1 We only use
what is called weak LP duality , to get an upper bound on OPT. The following
is an LP relaxation of the problem, and its dual.

Primal: max
∑
i,j bijxij s.t.

∀ i,
∑
j bijxij ≤ Bi,

∀ j,
∑
i xij ≤ 1,

∀ i, j, xij ≥ 0.

Dual: min
∑
i αiBi +

∑
j βj s.t.

(2)
∀ i, j, αibij + βj ≥ bij ,

∀ i, j, αi, βj ≥ 0.

It is easy to see that the optimal allocation gives a feasible solution to the
primal LP, by letting xij = 1 if and only if query j is matched to advertiser i.
This gives us the following instantiation of weak LP duality, that any feasible
dual solution gives an upper bound on the primal optimal.

Theorem 8. For any feasible solution to the Dual LP, the dual objective func-
tion,

∑
i αiBi+

∑
j βj, is an upper bound on the Primal optimal, which in itself

is an upper bound on OPT.

1The argument involves some delicate tie breaking in degenerate cases, which will be a
digression here.

5

The connection between this pair of LPs and Auction-based algorithms is
via the primal complementary slackness condition:

xij > 0⇒ αibij + βj = bij .

Rewriting this as βj = bij(1 − αi), and the constraint in the Dual LP as βj ≥
bij(1−αi), we see that xij > 0 implies that i must maximize bij(1−αi) among
all advertisers. This is exactly the allocation in an Auction-based algorithm if
we set

νi = 1− αi (3)

Lagrangian Relaxation: Auction-based algorithms are also equivalent to the
algorithms you get using the technique of Lagrangian relaxation. This technique
relaxes a constrained optimization problem to an unconstrained optimization
problem, by moving the constraints into the objective function. A constraint
such as f(x) < c in a maximization problem goes into the objective function as
λ(c− f(x)): thus violating a constraint is penalized. The parameter λ is called
the Lagrangian multiplier, and it is equivalent to the dual variable αi in our
formulation. The objective function of this unconstrained optimization problem
is called the Lagrangian function. We do a partial Lagrangian relaxation, where
we only move the budget constraints into the objective function; this gives the
Lagrangian function

L(x, α) =
∑
i,j

bijxij+
∑
i

αi(Bi−
∑
j

bijxij) =
∑
i,j

bijxij(1−αi)+
∑
i

αiBi. (4)

For a fixed α, this Lagrangian function is now separable over the queries. An
Auction-based algorithm with normalizers νi = 1−αi maximizes this Lagrangian
function for each query j, subject to the constraint

∑
i xij ≤ 1.

Our problem is online, and we don’t know the optimal αi values, therefore
our algorithms will update the αis as we go along.

4 Adversarial model

The classic model of query arrival is the Adversarial or worst-case model. Here,
the algorithm has no advance knowledge about the query-side of the bipartite
graph, and an adversary who knows the algorithm constructs the worst query
sequence. In fact, for a deterministic algorithm like the one we will describe, one
can even imagine the adversary generating each query after seeing the previous
decisions of the algorithm.

The MSVV Algorithm: We present an Auction-based algorithm called MSVV
which has the optimal performance in this model. Recall from Sec. 3, in order
to specify an Auction-based algorithm for the AdWords problem, we need to
define the bid normalizers νi for each advertiser i, over time as the query se-
quence unfolds. At any time t, let spendi denote the current spend of advertiser

6

i. The algorithm takes the normalizer νi at time t as a function of the spend
and its budget Bi, as follows:

νi := 1− e
−
(
1−

spendi

Bi

)
(5)

The algorithm allocates the incoming query j to the advertiser i which maxi-
mizes νibij . After query j gets allocated (say to advertiser i), spendi increases
by bij , and consequently νi gets reduced correspondingly. The algorithm does
not allocate the query to any advertiser if all νibij = 0.

Intuition: Note that initially, ∀ i : spendi = 0 and therefore νi = 1 − 1
e .

Thus the very first query j to arrive will be allocated to the advertiser i with
the highest bid bij . Over time, advertisers who have spent a greater fraction of
their budget will have a lower normalizer, and would have to bid much higher to
get allocated compared to advertisers who have not spent much of their budget.
This trades off the immediate reward from a high bid with the goal of keeping
advertiser budgets available for future queries in which some advertiser may
have a high bid. Once an advertiser i finishes its entire budget, then νi = 0,
and hence it is not allocated any further queries. From a pricing or a bidding
perspective, one can interpret the algorithm as saying that the offer-price or bid
of an advertiser is shaded down dynamically based on the fraction of budget
spent at that time.

One can prove that no matter what the query sequence is, MSVV achieves
a revenue no worse than 1− 1/e ' 0.63 of OPT.

Theorem 9. Algorithm MSVV achieves a competitive ratio of 1−1/e, and this
ratio is optimal among all algorithms, including randomized algorithms.

Proof. We will follow the Primal-Dual LP framework from Sec 3. Recall that
we do not know the LPs in advance, instead they are gradually revealed to us.
We begin with primal and dual solutions x, α, β all set to 0. As we allocate the
queries to advertisers using the algorithm’s rule, we will update the primal and
dual solutions in a way that three invariants hold throughout:

Invariant 1. x is a feasible solution for the (partial) primal LP.

Invariant 2. α, β form a feasible solution for the (partial) dual LP.

Invariant 3. The increase in the primal objective function is a 1 − 1/e
fraction of the increase in the dual objective.

Note that the primal objective achieved at the end is precisely the algorithm’s
revenue. Thus, these invariants along with Theorem 8 immediately imply a
1− 1/e competitive ratio:

ALG = Primal ≥ (1− 1/e) Dual ≥ (1− 1/e) Primal optimal ≥ (1− 1/e) OPT

7

It remains to define the updates which go hand-in-hand with the algorithm
decisions. Define ζ := 1

1−1/e . If the algorithm allocates an incoming query j to

an advertiser i, then we set xij and βj , and increase αi as follows:

xij = 1, βj = ζνibij , ∆αi = 1
Bi
ζ(1− νi)bij (6)

We are ready to prove that the three invariants hold:
- Invariant 1 holds by the choice of the algorithm: it does not allocate a

query to any advertiser who does not have sufficient budget remaining.
- Invariant 3 holds because the value of the primal LP increases by bij , while

that of the dual LP increases by ∆αiBi + βj = ζ(1− νi)bij + ζνibij = ζbij .
- Invariant 2 will be shown to hold iteratively: assuming that existing dual

constraints are satisfied until the time some query j∗ arrives (and is allocated to
some advertiser i∗), we show that the update after query j∗ keeps them feasible.
Consider such a constraint for advertiser i and query j:

αibij + βj ≥ bij

For a constraint pertaining to a previously arrived query j 6= j∗ and some i,
the βj remains unchanged, while the update for query j∗ can only potentially
increase αi (and only for i = i∗). This keeps the inequality satisfied.
Thus the only interesting constraints are the ones corresponding to the new
query j∗. For this, we will compute (for any i) the value of αi after j∗ has been
allocated. Using spendji and νji to denote the value of spendi and νi at the time
j arrives, we get, using the update rule from (6) and the algorithm’s choice of
normalizer from (5):

αi =
∑

j≤j∗: xij=1

1
Bi
ζ(1− νji)bij =

∑
j≤j∗: xij=1

1
Bi
ζe
−
(
1−

spendj
i

Bi

)
bij

With the small-bids assumption, we can approximate this by an integral, giving:

αi =

∫ spendj∗
i

x=0

1
Bi
ζe
−
(
1− x

Bi

)
dx =

e
spendj∗

i

Bi − 1

e− 1
= 1− ζνi (7)

Since i∗ is the advertiser maximizing νibij , we also have, from (6):

βj∗ = ζνi∗bi∗j∗ ≥ ζνibij∗ , ∀i (8)

From (7) and (8), we get ∀i : βj∗ ≥ (1 − αi)bij∗ , thus proving the dual con-
straints corresponding to j∗ are also satisfied after j∗ is allocated.

Optimality: To prove that no other algorithm can achieve a better competitive
ratio, we find a distribution over input instances, and show that no deterministic
algorithm can achieve a revenue better than a 1 − 1/e fraction of OPT, in
expectation over this distribution, and then use the Minimax theorem to prove

8

the desired optimality statement. While we leave the details as out of scope,
we mention that this is the same approach as used in Chapter ?? to prove
optimality in the basic online bipartite matching problem, and the distribution
over instances also turns out to be very similar to the one used there.

Remark 10. As opposed to an offline algorithm which has access to an optimal
set of normalizers ν∗ (as in Sec. 3), MSVV has to update its normalizers as
the query sequence unfolds. The function (5) computes the normalizer as a
function of the spend, and can be considered to be an online approximation to
the optimal ν∗ for every instance. Since we can only hope to find an approximate
dual, it also turns out that the relation between the dual αi and the normalizer
νi in (7) is a scaled version of the optimal relation (3).

5 Stochastic models

The adversarial model requires that the algorithm hedge against all possible
inputs. As a result the MSVV algorithm can be sub-optimal for benign instances
that are likely to occur in real applications. Real world instances often follow
repeated patterns, therefore an algorithm that uses historic data can get a better
revenue. With simple stochastic assumptions about the arrival of queries, we
can breach the 1− 1/e upper bound on the competitive ratio in the adversarial
model. The most significant result here is that the competitive ratio approaches
1 as the bid to budget ratio tends to 0. In this section, we demonstrate one
such algorithm in the following stochastic model, which is similar to the model
for the “Secretary problem” discussed in Chapter ??.

Definition 11. In the Random permutation model , we assume that an adver-
sary still picks the set of queries, the advertiser bids, and budgets, but the order
of arrival is permuted uniformly at random. This does not change OPT, but
we now measure the algorithm’s performance in expectation over this random
permutation.

While we are interested in algorithms which achieve a ratio approaching 1,
we note here that even the algorithms that we have already seen perform better
in this model. The simple highest-bidder strategy now achieves a competitive
ratio of 1− 1/e, and MSVV achieves a ratio of at least 0.76.

Compared to the adversarial model, we make two additional assumptions.
The first is required for the results, while the second is for ease of exposition.

Additional assumptions:

• We assume that the number of queries m is known to the algorithm;
without such an assumption, no algorithm can get a competitive ratio
that approaches 1 as the bid to budget ratio tends to 0. We also assume
that m is large enough: m ≥ 1/ρ (recall that ρ is the bid to budget ratio,
defined in Section 2).

9

• For simplicity of exposition, we assume that we know OPT. In fact, it is

sufficient to have an estimate ÔPT such that OPT ≤ ÔPT ≤ cOPT for
some universal constant c. We will prove a competitive ratio of the form
1 − O(ε), and the constant c appears inside the O(ε) term. We can get
such an estimate from the first ε fraction of the queries. Ignoring these
queries decreases the competitive ratio by an additional ε factor.

A control mechanism: We use an Auction-based algorithm. In contrast to
update (6), the normalizers can both increase as well as decrease. The update
acts as a control mechanism, trying to maintain a constant rate of budget spent.
If the budget of an advertiser is spent too quickly, it decreases the normalizer,
resulting in fewer queries matched, and a lower rate of spend; conversely, if the
budget is not spent quickly enough, it increases the normalizer. To determine
the precise update formula, we use the multiplicative weight update (MWU)
algorithm for what is known as the learning from experts problem. We define
these next.

Definition 12. Learning from experts is another online problem, where there
are N experts, and in each round t ∈ [T], each expert i ∈ [N] gets a reward
of ri,t. The algorithm has to pick one expert in each round and gets the same
reward as that expert, but it has to choose the expert before seeing the rewards.
The goal is to maximize the total reward of the experts picked in all the rounds,
in order to minimize the regret, which is the difference between the expected
reward of the algorithm and the reward of the best single expert in hindsight.

The MWU algorithm: The MWU algorithm is randomized : it picks expert
i in round t with probability θi,t. The algorithm maintains a weight for each
expert, which are all initialized to 1. After each round, the weights are updated
multiplicatively with an exponent proportional to the rewards. The probabilities
θi,t are normalized versions of the weights wi,t, so that they sum up to 1. Let
ε ∈ [0, 1/2] be a parameter of the algorithm. The update is

wi,t+1 =

{
wi,t(1 + ε)ri,t if ri,t ≥ 0.
wi,t(1− ε)−ri,t if ri,t < 0.

(9)

The MWU algorithm has the following regret guarantee.

Theorem 13. Suppose that the rewards are all in [−1, 1]. For any expert i ∈
[N], we have that ∑

t∈[T],i∈[N]

θi,tri,t ≥
∑
t

ri,t − ε
∑
t

|ri,t| −
lnN

ε
. (10)

The Algorithm: We abuse notation and denote the query that appears at
time step t as j(t); here j(·) is a random permutation of [m]. We denote xij = 1
to indicate that the algorithm matched query j to advertiser i, and set xij = 0

10

otherwise. We have one expert for each advertiser, and an additional expert
that corresponds to not matching the query to anyone, i.e., N = n+ 1. We set
the rewards as follows.

∀i ∈ [n], ri,t =

(
bi,j(t)xi,j(t)

Bi
− 1

m

)
1

ρ
. (11)

The scaling by 1/ρ makes the rewards as large as possible while still keeping
them in [−1, 1]. The reward of the expert n + 1 is always 0. We can see that
the cumulative reward at any time is proportional to the difference between the
fraction of the budget spent and the fraction of the time elapsed.

The Lagrange multipliers in an Auction-based algorithm capture the trade-
off between the opportunity to increase the objective vs. the risk of violating a
constraint, but the θi,ts being a probability distribution do not have the right
scale. We define αi,t by multiplying θi,t by a factor of OPT, to get it to the
scale of the objective, and dividing by Bi, to capture the scale of the constraint.

αi,t :=
θi,tOPT

Bi
. (12)

As mentioned in Section 3, the normalizer is νi,t = 1− αi,t. When all the αi,ts
are greater than 1, we do not match the query to any advertiser.

Initialize parameter ε ∈ [0, 12].
Initialize for all i ∈ [n+ 1], θi,1 and wi,1 as in the MWU algorithm.
for all t = 1, ...,m do

For all i ∈ [n], set αi,t as in (12).
if ∀i ∈ [n], αi,t > 1 then

Set xi,j(t) = 0 for all i ∈ [n].
else

Let i∗ be the highest normalized bidder, arg maxi∈[n] bi,j(t)(1− αi,t).
if Matching j(t) to i∗ exceeds their budget then

Exit.
else

Match j(t) to i∗. Set xi∗,j(t) = 1, and xi,j(t) = 0 for all i 6= i∗.
end if

end if
∀i ∈ [n], set rewards ri,t as in (11). Set rn+1,t = 0.
Update wi,t+1, θi,t+1 as in the MWU algorithm (9).

end for
Algorithm 1: Algorithm for Random permutation model

Intuition: While it may seem counter-intuitive that spending more results
in higher rewards, notice that a higher probability θi,t of picking an expert i
leads to a lower normalizer νi,t, which is the desired direction of change. The
Lagrangian interpretation of this is that a higher spend results in a higher

11

chance of violating the constraint, and therefore we should increase the penalty
αi. For advertisers that are budget constrained, the algorithm tries to keep
the fraction of budget spent close to the fraction of time elapsed. For the rest
of the advertisers, we expect a negative reward on average, which drives the
weight down to zero, and the normalizer to one; clearly, there is no benefit from
discounting the latter’s bid.

Let ALG denote the objective realized by Algorithm 1. The following the-
orem shows that it achieves a competitive ratio of 1− o(1).

Theorem 14. In the random permutation model, for any ε ∈ [0, 12] such that
ε2 ≥ ρ ln(n + 1), we have that E [ALG] ≥ OPT(1 − O(ε)), i.e., there is a
universal constant c such that E [ALG] ≥ OPT(1− cε).

Proof. For the sake of simplicity, we analyze the algorithm assuming that the
queries are sampled with replacement, instead of sampling without replacement
as in the random permutation model. In the rest of this proof, we assume that
each query j(t) is an i.i.d. sample from the set [m] of all queries. Handling sam-
pling without replacement results in additional terms that can also be bounded
by O(ε)OPT, but this is outside the scope of this chapter.

Let x∗i,j denote the offline optimal matching. Let T be the last query that
we succesfully matched, i.e., matching query j(T + 1) would exceed the chosen
advertiser’s budget. If this never happens, then let T = m. The proof is broken
down into 3 steps.

1. Auction: Since for each t ∈ [T], the algorithm matches the query j(t) to
the advertiser with the highest normalized bid (1 − αi,t)bi,j(t), the normalized
bid of the advertiser matched to j(t) in the offline optimal matching is only
lower: ∑

i∈[n]

bi,j(t)(1− αi,t)xi,j(t) ≥
∑
i∈[n]

bi,j(t)(1− αi,t)x∗i,j(t).

Summing up this inequality over all t ∈ [T], and noting that ALG =
∑
t∈[T],i∈[n] bi,j(t)xi,j(t),

we have that

ALG ≥
∑

t∈[T],i∈[n]

(
bi,j(t)(1− αi,t)x∗i,j(t) + bi,j(t)αi,txi,j(t)

)
. (13)

2. Stochasticity: The assumption of sampling queries with replacement
helps us replace the terms corresponding to the offline optimal matching in
(13) with their expectation.

For each i and t, conditioned on all the queries that appeared up to time
t − 1, the expectation of bi,j(t)x

∗
i,j(t) is less than Bi

m . This is because each new

draw is independent of everything that came before, and
∑
j∈[m] bijx

∗
i,j ≤ Bi.

Similarly, for each t, the expectation of
∑
i∈[n] bi,j(t)x

∗
i,j(t) is 1

mOPT. Taking
expectations, and using these to replace the terms corresponding to the optimal

12

allocation in (13), we have that

E [ALG] ≥ E

 T
m
OPT +

∑
t∈[T],i∈[n]

αi,t

(
bi,j(t)xi,j(t) −

Bi
m

) . (14)

3. The MWU guarantee: After proper scaling, the second term inside the
expectation on the RHS in (14) is exactly the reward of the MWU algorithm,
which we can bound using the regret guarantee in Theorem 13. In fact, we
can bound these terms with probability 1, and not just in expectation, to show
that the RHS of (14) is at least (1−O(ε))OPT. This bound is summarized in
Lemma 15, which completes the proof.

Lemma 15.

T

m
OPT +

∑
t∈[T],i∈[n]

αi,t

(
bi,j(t)xi,j(t) −

Bi
m

)
≥ (1−O(ε))OPT.

Proof. The main idea behind this proof is to apply the regret guarantee for
the MWU algorithm as stated in Theorem 13, by suitably choosing the expert
to compare with. The rewards for the experts problem have been defined so
that the second term in the LHS in the lemma statement is proportional to the
expected reward of the MWU algorithm. This follows from using the definition
of αi,t and ri,t:∑

t∈[T],i∈[n]

αi,t

(
bi,j(t)xi,j(t) −

Bi
m

)
=

∑
t∈[T],i∈[n]

Biαi,t

(
bi,j(t)xi,j(t)

Bi
− 1

m

)
= ρOPT

∑
t∈[T],i∈[n]

θi,tri,t. (15)

Next, using Theorem 13, we can relate it to the reward of any one expert
i′ ∈ [n+ 1].

ρOPT
∑

t∈[T],i∈[n]

θi,tri,t ≥

∑
t∈[T]

(ri′,t − ε|ri′,t|)− ln(n+1)
ε

 ρOPT

≥

∑
t∈[T]

(ri′,t − ε|ri′,t|)

 ρOPT− εOPT (16)

Inequality (16) follows from the fact that ε2 ≥ ρ ln(n + 1), as assumed in the
hypothesis of Theorem 14. Now comes the main part, where we instantiate the
choice of expert i′ appropriately, so that the RHS of (16) is at least (1−O(ε)−
T
m)OPT. We consider 2 cases, where we choose either the expert whose spend
exceeds the budget, or the n+1st expert, when no advertiser runs out of budget.

13

Case 1, no advertiser runs out of budget: T = m. In this case, we choose
i′ = n+ 1, for whom the rewards are always zero. We therefore have that∑

t∈[T]

(ri′,t − ε|ri′,t|) = 0 ≥ 1− ε− T
m ,

because T = m. Hence, the lemma follows.

Case 2, some advertiser runs out of budget: In this case, the algorithm
stops because in time step T + 1, matching j(T + 1) as per the algorithm would
exceed the chosen advertiser’s budget. Let this advertiser be i′. From the
definition of ρ, we have that advertiser i′ has spent at least a 1 − ρ fraction of
their budget: ∑

t∈[T]

bi′,j(t)xi′,j(t) ≥ Bi′ − bi′,j(T+1) ≥ Bi′(1− ρ). (17)

From the definition of the reward in (11), this implies that ρ times the total
reward of expert i′ up to time T is at least 1 − ρ − T

m ≥ 1 − ε − T
m , because

as per the hypothesis in Theorem 14, we have that ρ ≤ ε2/ log n < ε. If (16)
only had the reward terms, we would be done, but we also need to bound the
terms ε|ri′,t|. Nonetheless, a similar argument works. From the definition of the
reward in (11), and triangle inequality,

|ri′,t|ρ ≤
bi′,j(t)xi′,j(t)

Bi′
+

1

m

⇒ (ri′,t − ε|ri′,t|)ρ ≥ (1− ε)
bi′,j(t)xi′,j(t)

Bi′
− 1 + ε

m
.

Summing this over all t ∈ [T], and using (17), we get that∑
t∈[T]

(ri′,t − ε|ri′,t|)ρ ≥
∑
t∈[T]

(
(1− ε)

bi′,j(t)xi′,j(t)

Bi′
− 1 + ε

m

)

≥ (1− ε)(1− ρ)− (1 + ε)
T

m

≥ 1− 3ε− T

m
,

where the last inequality is true because ρ ≤ ε and T ≤ m. This implies that
the RHS of (16) is at least (1− 4ε− T

m)OPT. The lemma follows.

6 Packing mixed integer linear programs

Besides the AdWords problem, there are a variety of problems that arise in
the space of ad allocation, mostly because of different types of constraints and

14

input models. In one variant, instead of a budget constraint, we have a capacity
constraint: a limit on the number of matches to an advertiser. Such constraints
occur widely in display advertising, which refers to banner ads shown on web
pages and apps. The capacity constraint gives rise to the problem of online edge
weighted bipartite matching problem. A 1− 1

e worst case competitive algorithm
for this problem, with a free disposal assumption, is presented in Chapter ??.
In this section we present a general class of problems that captures many such
variants.

Packing Mixed Integer Linear Programs (Packing MILPs): In this
abstraction, each j ∈ [m] corresponds to a request for ad allocation. We have
local constraints (20) that specify all the different ways we may fulfill this re-
quest. We abstract these local constraints by saying that the vector (xij)i∈[n]
belongs to the set Aj ; this is typically modeled as a mixed integer-linear con-
straint. More generally, this set could be any discrete or continuous set, and we
abstract out the details by requiring that we have a computationally efficient
algorithm that maximizes a linear objective function over this set. We assume
that not fulfilling a request is always an option, by requiring that the 0 vec-
tor is always in Aj . The equivalent of the small bids assumption here is that
Aj ⊆ [0, ρ]n. The global constraints (19) tie the different ad allocation requests
together in the form of packing constraints. We consider a normalized version
of these constraints, where the right hand side values are all 1s. Such a problem
is captured by the following mathematical program.

Maximize
∑

i∈[n],j∈[m]

vijxij subject to: (18)

∀i ∈ [n],
∑
j∈[m]

xij ≤ 1 (19)

∀j ∈ [m], (xij)i∈[n] ∈ Aj ⊆ [0, ρ]n (20)

Matching problems as special cases: In the AdWords problem, the global
constraints are the budget constraints. The local constraint is that a query may
be matched to at most one advertiser. This is modeled by defining Aj to be
a set of n + 1 vectors in n dimensions, where the ith vector has the bid as a
fraction of the budget for the ith advertiser in the ith dimension, and 0 for all
other dimensions. The n + 1st vector is the 0 vector. In the edge weighted
bipartite matching problem, the global constraints are the capacity constraints,
and the local constraints are matching constraints. The set Aj is a set of n+ 1
vectors in n dimensions, where the ith vector has the inverse of the capacity of
the ith advertiser in the ith dimension, and 0 for all other dimensions, with the
n+ 1st vector being 0.

An algorithm for the stochastic model: For the class of Packing MILPs,
it is impossible to get any constant factor approximation in the adversarial

15

model without problem specific assumptions such as in the edge weighted match-
ing with free disposal problem. In the stochastic model, we can generalize the
algorithm from Sec. 5 to achieve a 1 − O(ε) competitive ratio. The algorithm
follows an identical framework. As before, we assume that we know OPT. We
again use the MWU algorithm as a subroutine, with n+ 1 experts, one for each
constraint, and one corresponding to not fulfilling the request. At any time
t ∈ [m], we maintain Lagrange multipliers αi,t for each i ∈ [n], by scaling the
probability θi,t of playing expert i ∈ [n] as per the MWU algorithm, as fol-
lows: αi,t := OPTθi,t. We choose the vector (xij)i∈[n] ∈ Aj by maximizing the
Lagrangian function restricted to that request:∑

i∈[n](vij − αi,t)xij .

If at any time, this choice causes a constraint to be violated, then we skip
fulfilling this and all subsequent requests. Otherwise, we set the reward of
expert i ∈ [n] as follows, and update the expert probabilities for the next step
using the MWU algorithm. The reward of expert n+ 1 is always 0.

∀i ∈ [n], ri,t =
(
xi,j(t) − 1

m

)
1
ρ . (21)

We can show that this algorithm is 1 − O(ε) competitive for the random per-
mutation model. The theorem statement and proof are very similar to that of
Thoerem 14; a detailed presentation is outside the scope of this chapter.

7 Autobidding: A decentralized approach to match-
ing

So far, we have framed ad allocation as a centralized matching problem, in
which the auctioneer factors advertiser budgets into the matching decisions.
In this section, we take a different view of the problem: here, the auctioneer
runs a simple auction for each query, and does not even have knowledge of the
budgets. Instead, the constraints are managed via autobidding. As opposed to
manual bidding in which an advertiser specifies a per-keyword bid, an autobid-
ding system allows advertisers to express their high level goals and constraints,
and automatically translates those into per-auction bids.

We will first formalize this problem (Sec. 7.1) and present an optimal bidding
algorithm from one advertiser’s point of view (Sec. 7.2). We then connect this
back to the matching problem, and present analytical results on the quality of
the matching derived in such a decentralized approach (Sec. 7.3).

7.1 Formulation of autobidding under constraints

We present a very general formulation of the autobidding problem, but it is
useful to keep in mind an important motivating example called Target Cost-
per-Acquisition (henceforth, TCPA). Here the advertiser’s goal is to maximize
the acquisitions (sales derived from the ad campaign, also known as conversions),

16

subject to an upper bound on the average cost-per-acquisition (CPA). The upper
bound (itself called the target-CPA) will be denoted as T .

Fix an advertiser for whom we are designing the bidding agent. Let pj be
the price of an ad on query j for this advertiser (for simplicity, we will assume
in this chapter that there is only a single ad-slot per query). Note that pj
depends on the bids of the other advertisers who may themselves be solving
such an optimization problem via a bidding agent; we will visit this interaction
in Sec. 7.3. For now assume that the price pj of each query j is fixed. We
further assume for now that we know the entire query sequence in advance, as
well as the values of the pjs. Then, we can formulate the following selection
problem, i.e., which queries would the advertiser like to buy so as to maximize
their objective while staying within their constraints.

Consider the following abstract LP (on the left) with a set of constraints
indexed by C, and non-negative constants vj , B

c, and wcj , for queries j and
constraints c ∈ C. The xj are decision variables for whether or not to buy query
j at a cost of pj . The constant vj stands for the value that the advertiser derives
from the ad on query j, and the other constants are set to capture the different
constraints. The LP on the right is its dual, which we will use shortly.

Maximize
∑
j vjxj s.t. (22)

∀c ∈ C :
∑
j pjxj ≤ B

c +
∑
j w

c
jxj

xj ≤ 1 (23)

xj ≥ 0

Minimize
∑
j δj +

∑
c αcB

c s.t. (24)

∀ j : δj ≥
∑
c αc(w

c
j − pj) + vj (25)

∀ j : δj ≥ 0

∀ c ∈ C : αc ≥ 0

Note that this is a fractional version of the selection problem, not integral
(xj ∈ {0, 1}). We will disregard this difference, since an optimal solution for an
instance in general position has at most |C| non integral xj which can be set to
0 without much loss in objective value or constraint violation for large markets.

Examples: This primal LP captures a wide range of autobidding strategies
that are offered to advertisers. For example, TCPA is a special case: Let cvrj
denote the conversion-rate, which is the probability that an ad for the advertiser
on query j results in a conversion; this prediction is made by a machine learning
system at the time when query j arrives. Then the objective is obtained by
setting vj = cvrj , and the TCPA constraint by setting the corresponding Bc = 0
and wcj = T · cvrj . As a further example, we can add a budget constraint by
setting the corresponding Bc as the budget and wcj = 0.

7.2 Optimal bidding algorithm

We now leverage the LP formulation to come up with a bidding formula which
can achieve the same optimal choice of queries as in the selection problem. The

17

dual constraint (25) can be re-written as:

∀ j :
δj∑
c αc

≥
(
vj +

∑
c αcw

c
j∑

c αc
− pj

)
(26)

We will use the right-hand side (rhs) of (26) as our bidding formula (assuming
we know an optimal dual solution). Set the bid for query j to be

bid(j) :=
vj +

∑
c αcw

c
j∑

c αc
(27)

Theorem 16. Assuming that we have access to optimal values of the dual
variables αc, the bid formula (27) results in an auction outcome identical to an
optimal primal solution xj, if the underlying auction is truthful.

Proof. With this bid, if the advertiser wins the query j in the auction, that
means that the rhs of (26) is positive (ignoring ties), and therefore δj > 0 in
the optimal solution to the LP. By complementary slackness conditions, noting
that δj is the dual variable for the primal constraint (23), the following holds in
an optimal solution: δj > 0⇒ xj = 1. Thus, the bid only wins queries j which
are in the optimal primal solution.

On the other hand, if the advertiser loses query j in the auction, this means
the the rhs of (26) is negative, and since δj ≥ 0, the constraint (26) can not
be tight. Again by complementary slackness condition, noting that xij is the
primal variable corresponding to this constraint, we get that xij = 0 in the
optimal primal solution. Thus, the advertiser’s bid does not lose any queries
from the optimal selection.

In summary, since the underlying auction is truthful, the advertiser wins
precisely the auctions in which the bid (27) is at least the price (highest bid
among other bidders), and also wins precisely the queries chosen by the optimal
primal solution.

Remark 17. Note that while we have presented the simple case of one ad-slot
per query, the proof holds more generally, e.g., in a position auction when the
advertiser’s ad can be placed in one of multiple ad-slots in a query. The optimal
bid results in both selecting the highest utility option (due to the truthfulness
of the auction), and making the same selection as the optimal primal solution
(due to the complementary slackness conditions).

Examples: For TCPA, with αT as the dual for the TCPA constraint, we get:

bidTCPA(j) =

(
T +

1

αT

)
cvrj (28)

Adding a budget constraint to TCPA gives another dual variable αB yielding

bid(j) =

(
1 + T · αT
αT + αB

)
cvrj

18

The bid formula depends on the knowledge of the optimal duals αc. In
practice, the duals can be estimated from past data logs, and updated online in
a control loop depending on the state of the corresponding constraint. In fact
LP (22) is a special case of the MILP (18) in Sec. 6, therefore we can use the
algorithm from that section.

7.3 The price of anarchy: sub-optimality of the decentral-
ized approach

We now ask what would happen if all advertisers use the optimal autobidding
agents to bid. What would be the efficiency of the eventual matching? This is
tricky to answer because each advertiser’s bidding LP depends on all the other
advertisers’ LPs, as the price pj is determined from all the bids in the auction
for j. For ease of exposition, we restrict the analysis in this section to the
special case of TCPA autobidding; a slightly more involved analysis works for
the general autobidding LP (22).

Firstly, it can be shown that under a large market assumption, an equilibrium
does exist for any setting of advertiser target-CPA values. That is, if each
advertiser uses the bidding formula (28) to convert their target-CPA value to
auction bids, then there is a stable outcome: a set of dual variables which are
consistent with each other via the auction prices. The proof is via an application
of Brouwer’s fixed point theorem and we do not include it here. The question
we are interested in is, what is the loss in efficiency of the matching produced by
this decentralized (bidding- and auction-based) system, compared to an optimal
centralized matching solution. For this we need to define the metric for efficiency
of a matching in this setting.

Constrained Welfare: Since each advertiser in TCPA autobidding aims to
maximize the number of conversions, a natural efficiency metric would be the
total number of conversions across all the advertisers. However, this turns
out not to be a very useful metric. This is because matchings obtained via
bidding and auction have to satisfy the advertisers’ spend constraints, while an
optimal matching can achieve a very high value by allocating queries for free. For
example, if there is an advertiser with a high conversion-rate for all queries but
with very stringent constraints on spend then the optimal matching can achieve
an unreasonably high objective by allocating all queries to this advertiser for
free. To bring the comparison between an optimal matching and an auction-
implemented matching to common ground, we introduce the constrained welfare
of a matching, defined for the general bidding LP (22) as follows.

Definition 18.

Constrained Welfare :=
∑
i∈[n]

min
c∈C

(Bci +
∑
j

wcijxij)

Here, recall that [n] is the set of advertisers, and C is the set of constraints. The
xij are the decision variables for whether query j gets matched to advertiser i,

19

and the Bci and wcij are the constants in the ith advertiser’s LP. The definition
takes the smallest right-hand side of the constraints for each advertiser and adds
them up. Noting that all the left-hand sides are the spends of the advertisers,
we can see that this captures the maximum willingness to spend for any given
matching. Note that for the special case of TCPA autobidding, this becomes:

Constrained Welfare (TCPA) =
∑
i∈[n]

T (i) ·
∑
j

xijcvrij (29)

where T (i) is the target-CPA bound for advertiser i, and cvrij is the conversion
rate for i’s ad on query j. This is the total target-CPA-weighted conversions,
which is intuitively the correct aggregation of conversions across advertisers.

Definition 19. With this definition of welfare, we can now define our sub-
optimality measure, the Constrained Price of Anarchy as:

CPoA := max
I∈I

min
EQ(I)

CW(OPT(I))

CW(EQ(I))

Here I is the set of all possible instances, CW denotes constrained welfare,
OPT(I) is the matching which maximizes CW for I, and EQ(I) denotes the
set of matchings achieved in any equilibrium of the decentralized approach. We
can now bound sub-optimality of the equilibrium matching.

Theorem 20. For the general autobidding setting (LP(22)), CPoA ≤ 2.

Proof. As mentioned earlier, for simplicity of exposition, we will only prove this
here for the special case of TCPA. Fix an optimal matching OPT and any
equilibrium matching EQ. Let Q1 be the set of queries which EQ allocates to
the same advertiser as OPT does, and let Q2 be the rest of the queries. Denote
the contribution to the CW (as defined in (29)) from a subset Q of queries
in OPT and in EQ as CW(OPT | Q) and CW(EQ | Q) respectively. By
definition, the contribution of Q1 is identical for EQ and OPT. Thus

CW(EQ) ≥ CW(EQ | Q1) = CW(OPT | Q1) (30)

Define spendeq(i) as the total spend of advertiser i in the equilibrium solution,
and spendeq(j) as the spend on query j in the equilibrium solution. Let optb(j)
denote the advertiser to which OPT matches query j. For queries in Q2, the
following holds:

CW(EQ) ≥
∑
i∈[n]

spendeq(i) =
∑
j∈Q

spendeq(j) ≥
∑
j∈Q2

spendeq(j)

≥
∑
j∈Q2

bid(optb(j), j) ≥
∑
j∈Q2

T (optb(j)) · cvr(optb(j), j)

= CW(OPT | Q2) (31)

The first inequality is from the general definition of CW (Def. 18) and the
constraints in the LP. The third inequality is because the advertiser optb(j)

20

is one of the price setters for j and we have a second price auction. The last
inequality is from the bidding formula (28) for the advertiser optb(j). The last
equality is from the definition of CW for TCPA (29). Adding up (30) and (31)
completes the proof.

Price of Anarchy for budgeted matching: For the case where we only
have a budget constraint, Constrained Welfare is just the sum of the budgets,
which is a constant independent of the matching. For this case, we consider a
different way of aggregating the values of advertisers, called the Nash welfare:
it is the budget weighted geometric mean of the values. Let Vi be the total value
that the player i gets in the matching, then Nash welfare is defined as

∏
i∈[n]

V

Bi∑
j∈[n] Bj

i

As mentioned earlier, the reported values of advertisers with different bud-
gets are not directly comparable. Nash Welfare elegantly handles this issue with
the following nice invariance property: if we multiply all the values of any one
advertiser i by a constant c, the Nash welfare of every matching that gives a

non zero value to advertiser i gets multiplied by c
Bi∑

j∈[n] Bj . Thus, such a scaling
of values would have no affect on the Price of Anarchy. We can show that the
price of anarchy w.r.t. Nash welfare is also 2. The proof is similar in spirit to
that of Theorem 20, therefore we do not include it here.

Theorem 21. The Price of Anarchy with respect to Nash welfare for budgeted
matching is at most 2.

7.4 Equilibrium dynamics under different auctions

If each advertiser uses an algorithm to adjust bids independently, would we
eventually reach an equilibrium, or perhaps just go around in cycles? Would we
only reach some equilibria, and not others? Even if we do reach an equilibrium
eventually, how long would it take to get there? Recently, it was shown that it
is PPAD-Hard to find one of these equilibria, which indicates that it is unlikely
that such dynamics will always reach an equilibria in polynomial time. Beyond
that, these questions are largely unanswered. We illustrate some of these issues
for a specific example in Figure 2. We consider the budgeted matching setting,
with two advertisers. Each of them has a Lagrange multiplier αi which they
update in a manner similar to the algorithm for the random permutation model:
decrease αi if spend is under budget, and increase αi if spend is over budget.
The axes in the figure are the αis, and the arrows show the direction of such an
update. Each dark line is the contour of αis where one of the two advertisers
spends exactly his budget. The intersections of the two dark lines are exactly
the set of equilibria. There are three equilibria, but the one at the center is
not stable, i.e., if you perturb this equilibrium by a small amount, then the

21

Figure 2: Equilibria in shaded re-
gions are unstable in second price
auctions.

Figure 3: Dynamics converge to the
unique equilibrium in first price auc-
tions.

dynamics would move away from it. Thus the dynamics would never converge
to this equilibrium, even though the instance is symmetric and this is the only
symmetric equilibrium.

The shaded region characterizes when equilibria are stable vs. not. The
shaded region only depends on the values, but not the budgets. As we change the
budgets, the direction of the updates, and hence the locations of the equilibria
change. Whenever an equilibrium happens to be in the colored region, it is
unstable, and when it is in the white region, it is stable. Other (empirical)
observations are that there are an odd number of equilibria, and they alternate
between being stable and unstable.

Figure 3 shows a similar plot when we use a first price auction. Here we
have a unique equilibrium, and the dynamics converge to this equilibrium. This
can be proven formally via a potential function, where the dynamics become
equivalent to gradient descent for this potential function.

8 Bibliographic notes

The AdWords problem was introduced in Mehta et al. (2007) which also pro-
vided the optimal MSVV algorithm in the adversarial model. The proof was
combinatorial, based on their notion of tradeoff-revealing LPs. Subsequently
the connection to online Primal Dual algorithms was made in Buchbinder et al.
(2007). The hardness of the offline problem without the small-bids assump-
tion was proved in Chakrabarty and Goel (2010). The first online algorithm
achieving a competitive ratio better than a half (0.5016) for the general prob-
lem without the small-bids assumption was provided in Huang et al. (2020).
The stochastic random order model for AdWords was introduced in Goel and
Mehta (2008) which showed that the Greedy algorithm achieves a competitive

22

ration of 1 − 1/e. The first asymptotically optimal algorithm for the random
order model was provided in Devanur and Hayes (2009), who also showed that
we need to know the number of queries m to get such an algorithm. The Display
Ads problem and the generalization to packing MILPs was introduced in Feld-
man et al. (2010); Agrawal et al. (2014). The idea of using the experts problem
to solve packing LPs online was introduced in Gupta and Molinaro (2014). The
algorithm and analysis in Sec. 5 are adapted from Agrawal and Devanur (2014),
who generalized this to convex programming. Theorem 13 on the regret guar-
antee for MWU is from Arora et al. (2012). The automated machine learning
of the algorithms was introduced in Kong et al. (2018); Zuzic et al. (2020). The
formulation and results in Sec. 7 were provided in Aggarwal et al. (2019), and
the results on the budgeted case in Devanur et al. (2020). The latter also stud-
ied the equilibrium dynamics in the budgeted case presented in Sec. 7.4. The
PPAD-hardness of finding an equilibria in budgeted second price auctions is due
to Chen et al. (2021). For a more comprehensive survey of models and results
for ad allocations, see Mehta (2013).

Estimates of advertising spend in the introduction are taken from eMarketer
(2020). The section on auto-bidding algorithms is motivated by performance-
based autobidding products and strategies provided by most internet advertising
companies, e.g., Google (2021).

References

Aggarwal, Gagan, Badanidiyuru, Ashwinkumar, and Mehta, Aranyak. 2019.
Autobidding with Constraints. Pages 17–30 of: International Conference on
Web and Internet Economics. Springer.

Agrawal, Shipra, and Devanur, Nikhil R. 2014. Fast algorithms for online
stochastic convex programming. Pages 1405–1424 of: Proceedings of the
twenty-sixth annual ACM-SIAM symposium on Discrete algorithms. SIAM.

Agrawal, Shipra, Wang, Zizhuo, and Ye, Yinyu. 2014. A dynamic near-optimal
algorithm for online linear programming. Operations Research, 62(4), 876–
890.

Arora, Sanjeev, Hazan, Elad, and Kale, Satyen. 2012. The multiplicative weights
update method: a meta-algorithm and applications. Theory of Computing,
8(1), 121–164.

Buchbinder, Niv, Jain, Kamal, and Naor, Joseph Seffi. 2007. Online primal-dual
algorithms for maximizing ad-auctions revenue. Pages 253–264 of: European
Symposium on Algorithms. Springer.

Chakrabarty, Deeparnab, and Goel, Gagan. 2010. On the approximability of
budgeted allocations and improved lower bounds for submodular welfare max-
imization and GAP. SIAM Journal on Computing, 39(6), 2189–2211.

23

Chen, Xi, Kroer, Christian, and Kumar, Rachitesh. 2021. The Complexity of
Pacing for Second-Price Auctions. CoRR, abs/2103.13969.

Devanur, Nikhil, Lykouris, Thodoris, and Tardos, Eva. 2020. Bid Shading Equi-
libria under Budget Constraints: Dynamics and the Price of Anarchy.

Devanur, Nikhil R, and Hayes, Thomas P. 2009. The AdWords problem: online
keyword matching with budgeted bidders under random permutations. Pages
71–78 of: Proceedings of the 10th ACM conference on Electronic commerce.

eMarketer. 2020. Worldwide Digital Ad Spending. https://forecasts-na1.

emarketer.com/5a4d1e53d8690c01349716b8/5a4d1bcfd8690c01349716b6.
Accessed: 2021-03-27.

Feldman, Jon, Henzinger, Monika, Korula, Nitish, Mirrokni, Vahab S, and Stein,
Cliff. 2010. Online stochastic packing applied to display ad allocation. Pages
182–194 of: European Symposium on Algorithms. Springer.

Goel, Gagan, and Mehta, Aranyak. 2008. Online budgeted matching in random
input models with applications to AdWords. Pages 982–991 of: SODA, vol.
8.

Google. 2021. Auto-bidding products support page. https://support.google.

com/google-ads/answer/2979071. Accessed: 2021-03-27.

Gupta, Anupam, and Molinaro, Marco. 2014. How experts can solve LPs online.
Pages 517–529 of: European Symposium on Algorithms. Springer.

Huang, Zhiyi, Zhang, Qiankun, and Zhang, Yuhao. 2020. AdWords in a
Panorama. Pages 1416–1426 of: 61st IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2020, Durham, NC, USA, November
16-19, 2020. IEEE.

Kong, Weiwei, Liaw, Christopher, Mehta, Aranyak, and Sivakumar, D. 2018.
A new dog learns old tricks: RL finds classic optimization algorithms. In:
International Conference on Learning Representations.

Mehta, Aranyak. 2013. Online Matching and Ad Allocation. Foundations and
Trends R© in Theoretical Computer Science, 8(4), 265–368.

Mehta, Aranyak, Saberi, Amin, Vazirani, Umesh, and Vazirani, Vijay. 2007.
AdWords and generalized online matching. Journal of the ACM (JACM),
54(5), 22–es.

Zuzic, Goran, Wang, Di, Mehta, Aranyak, and Sivakumar, D. 2020. Learning
Robust Algorithms for Online Allocation Problems Using Adversarial Train-
ing. arXiv e-prints, Oct., arXiv:2010.08418.

24

