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Preface

In 1998, Allan Borodin and Ran El-Yaniv co-authored the text “Online computation and competitive
analysis”. As in most texts, some important topics were not covered. To some extent, this text
aims to rectify some of those omissions. Furthermore, because the field of Online Algorithms has
remained active, many results have been improved. But perhaps most notable, is that the basic
adversarial model of competitive analysis for online algorithms has evolved to include new models
of algorithm design that are important theoretically as well as having a significant impact on many
current applications.

In Part I, we first review the basic definitions and some of the “classical” online topics and
algorithms; that is, those already well studied as of 1998. We then present some newer online
results for graph problems, scheduling problems, max-sat and submodular function maximization.
We also present the seminal primal dual analysis for online algorithms introduced by Buchbinder
and Naor that provides an elegant unifying model for many online results. Part I concludes with
an update on some recent progress for some of the problems introduced earlier.

The focus of Part II is the study of extensions of the basic online competitive analysis model.
In some chapters, we discuss alternative “online-like” algorithmic models. In other chapters, the
analysis of online algorithms goes beyond the worst case perspective of the basic competitive analysis
in terms of both stochastic analysis as well as alternative performance measures.

In Part III, we discuss some additional application areas. Many of these applications provide
the motivation for the continuing active interest and what we consider to be a renaissance in the
study of online and online-like algorithms. We view our text primarily as an introduction to the
study of online and online-like algorithms for use in advanced undergraduate and graduate courses.
In addition, we believe that the text offers a number of interesting potential research topics.

At the end of each chapter, we present some exercises. Some exercises are denoted by a (*)
indicating that the exercise is technically more challenging. Some other exercises are denoted by a
(**) indicating that to the best of our knowledge this is not a known result. With the exception
of Chapter 1, we will not mention specific references in the main sections of the chapters. Rather,
we will defer some history and the most relevant citations for results until the end of the chapter.
There we shall also often present some relevant related work that is not mentioned in the main text
of the chapter. In each chapter, our convention will be to initially refer to all authors for papers
having at most three authors; for papers having more than three authors we will use “author et al.”

We thank ....
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Chapter 1

Introduction

In this chapter we introduce online problems and online algorithms, give a brief history of the area,
and present a few motivating examples. These examples (Ski Rental, Line Search and Paging) are
often used to introduce online algorithms and they form the basis for many extensions that more
closely model important applications. We analyze online algorithms for these problems using the
competitive analysis performance measure. While competitive analysis has been applied extensively
in diverse appications, the results can significantly deviate from performance on real data. This is
particularly true for paging algorithms. This highlights the necessity of new tools and ideas that
will be explored throughout this text.

1.1 What is this Book About?

This book is about the analysis of online problems. In the basic or vanilla formulation of an online
problem, an input instance is given as a sequence of input items. After each input item is presented,
an algorithm needs to output a decision and that decision is final, i.e., cannot be changed upon
seeing any future items. The goal is to maximize or minimize an objective function, which is a
function of all decisions for a given instance. We postpone a formal definition of an online problem
but hopefully the examples that follow will provide a clear intuitive meaning. The term “online” in
“online algorithms” refers to the notion of irrevocable decisions and does not refer to the Internet,
although a lot of the applications of online algorithms are in networking and some are specific to the
Internet. The main limitation of an online algorithm is that it has to make a decision in the absence
of the entire input. The value of the objective achieved by an online algorithm is compared against
an optimal value of the objective that is achieved by an ideal “offline algorithm,” i.e., an algorithm
having access to the entire input. The ratio of the two values is called the competitive ratio. The
analysis of online algorithms in terms of the competitve ratio is called competitve analysis.

We shall study online problems at different levels of granularity. At each level of granularity,
we are interested in both positive and negative results. For instance, at the level of individual
algorithms, we fix a problem, present an algorithm, and the goal is to prove that it achieves a
certain performance (positive result) and that the performance analysis is tight (negative result).
At the higher level of models, we fix a problem, and ask what is the best performance achievable by
an algorithm of a certain type (positive result) and what is an absolute bound on the performance
achievable by all algorithms of a certain type (negative result). The basic model of deterministic
online algorithms can be extended to allow randomness, side information (i.e., advice), limited
mechanisms for revoking decisions, multiple rounds, and so on. Negative results can often be proved
by interpreting an execution of an algorithm as a game between the algorithm and an adversary. The

5
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adversary constructs an input sequence so as to fool an algorithm into making bad online decisions.
What determines the nature and order of input arrivals? In the standard version of competitive
analysis, input items and their arrival order is arbitrary and can be viewed as being determined
by an all powerful adversary. While helpful in many situations, traditional worst case analysis is
often too pessimistic to be of practical value. Thus, it is sometimes necessary to consider limited
adversaries. In the random order model the adversary chooses the set of input items but then the
order is determined randomly; in stochastic models, an adversary chooses an input distribution
which then determines the sequence of input item arrivals. Hence, in all these models there is some
concept of an adversary attempting to force the “worst case” behavior for a given online algorithm
or the worst-case performance against all online algorithms.

A notable feature of the vanilla online model is that it is information-theoretic. This means that
there are no computational restrictions on an online algorithm. It is completely legal for an algorithm
to perform any amount of computation to make its decision for each input. At first, it might seem
like a terrible idea, since such algorithms wouldn’t be of any practical value whatsoever. This is
a valid concern, but it rarely happens. Most of the positive results are achieved by very efficient
algorithms, and the absence of computational restrictions on the model makes negative results really
strong. Perhaps, most importantly, the information-theoretic nature of the online model leads to
unconditional results, i.e., results that do not depend on unproven complexity assumptions, such as
P 6= NP .

We shall take a tour of various problems, models, and analysis techniques with the goal being
to cover a selection of classical and more modern results, which will reflect our personal preferences
to some degree. The area of online algorithms has become too large to provide a full treatment of
it within a single book. We hope that you will accompany us on this journey and that you will find
our selection of results both interesting and useful!

1.2 Motivation

Systematic theoretical study of online algorithms is important for several reasons. Sometimes, the
online nature of input items and decisions is forced upon us. This happens in many scheduling and
resource allocation applications. Consider, for example, a data center that schedules computing
jobs: clearly it is not a good idea to wait for all jobs to arrive in order to come up with an optimal
schedule that minimizes the makespan – the latest completion time. The jobs have to be scheduled as
they come in. Some delay might be tolerated, but not much. As another example, consider patients
arriving at a walk-in clinic that need to be seen by a relevant doctor. The receptionist plays the
role of an online algorithm, and his or her decisions can be analyzed using the online framework.
In online (as in “Internet”) advertising, when a user clicks on a webpage, some advertiser needs to
be matched to a banner immediately. We will see many more applications of this sort in this book.
In such applications, an algorithm makes a decision no matter what: if an algorithm takes too long
to make a decision it becomes equivalent to the decision of ignoring an item.

One should also note that the term “online algorithm” is used in related but different ways in
different fields. For example, in many scheduling results, “online” could arguably be more appro-
priately called “real time computation” where inputs arrive with respect to continuous time and
algorithmic decisions can be delayed at the performance cost of “wasted time”. In machine learning,
the concept of regret is the analogue of the competitive ratio (see Chapter 18). Economists have
long studied market analysis within the lens of online decision making. Navigation in geometric
spaces and mazes and other aspects of “search” have also been viewed as online computation. Our
main perspective and focus falls within the area of algorithmic analysis for discrete computational
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problems. In online computation, we view input items as arriving in discrete steps and in the basic
model used in competitive analysis, an irrevocable decision must be made for each input item before
the next item arrives. Rather than the concept of a real time clock determining time, we view time
in terms of these discrete time steps.

Setting aside applications where input order and irrevocable decisions are forced upon us, in
some offline applications it might be worthwhile fixing an ordering of the input items and then
processing the items in an online fashion. Quite often such algorithms give rise to conceptually
simple and efficient offline approximation algorithms. This can be helpful not only for achieving
non-trivial approximation ratios for NP-hard problems, but also for problems in P (such as bipartite
matching), since optimal algorithms can be too slow for large practical instances. Many simple
greedy algorithms tend to fall within this framework consisting of two steps: sorting input items
followed by a single online pass over the sorted items. In fact, there is a formal model for this style
of algorithms called the priority model, and we will study it in detail in Chapter 17.

Online algorithms also share a lot of features with streaming algorithms. In fact, streaming
is an online model but we tend to refer to “online algorithms” in a different senses. The setting
of streaming algorithms can be viewed figuratively as trying to drink out of a fire hose. There
is a massive stream of data passing through a processing unit, and there is no way to store the
entire stream for post processing. Streaming algorithms may or may not be required to output
results throughout the computation. In any case, streaming algorithms are usually most concerned
with minimizing memory requirements in order to compute a certain function of the sequence of
input items. Meanwhile online algorithms do not have limits on memory or per-item processing
time. Some positive results from the world of online algorithms are both memory and time efficient.
Such algorithms can be useful in streaming settings, which are frequent in networking and scientific
computing.

1.3 Brief History of Online Algorithms

It is difficult to establish the first published analysis of an online algorithm. For example, Line Search
was considered by Anatole Beck [28] and Richard Bellman [31]. One can also believe that there
has been substantial interest in main memory paging since Paging was introduced into operating
systems. A seminal paper in this regard is Peter Denning’s [64] introduction of the working set
model for Paging. It is interesting to note that almost 50 years after Denning’s insightful approach
to capturing locality of reference, Albers, Favrholdt and Giel [7] established a precise result that
characterizes the page fault rate in terms of a parameter f(n) that measures the number of distinct
page references in the next n consecutive page requests.

Online algorithms has been an active area of research within theoretical computer science since
1985 when Sleator and Tarjan [137] suggested that worst case competitive analysis provided a
better than existing “average case” analysis explaination for the success of algorithms such as
MoveToFront for the List Accessing problem (see Chapter 4). In fact, as in almost any research
area, there are previous worst case results that can be seen as at least foreshadowing computer
science interest in competitive analysis, where one compares the performance of an online algo-
rithm relative to what can be achieved optimally with respect to all possible inputs. Namely,
Graham’s [92] online greedy algorithm for the identical machines Makespan problem and even more
explicitly Yao’s [144] analysis of online Bin Packing algorithms. None of these works used the term
competitve ratio; this terminology was introduced by Karlin et al. [106] in their study of “snoopy
caching” following the Sleator and Tarjan paper.

Perhaps remarkably, the theoretical study of online algorithms has remained an active field and



8 CHAPTER 1. INTRODUCTION

one might even argue that there is now a renaissance of interest in online algorithms. This growing
interest in online algorithms and analysis is due to several factors, including new applications,
online model extensions, new performance measures and constraints, and an increasing interest in
experimental studies that validate or challenge the theoretical analysis. And somewhat ironically,
average case analysis (i.e. stochastic analysis) has become more prominent in the theory, design,
and analysis of algorithms. We believe the field of online algorithms has been (and will continue
to be) a very successful field. It has led to new algorithms, new methods of analysis and a deeper
understanding of well known existing algorithms.

1.4 Motivating Example 1: Ski Rental

Has it ever happened to you that you bought an item on an impulse, used it once or twice, and
then stored it in a closet never to be used again? Even if you absolutely needed to use the item,
there may have been an option to rent a similar item and get the job done at a much lower cost. If
this sounds familiar, you probably thought that there has to be a better way for deciding whether
to buy or rent. It turns out that many such rent versus buy scenarios can be formalized by variants
of an online problem called Ski Rental. This problem can be analyzed using the theory of online
algorithms. Let’s see how.

The setting is as follows. You have arrived at a ski resort and you will be staying there for an
unspecified number of days. As soon as the weather turns bad and the resort closes down the slopes,
you will leave never to return again. Each morning you have to make a choice either to rent skis for
$r or to buy skis for $b. (Clealry, the currency doesn’t matter so we will drop the use of the $ sign.)
By scaling we can assume that r = 1. For simplicity, we will assume that b is an integer greater or
equal to 1. If you rent for the first k days and buy skis on day k+1, you will incur the cost of k+ b
for the entire stay at the resort, that is, after buying skis you can use them an unlimited number
of times free of charge. The problem is that due to unpredictable weather conditions, the weather
might deteriorate rapidly. It could happen that the day after you buy the skis, the weather will force
the resort to close down. Note that the weather forecast is accurate for a single day only, thus each
morning you know with perfect certainty whether you can ski on that day or not before deciding to
buy or rent, but you have no information about the following day. In addition, unfortunately for
you, the resort does not accept returns on purchases. In such unpredictable conditions, what is the
best strategy to minimize the cost of skiing during all good-weather days of your stay?

An optimal offline algorithm knows the number g of good-weather days in advance. If g  b then
an optimal strategy is to rent skis on all good-weather days. If g > b then the optimal strategy is to
buy skis on the first day. Thus, the offline optimum, which we denote by OPT , is min(g, b). Even
without knowing g it is possible to keep expenses roughly within a factor of 2 of the optimum. This
is achieved by the so-called BreakEven algorithm: the idea is to rent skis for b � 1 days and buy
skis on the following day after that. We wish to argue that BreakEven guarantees a cost within
the factor 2� 1/b of optimal, i.e., BreakEven  (2� 1/b)OPT . To prove this we consider several
cases. If g < b then BreakEven = g, i.e., the algorithm incurs the cost g, since the weather would
spoil on day g + 1  b and you would leave before buying skis on day b. Observe that in this case
OPT = g as well, and due to our assumption that b � 1 we have BreakEven  (2 � 1/b)OPT
in this case. If g � b then our strategy incurs cost BreakEven = b � 1 + b = (2 � 1/b)b. In this
case, OPT = min(g, b) = b, so BreakEven  (2 � 1/b)OPT holds. Thus, we say that in all cases
this strategy achieves competitive ratio 2 � 1/b, which is slightly better than 2 and approaches 2
as b increases. Note: scaling allowed us to ignore the rental cost in the competitive ratio. Without
scaling, the competitive ratio becomes 2 � r

b
. As such, when r ! 0 (equivalently, r

b
! 0), the
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competitive ratio becomes 2 in the limit.
Can we do better? If our strategy is deterministic then no. On each day, an adversary sees

whether you decided to rent or buy skis, and based on that decision and past history declares
whether the weather is going to be good or bad on the following day. If you buy skis on day i then
the adversary declares the weather to be bad on day i+1. If i  b�1 then it is optimal to rent skis
for a total cost of i, but you incurred the cost of (i� 1) + b � (i� 1) + (i+ 1) = 2i; that is, twice
the optimal. If i � b then an optimal strategy is to buy skis on the very first day with a cost of b,
whereas you spent i � 1 + b � b � 1 + b = (2 � 1/b)b. Thus, no matter what you do an adversary
can force you to spend at least (2� 1/b) times the optimal.

Can we do better if we use randomness? We assume a weak adversary – such an adversary
knows your algorithm, but has to commit to spoiling weather on some day g + 1 without seeing
your random coins or seeing any of your decisions. Observe that for deterministic algorithms, a
weak adversary can simulate a stronger adversary that adapts to your decisions. The assumption of
a weak adversary for the Ski Rental problem is reasonable because the weather shouldn’t conspire
against you based on the outcomes of your coin flips. Instead of presenting a randomized Ski Rental
algorithm right away and then analyzing it, we shall describe how one could conceivably design such
an algorithm from scratch. This will hopefully remove some of the mystery as to where such an
algorithm comes from.

What form should a randomized algorithm take? Examining the above deterministic algorithm,
it is reasonable to suppose that even with a randomized strategy you should buy skis before or on
day b. It is easy to see that buying skis before day b deterministically does not help improve the
competitive ratio. What happens if you buy skis before day b with some probability? A simplest
form of a randomized algorithm that fits this description picks a random integer i 2 [0, b� 1] from
some probability distribution p, rents for i days, and buys skis on day i + 1 (if the weather is still
good). The distribution p can be represented as a vector p = (p0, p1, . . . , pb�1), where pi is the
probability of renting for i days. Note that the pi must satisfy the following constraints in order for
p to be a valid distribution: pi � 0 and

P
b�1
i=0 pi = 1. Intuitively, the distribution should allocate

more probability mass to larger values of i, since buying skis very early (think of the first day) makes
it easier for the adversary to punish such a decision. To summarize, so far we have a reasonable
template for a randomized algorithm for Ski Rental which is shown in Algorithm 1. We say that
this is a template because we haven’t yet specified how probabilities pi should be chosen. The rest
of this section is dedicated to this.

Algorithm 1 A template of randomized algorithm for Ski Rental.
procedure RandomizedSkiRental(b)

Compute probabilities pi for i 2 [0, b� 1] . Later we discuss how this should be done
Choose i 2 [0, b� 1] with probability pi
while day j is good do

if j  i then
Rent skis on day j

else if j = i+ 1 then
Buy skis on day j

else
No decision – skis have already been bought

We measure the competitive ratio of a randomized algorithm by the ratio of the expected cost of
the solution found by the algorithm to the cost of an optimal offline solution. In order to see which
choices of probabilities pi lead to the smallest competitive ratio, we leave them as undetermined
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variables or parameters. Then we express the competitive ratio of Algorithm 1 as a function of
p. Finding the value of p that minimizes this function is equivalent to specifying how p should be
computed in Algorithm 1 to achieve the smallest competitive ratio among all algorithms of this
form. This approach of giving a parameterized version of an algorithm, expressing the competitive
ratio in terms of the parameters, and then finding an optimal setting of those parameters is quite
common in algorithmic analysis.

In order to express the competitive ratio of Algorithm 1 in terms of p, we consider two cases
depending on when the adversary decides to spoil the weather.

In the first case, the adversary spoils the weather on day g+ 1 where g < b. Then the expected
cost of our solution is

P
g�1
i=0 (i+ b)pi +

P
b�1
i=g

gpi. Since an optimal solution has cost g in this case,
competitive ratio c has to satisfy the following inequality:

g�1X

i=0

(i+ b)pi +
b�1X

i=g

gpi  cg.

In the second case, the adversary spoils the weather on day g+1 where g � b. Then the expected
cost of our solution is

P
b�1
i=0 ipi + b. Since an optimal solution has cost b in this case, we need to

ensure
P

b�1
i=0 ipi + b  cb.

We can write down a linear program (LP) to minimize c subject to the above inequalities together
with the constraints ensuring that p is a valid probability distribution. An interested reader may
consult Chapter 8 for a quick refresher on linear programming.

minimize c

subj. to
g�1X

i=0

(i+ b)pi +
b�1X

i=g

gpi  cg g 2 [b� 1]

b�1X

i=0

ipi + b  cb

p0 + p1 + · · ·+ pb�1 = 1

pi � 0 i 2 [0, b� 1]

Solving the above linear program gives us the values of parameters p that we are after. Instead
of solving the LP from scratch, we simply present a solution and verify it. More specifically, we
claim that pi =

c

b
(1� 1/b)b�1�i and c = 1

1�(1�1/b)b
is a solution to the above LP. Thus, we need to

check that all constraints are satisfied. First, let’s check that pi form a probability distribution:

b�1X

i=0

pi =
b�1X

i=0

c

b
(1� 1/b)b�1�i =

c

b

b�1X

j=0

(1� 1/b)j =
c

b
·
1� (1� 1/b)b

1� (1� 1/b)
= 1

where the second equality follows by setting j = b� 1� i.
Next, we check all constraints involving g.
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g�1X

i=0

(i+ b)pi +
b�1X

i=g

gpi =
g�1X

i=0

(i+ b)
c

b
(1� 1/b)b�1�i +

b�1X

i=g

g
c

b
(1� 1/b)b�1�i

= (1� 1/b)b�gcg +
⇣
(1� 1/b)g � (1� 1/b)b

⌘
(1� 1/b)�gcg

= cg

In the above, we skipped some tedious algebraic computations (we invite the reader to verify each
of the above equalities). Similarly, we can check that the pi satisfy the second constraint of the LP.
Notably, the solution pi and c given above satisfies each constraint other than pi � 0 with equality.
Since an optimal solution occurs at a vertex of the feasible polytope and it is easy to see that setting
any pi = 0 is detrimental, the claimed solution pi and c is optimal and unique. We conclude that
our randomized algorithm achieves the competitive ratio 1

1�(1�1/b)b
. Since (1 � 1/b)b ! e�1, the

competitive ratio of our randomized algorithm approaches e

e�1 ⇡ 1.5819 . . . as b goes to infinity.

1.5 Motivating Example 2: Line Search Problem

A robot starts at the origin of the x-axis1. It can travel one unit of distance per one unit of time
along the x-axis in either direction. An object has been placed somewhere on the x-axis. The robot
can switch direction of travel instantaneously, but in order for the robot to determine that there is
an object at location x0, the robot has to be physically present at x0. How should the robot explore
the x-axis in order to find the object as soon as possible? This problem is known as the Line Search
problem (and also known as Linear Search or Cow Path2) problem.

Suppose that the object has been placed at distance d � 1 from the origin. If the robot knew
whether the object was placed to the right of the origin or to the left of the origin, the robot could
start moving in the correct direction, finding the object in time d. This is an optimal offline solution,
i.e., OPT = d.

Since the robot does not know in which direction it should be moving to find the object, it
needs to explore both directions. This leads to a natural zig-zag strategy. Initially, without loss
of generality say the robot picks the positive direction, and then walks for 1 unit of distance in
that direction. If no object is found, the robot returns to the origin, flips the direction and doubles
the distance. We call each such trip in one direction and then back to the origin a phase, and we
start counting phases from 0. (Equivalently, a phase ends when the robot doubles the distance.)
These phases are repeated until the object is found. If you have seen the implementation and
amortized analysis of an automatically resizeable array implementation then this doubling strategy
will be familiar. In phase i, the robot visits location (�2)i and travels the distance 2 · 2i. Worst
case is when an object is located just outside of the radius covered in some phase. Then the robot
returns to the origin, doubles the distance and travels in the “wrong direction”, returns to the origin,
and discovers the object by travelling in the “right direction.” In other words when the object is at
distance d, 2i < d  2i+1 in direction (�1)i, the total distance travelled is 2(1+2+· · ·+2i+2i+1)+d 
2 · 2i+2 + d < 8d+ d = 9d. Thus, this doubling strategy gives a 9-competitive algorithm for the line
search problem. We note that a doubling strategy is often utilized in competitive analysis.

1In this section we can think of the x-axis as the continuous space (�1,1) or as an infinite discrete graph with
nodes at {. . . ,�k,�k + 1, . . . , 0, 1, 2, . . .}.

2The cow path problem is also used to refer to the more general m-ray problem which entails searching for an
object in a star graph starting at the root node. In particular, the line search problem is then the 2-ray problem.
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Typically online problems have well-defined input that makes sense regardless of which algorithm
you choose to run, and the input is revealed in an online fashion. For example, in the Ski Rental
problem, the input consists of a sequence of elements, where element i indicates if the weather on
day i is good or bad. The Line Search problem does not have an input of this form. Instead, the
input is revealed in response to the actions of the algorithm. Yet, we can still interpret this situation
as a game between an adversary and the algorithm (the robot). At each newly discovered location,
an adversary has to inform the robot whether an object is present at that location or not. The
adversary eventually has to disclose the location, but the adversary can delay it as long as needed
in order to maximize the distance travelled by the robot in relation to the offline solution.

1.6 Motivating Example 3: Paging

Computer storage comes in different varieties: CPU registers, random access memory (RAM), solid
state drives (SSD), hard drives, tapes, etc. Typically, the price per byte is positively correlated with
the speed of the storage type. Currently, the fastest type of memory (CPU registers) is also the most
expensive, and the slowest type of memory (tapes) is also the cheapest. In addition, certain types
of memory are volatile (RAM and CPU registers), while other types (SSDs, hard drives, tapes)
are persistent. Thus, a typical architecture has to mix and match different storage types. When
information travels from a large-capacity slow storage type to a low-capacity fast storage type, e.g.,
RAM to CPU registers, some bottlenecking will occur. This bottlenecking can be mitigated by
using a cache. For example, rather than accessing RAM directly, the CPU checks a local cache,
which stores a local copy of a small number of pages from RAM. If the requested data is in the cache
(this event is called a “cache hit”), the CPU retrieves it directly from the cache. If the requested
data is not in the cache (called a “cache miss”), the CPU first brings the requested data from RAM
into the cache, and then reads it from the cache. If the cache is full during a “cache miss,” some
existing page in the cache needs to be evicted.

The Paging problem is to design an algorithm that decides which page needs to be evicted when
the cache is full and a cache miss occurs. The objective is to minimize the total number of cache
misses. Notice that this is an inherently online problem that can be modelled as follows. The input
is a sequence of natural numbers X = x1, x2, . . ., where xi is the number of the page requested by
the CPU at time i. Given a cache of size k, initially the cache is empty. The cache is simply an
array of size k, such that a single page can be stored at each position in the array. For each arriving
xi, if xi is in the cache, the algorithm moves on to the next element xi+1. If xi is not in the cache,
the algorithm specifies an index yi 2 [k], which points to a location in the cache where page xi is to
be stored evicting any existing page. As before, we will measure the performance of an algorithm
by the competitive ratio; that is, the ratio of the number of cache misses of an online algorithm to
the minimum number of cache misses achieved by an optimal offline algorithm that sees the entire
sequence in advance. Let’s consider two natural algorithms for this problem.

FIFO - First In First Out. If the cache is full and a cache miss occurs, this algorithm evicts the
page from the cache that was inserted the earliest. We will first argue that this algorithm incurs at
most (roughly) k times more cache misses than an optimal algorithm. To see this, subdivide the
entire input into consecutive blocks B1, B2, . . .. Block B1 consists of a maximal prefix of X that
contains exactly k distinct pages (if the input has fewer than k distinct pages, then any “reasonable”
algorithm is optimal). Block B2 consists of a maximal prefix of X \ B1 that contains exactly k
distinct pages, and so on. Let n be the number of blocks. Observe that FIFO incurs at most k
cache misses while processing each block. Thus, the overall number of cache misses of FIFO is at
most nk. Also, observe that the first page of block Bi+1 is different from all pages of Bi due to
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the maximality of Bi. Therefore while processing Bi and the first page from Bi+1 any algorithm,
including an optimal offline one, incurs a cache miss. Thus, an optimal offline algorithm incurs at
least n�1+k cache misses while processing X (where the additive k term assumes that the optimal
algorithm also starts with an empty cache). Therefore, the competitive ratio of FIFO is at most

nk

n�1+k
= k+(n�1)k

k+(n�1) < k and converges to k as n!1.
LRU - Least Recently Used. If the cache is full and a cache miss occurs, this algorithm evicts

the page from the cache that was accessed least recently. Note that LRU and FIFO both keep
timestamps together with pages in the cache. When xi is requested and it results in a cache miss,
both algorithms initialize the timestamp corresponding to xi to i. The difference is that FIFO
never updates the timestamp until xi itself is evicted, whereas LRU updates the timestamp to j
whenever cache hit occurs; that is, when xj = xi with j > i and xi is still in the cache. Nonetheless,
the two algorithms are sufficiently similar to each other, that essentially the same analysis as for
FIFO can be used to argue that the competitive ratio of LRU is at most k (when n!1).

We note that both FIFO and LRU do not achieve a competitive ratio better than k. Fur-
thermore, no deterministic algorithm for paging can achieve a competitive ratio better than k. To
prove this, it is sufficient to consider sequences that use page numbers from [k + 1]. Let ALG be a
deterministic algorithm, and suppose that it has a full cache. Since the cache is of size k, in each
consecutive time step an adversary can always find a page that is not in the cache and request it.
Thus, an adversary can make the algorithm ALG incur a cache miss on every single time step. An
optimal offline algorithm LFD (Longest Forward Distance) evicts the page from the cache that is
going to be requested furthest in the future. Since there are k pages in the cache, there are at least
k � 1 pages in future inputs that are going to be requested before the cache page that is furthest
in the future. Thus, the next cache miss can only occur after k � 1 steps. The overall number of
cache misses by an optimal algorithm is at most |X|/k, whereas ALG incurs essentially |X| cache
misses. Thus, ALG has competitive ratio at least k.

We finish this section by noting that while competitive ratio gives some useful and practical
insight into the Ski Rental and Line Search problems, it falls short of providing practical insight into
the Paging problem. First of all, notice that the closer the competitive ratio is to 1 the better. The
above paging results show that increasing cache size k makes LRU and FIFO perform worse! This
goes directly against the empirical observation that larger cache sizes lead to improved performance.
Another problem is that the competitive ratio of LRU and FIFO is the same suggesting that these
two algorithms perform equally well. It turns out that in practice LRU is far better than FIFO,
because of “locality of reference” – the phenomenon that if some memory was accessed recently, the
same or nearby memory will be accessed in the near future. There are many reasons for why this
phenomenon is pervasive in practice, not the least of which is the common use of arrays and loops,
which naturally exhibit “locality of reference.” None of this is captured by competitive analysis as
it is traditionally defined.

The competitive ratio is an important tool for analyzing online algorithms having motivated and
initiated the area of online algorithm analysis. However, being a worst case measure, it may not
model reality well in many applications. This has led researchers to consider other models, such as
stochastic inputs, advice, lookahead, and parameterized complexity, among others. We shall cover
these topics in later chapters of this book.

1.7 Exercises

1. Fill in the details of the analysis of the randomized algorithm for the Ski Rental problem.

2. Consider the following randomized algorithm for the Ski Rental problem: with a chance of
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b�1
b

, buy the skis on the first day, and with a chance of 1
b

always rent and never buy. Recall
that the cost of buying is b 2 N and the cost of renting is 1 per day. Suppose that the weather
spoils on day k.

(a) What is the expected cost of the algorithm in terms of b and k?
(b) Does the algorithm achieve a constant competitive ratio?
(c) Now consider a different randomized algorithm for the Ski Rental problem. Rent equip-

ment for the first b � 1 days. For each following day, buy equipment with a chance
of 1/3 and continue renting otherwise. Of course, if you decide to buy on a particular
day you don’t make a decision the following days. What is the competitive ratio of this
algorithm?

3. Consider the following version of the Ski Rental problem. Let b be a positive integer divisible
by 6. Each day you have the following options:

(i) rent skis at cost 1 per day; or
(ii) pay an upfront fee of b/3 and the cost of rent per day becomes r = 1/3; or
(iii) buy skis at cost b.

Consider the following algorithm: use option (i) for b/2 days, then use option (ii) and rent for
b/2 � 1 additional days, then use option (iii) to buy skis on day b. Of course, the algorithm
terminates as soon as the weather spoils. Your goal is to find a tight bound on the competitive
ratio, meaning you need to prove matching upper and lower bounds.

(a) State and prove the tightest upper bound on the competitive ratio of this algorithm.
(b) State and prove the tightest lower bound on the competitive ratio of this algorithm.

4. (*) Consider the setting of the Ski Rental problem with rental cost 1$ and buying cost b$,
b 2 N. Instead of an adversary choosing a day 2 N when the weather is spoiled, this day is
generated at random from the uniform distribution on [n] = {1, 2, . . . , n}. Design an optimal
deterministic online algorithm assuming that the algorithm knows n.

5. What is the competitive ratio achieved by the following randomized algorithm for the Line
Search problem? Rather than always picking initial direction to be +1, the robot selects the
initial direction to be +1 with probability 1/2 and �1 with probability 1/2. The rest of the
strategy remains the same.

6. Consider the Line Search problem. A slightly more general zig-zag algorithm is presented in
Algorithm 2. In ZigZag(h) the initial line segment travelled is h. Thus, the algorithm given
in the main text is ZigZag(1) in this terminology.

(a) Show that ZigZag(h) does not guarantee a finite competitive ratio when OPT can be
arbitrarily small.

(b) Compute the competitive ratio of ZigZag(h) (this includes both upper and lower bounds)
under the assumption that OPT � h. Does this competitive ratio depend on h?

7. Consider the following algorithm for the Line Search problem. The robot starts at the origin,
and works in phases i = 0, 1, 2, . . . In phase i the robot moves 3i distance to the right. If the
treasure is not found, the robot returns to the origin and moves 3i distance to the left. If the
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Algorithm 2 The generalized zig-zag algorithm.
procedure ZigZag(h)

dir  +1
dist h
while treasure not found do

Travel in direction dir distance dist
Return to the origin
dir  dir ⇥ (�1)
dist dist⇥ 2

treasure is not found, the robot returns to the origin and starts the next phase. Equivalently,
a new phase begins when the distance is tripled.

(a) What is the worst case total distance travelled by the robot when the treasure is located
at coordinate +28?

(b) What is the competitive ratio achieved by the algorithm?
(c) Consider the generalization of this algorithm. Instead of multiplying the distance trav-

elled in each phase by 3, the distance travelled in each phase is now multiplied by k.
That is, in phase i, the distance is ki. Use ia similar analysis to part (b) to compute the
competitive ratio in this case.

8. Instead of searching for treasure on a line, consider the problem of searching for treasure on a
2-dimensional grid. The robot begins at the origin of Z2 and the treasure is located at some
coordinate (x, y) 2 Z2 unknown to the robot. The measure of distance is given by the `1

norm, i.e., ||(x, y)||1 = max(|x|, |y|). The robot has a compass and at each step can move
north, south, east, or west one block. Design an algorithm for the robot to find the treasure on
the grid. What is the competitive ratio of your algorithm? Can you improve the competitive
ratio with another algorithm?

9. In the standard Line Search problem a robot moves along a line to find a treasure. Consider
the following modification of this problem. The robot starts out at the crossroads connecting
4 roads. The treasure is located at an unknown distance d along one of the roads. The robot
is restricted to moving along the lines only, i.e., it cannot cut across. The standard Euclidean
distance is assumed. See the figure below.
Consider the following algorithm for finding the treasure. The algorithm works in phases
labelled by i = 0, 1, 2, . . . In phase i the robot walks along each of the 4 roads in some
predetermined order to distance 2i and returns back to the crossroads if the treasure is not
found. In this question, your goal is to compute the competitive ratio of this algorithm.

(a) What is the worst case total distance travelled by the robot when d = 5?
(b) What is the worst case total distance travelled by the robot when d = 0.2?
(c) Assume that d = 2k + ✏ for some 0 < ✏ < 2k and k 2 N. What is the worst case total

distance travelled by the robot in this case? What is the competitive ratio achieved by
the algorithm?

(d) Instead of 4 roads meeting at the crossroads, now there are m roads meeting at the
crossroads. Now, in phase i the robot walks along each of the m roads in some prede-
termined order to distance 2i and returns back to the crossroads if the treasure is not
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d

0

found. Use similar analysis to part (b) to compute the competitive ratio in this case.
Your competitive ratio should be expressed as a function of m.

10. Consider the following Search For Treasure problem. There are two robots located at the
point O in a Euclidean 2D plane. A circle of radius 1 is centered at O. The robots move at
unit speeds and can instantaneously change direction. The robots can only move inside the
circle and along its perimeter. The robots do not communicate with each other. A treasure
is located somewhere on the perimeter. The robots don’t know the location of the treasure
and they only find out whether there is a treasure or not at a particular point by visiting that
point (i.e., their “visibility radius” is 0). The goal is to specify a trajectory for each robot so
that one of the robots (we don’t care which one) finds the treasure as fast as possible. We are
interested in the worst case discovery time, where worst case is taken over possible locations
of the treasure.

Observe that the offline solution has cost 1, since if robots knew the location X of the treasure,
one of the robots could just move directly along the line segment OX.

(a) Positive result: Describe some optimal trajectories of robots for this task. What is the
competitive ratio achieved by these trajectories?

(b) Negative result: Prove that it is not possible to improve the worst-case discovery time of
your trajectories.

11. Consider FWF , which stands for the Flush When Full, algorithm for Paging; that is, when
a cache miss occurs and the entire cache is full, evict all pages from the cache. What is the
competitive ratio of FWF?

12. (a) Find a request sequence X such that FIFO incurs fewer cache misses than LRU on X.
(b) Find a request sequence X such that LRU incurs fewer cache misses than FIFO on X.

For the above, you can fix some particular k 2 N – the size of the cache; and some particular
n 2 N – the number of distinct pages in the slow memory.

13. Consider adding the power of limited lookahead to an algorithm for Paging. Namely, fix a con-
stant f 2 N. Upon receiving the current page pi, the algorithm also learns pi+1, pi+2, . . . , pi+f .
Recall that the best achievable competitive ratio for deterministic algorithms without looka-
head is k. Can you improve on this bound with lookahead?
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14. Consider the Paging problem where each page p 2 [n] has an associated cost cp 2 R�0 for
bringing that page into the cache. Instead of minimizing the number of cache misses, now you
are interested in minimizing the cost of bringing pages into the cache. Consider the greedy
algorithm: if a cache miss occurs and cache is full, evict the page with the smallest associated
cost (it will be cheapest to recover).

(a) State the problem formally using the notation Input: . . ., Output: . . ., Objective:
. . ..

(b) Write down the pseudocode of the greedy algorithm described above.
(c) Prove that the greedy algorithm does not achieve a constant competitive ratio.

15. Consider the Paging problem and the LRU algorithm. Does there exist an input sequence I
such that LRU with cache size k + 1 on I incurs strictly more page faults than LRU with
cache size k on I? Note that both runs initially have empty caches.

If you answer “YES”, then give such an instance I (the shorter the better, and you can consider
a particular value of k, e.g., k = 3 vs. k+1 = 4). If you answer “NO”, then give a formal and
complete proof of this fact for general k and arbitrary I.

16. Answer the same question as the previous one, but for FIFO.

17. Consider the following Paging algorithm, which we call [LRU : on a page fault, [LRU evicts the
page whose second to last request is the least recent. If there are pages in cache which have been
requested fewer than two times, then the least recently used page among those only requested
once is evicted. For example, with cache size 3 and request sequence hp1, p2, p3, p3, p2, p1, p4i,
on the last request, [LRU evicts page p1, whereas LRU would have evicted p3. Note that most
deterministic paging algorithms seem to have competitive ratio k, where k is the size of the
cache, but [LRU has competitive ratio 2k. You will prove that here.

(a) Prove a lower bound of 2k on the competitive ratio of [LRU . Note that you cannot fix k
to a particular value, you have to prove the result for all values k simultaneously. Thus,
your adversarial analysis has to be in terms of variable k.

(b) Prove an upper bound of 2k on the competitive ratio of [LRU . Hint: adapt the proof of
k-competitiveness for LRU to the new algorithm.

1.8 Historical Notes and References

Karp [109] attributes formulating the Ski Rental problem to Rudolf. The problem arose as a special
case in Karlin et al. [106] in their study of “snoopy caching”. They proved the optimal deterministic
competitive ratio for the problem. They also introduced the competitive ratio and competitive
analysis terminology. The randomized e

e�1 competitive ratio is due to Karlin et al. [105] and has
been generalized in a number of papers as to be discussed in Chapter 4.

The Line Search problem (also known as linear search or cow path problem) has an interesting
history preceding competitive analyis. The problem was independently introduced by Beck [28]
and Richard Bellman [31]. Beck and Newman [29] proved that the doubling strategy discussed in
Section 1.5 is 9-competitive and that this is the best possible deterministic ratio. This problem and
its generalization to the m-ray problem has been rediscovered in various papers including Baetza et
al. [15] which brought attention to this problem in the context of competitive analysis. The
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extension to the m-ray problem (i.e., searching in a star graph with m rays starting at the root) is
due to Gal [83, 84] who proved that the optimal deterministic ratio is 1 + 2 m

m

(m�1)m�1 . See Jaillet et
al. [98] for an historical note on the m-ray problem.

Sleator and Tarjan [137] established the competitive ratio of FIFO and LRU . The optimal
offline paging algorithm LFD is due to Belady [30].



Chapter 2

Deterministic Online Algorithms

In this chapter we formally define a general class of online problems, called request-answer games and
then define the competitive ratio of deterministic online algorithms with respect to request-answer
games. The definitions depend on whether we are dealing with a minimization or a maximiza-
tion problem. As such, we present examples of each. For minimization problems we consider the
Makespan problem and the Bin Packing problem. For maximization problems we consider the
Time-Series Search and One-Way Trading problems.

2.1 Request-Answer Games

In Chapter 1, we gave an informal description of an online problem that is applicable to most
online problems in the competitive analysis literature including the Ski Rental and Paging problems.
Keeping these problems in mind, we can define the general request-answer framework that formalizes
the class of online problems. This framework abstracts almost all the problems in this text with the
notable exception of the Line Search problem and more generally the navigation and exploration
problems in Chapter 23.

Definition 2.1.1. A request-answer game for a minimization problem consists of a request set R,
an answer set1 A, and cost functions fn : Rn

⇥An
! R [ {1} for n = 0, 1, . . ..

In the range of a cost function, 1 is used to indicate that certain solutions (answers) are not
allowed. Such solutions are also sometimes referred to as infeasible. For a maximization problem
the fn refer to profit functions and we have fn : Rn

⇥ An
! R [ {�1}. Now, �1 indicates

that certain solutions are not allowed/infeasible. Algorithm 3 provides a template for deterministic
online algorithms for any problem within the request-answer game framework.

Algorithm 3 Deterministic online algorithm template.
On an instance I = (x1, . . . , xn), including the ordering of the data items:
i 1
while there are unprocessed data items do

The algorithm receives xi 2 R
The algorithms makes an irrevocable decision di 2 A for xi based on x1, . . . , xi
i i+ 1

1For certain results concerning request-answer games, it is required that the answer set be a finite set. However,
for the purposes of defining a general framework and for results in this text, this is not necessary.

19
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As an additional convention, when we use a while loop we are assuming that the number n of
online inputs is not known to the algorithm; otherwise, we will use a for loop to indicate that n is
known a priori.

It is important to note that the same computational problem can have several representations
as a request-answer game depending on the information in the request set and answer set. Often
there will be natural request and answer sets for a given problem.

2.2 Competitive Ratio for Minimization Problems

In this section we formally define the notion of competitive ratio. Let ALG be an online algorithm
and I = (x1, x2, . . . xn) be an input sequence. We shall abuse the notation and let ALG(I) denote
both the output of the algorithm as well as the objective value2 of the algorithm when the context
is clear. If we want to distinguish the objective value we will write |ALG(I)|.

Definition 2.2.1. Let ALG be an online algorithm for a minimization problem and let OPT
denote an optimal solution to the problem. The (asymptotic) competitive ratio of ALG, denoted by
⇢(ALG), is defined as follows:

⇢(ALG) = lim sup
|OPT (I)|!1

ALG(I)

OPT (I)
.

Equivalently, we can say that the competitive ratio of ALG is at most ⇢ if ALG(I)  ⇢ ·

OPT (I) + o(OPT (I)). This then is just a renaming of the asymptotic approximation ratio as
is widely used in the study of offline optimization algorithms. We reserve the competitive ratio
terminology for online algorithms and use approximation ratio otherwise. In offline algorithms,
when ALG(I)  ⇢ ·OPT (I) for all I, we simply say approximation ratio; for online algorithms we
will say that ALG is strictly ⇢ competitive when there is no additive term.

This convention is very important so it is worth stressing it again. By default the term competi-
tive ratio means asymptotic competitive ratio. When we wish to use the notion of strict competitive
ratio we shall state so explicitly. Also, when we wish to stress the asymptotic nature of the argument
we can occasionally say asymptotic competitive ratio explicitly. To distinguish between strict and
asymptotic competitive ratios we shall use notations ⇢strict and ⇢, respectively. Observe that for
any algorithm ALG for a minimization problem we have ⇢(ALG)  ⇢strict(ALG). Therefore, if we
prove that ⇢strict(ALG)  k, it automatically implies that ⇢(ALG)  k. Thus, when it comes to
upper bounds on competitive ratio for minimization problems, a strict competitive ratio result is
stronger than an asymptotic ratio. Also if we prove that ⇢(ALG) � k, it automatically implies that
⇢strict(ALG) � k, so when it comes to lower bound results the relationship is reversed: an asymptotic
lower bound is stronger than a strict lower bound. The gold standard, which is not always achiev-
able, happens when one shows an upper bound on the strict competitive ratio, i.e., ⇢strict(ALG)  k,
and a matching lower bound on the asymptotic competitive ratio, i.e., ⇢(ALG) � k. In particular,
this implies that ⇢strict(ALG) = ⇢(ALG) = k.

Intuitively, the asymptotic competitive ratio provides a guarantee on the performance of an
algorithm only for sufficiently large inputs while the strict competitive ratio provides the guarantee
on all inputs. Depending on the problem and how the problem is formalized in the request-answer

2Unless otherwise stated, for the problems we shall consider, we will assume that the objective value is a positive
rational number. If we assume the ability to do real arithmetic, then we could also entertain real numbers. Our
emphasis is primarily on the competitive ratio and not on the algorithmic complexity of our algorithms. Although
the algorithms in this text are efficient we again emphasize that competitive analysis does not impose any restrictions
on algorithmic complexity or even computability.
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framework, the two competitive ratios might coincide for trivial reasons. As one example of this
phenomenon, consider the following direct sum property. For an input I and an integer k � 1,
denote by I

k the input consisting of k independent copies of I presented one after another. The
direct sum property holds for a given problem and an online algorithm ALG when for all inputs
I it holds that OPT (Ik) = k · OPT (I) and ALG(Ik) = k · ALG(I). Then we can argue that
⇢strict(ALG) = ⇢(ALG) as follows. For an arbitrary ✏ > 0 take an input instance I such that
ALG(I) � (⇢strict(ALG)� ✏)OPT (I). Existence of such I is guaranteed by the definition of ⇢strict.
Since OPT (Ik)!1 as k !1 we can consider the infinite sequence of inputs {I

k
}
1
k=1. We have

that

ALG(Ik) = k ·ALG(I) � k(⇢strict(ALG)� ✏)OPT (I) = (⇢strict(ALG)� ✏)OPT (Ik).

This shows that ⇢(ALG) � ⇢strict(ALG) � ✏. Since ✏ > 0 was arbitrary, the inequality ⇢(ALG) �
⇢strict(ALG) follows, while the other inequality ⇢(ALG)  ⇢strict(ALG) always holds as discussed
above. Although the direct sum property seems rather strong, there are natural settings in which
it holds for a wide range of problems and algorithms. For example, many graph problems reduce
to analyzing individual connected components because there is a direct sum property with respect
to connected components (as a concrete example consider the problem of computing a minimum
spanning forest). Other examples of the phenomenon when strict and asymptotic competitive
ratios coincide for trivial reasons include padding the input and scaling input weights (for weighted
problems). Such trivial reasons are undesirable because they don’t capture the true difference
between the behavior in the limit versus the behavior on small inputs. One can often redefine
the problem to rule out these trivial reasons and focus on the true asymptotic nature of large
inputs for the problem. In our example of graph problems, one could insist on the input graph
being connected. Then one cannot scale the performance of an algorithm on graph G simply by
presenting independent copies of G, as those would result in different connected components. In the
following section we shall see another example of this phenomenon and discuss it in more concrete
terms.

In the literature you will often see a slightly different definition of the competitive ratio. Namely,
an online algorithm is said to achieve competitive ratio ⇢ if there is a constant ↵ � 0 such that for
all inputs I we have ALG(I)  ⇢ · OPT (I) + ↵. We shall refer to this as the classical definition
of the competitive ratio. The difference between the two definitions is that our definition allows us
to ignore additive terms that are small compared to OPT , whereas the classical definition allows
us to ignore constant additive terms. The two definitions are “almost” identical in the following
sense. If an algorithm achieves the competitive ratio ⇢ with respect to the classical definition then
it achieves the competitive ratio ⇢ with respect to our definition as well since OPT (I)!1 implies
that ↵ = o(OPT (I)) for any constant ↵. Conversely, if an algorithm achieves the competitive
ratio ⇢ with respect to our definition then it achieves the competitive ratio ⇢ + ✏ for any constant
✏ > 0 with respect to the classical definition. The latter part is because we have ALG(I) 
⇢ · OPT (I) + o(OPT (I)) = (⇢ + ✏) · OPT (I) + o(OPT (I)) � ✏ · OPT (I)  (⇢ + ✏) · OPT (I) + ↵
for a suitably chosen constant ↵ such that ↵ dominates the term o(OPT (I))� ✏ ·OPT (I) for all I
(not just I with sufficiently large OPT (I)). We prefer our definition over the classical one because
it can sometimes simplify the presentation of results. In any case, as outlined above the difference
between the two definitions is minor.

Implicit in this definition is the worst-case aspect of this performance measure. To establish
a lower bound (i.e. an inapproximation) for an online algorithm, there is a game between the
algorithm and an adversary. Once the algorithm is stated the adversary creates a nemesis instance
(or an infinite family of instances if we are trying to establish asymptotic inapproximation results).
Sometimes it will be convenient to view this game in an extensive form where the game alternates
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between the adversary announcing the next input item and the algorithm making a decision for
this item. However, since the adversary knows the algorithm, the nemesis input sequence can
be determined in advance and this becomes a game in normal (i.e., matrix) form. In addition
to establishing inapproximation bounds (i.e., lower bounds on the competitive ratio) for specific
algorithms, we sometimes wish to establish an inapproximation bound for all online algorithms. In
this case, we need to show how to derive an appropriate nemesis sequence for any possible online
algorithm.

2.3 Minimization Problem Example: Makespan

In this section we consider the Makespan problem for identical machines. In this problem, there is
a fixed number m of identical machines that need to process a sequence of jobs with jobs arriving
one after another. Each job is described by a single number p, which indicates the time it will take
a single machine to process this job. Since machines are identical the number p is independent of
which machine the job gets scheduled on. An algorithm assigns a job to a machine immediately
after the job arrives. In particular, this assignment is done without the knowledge of future jobs. A
job assigned to a machine cannot migrate to another machine in the future – the decision is final.
Once a job is assigned to a machine it will be processed immediately after all previous jobs assigned
to the machine have been processed. The makespan of a machine is its current load: the sum of
processing times of all jobs assigned to that machine so far. The objective is to minimize the largest
makespan of any machine at the end of the input. Formally the problem is defined as follows.

Makespan (Identical Machines)
Input: (p1, p2, . . . , pn) where pj > 0 is the load or processing time for a job j; m is the number of
identical machines.
Output: � : {1, 2, . . . , n}! {1, 2, . . .m} where �(j) = i denotes that the jth job has been assigned
to machine i.
Objective: To find � so as to minimize maxi

P
i:�(j)=i

pj .
Next, we present a natural online greedy algorithm, which is perhaps the earliest example of a

competitive analysis argument and precedes the more explicit discussion in the literature of online
algorithms and competitive analysis.

Algorithm 4 The online greedy makespan algorithm.
procedure GreedyMakespan

Initialize s(i) 0 for 1  i  m . s(i) is the current load on machine i
j  1
while j  n do

i0  argmini s(i) . The algorithm can break ties arbitrarily
�(j) i0

s(i0) s(i0) + pj
j  j + 1

return �

The greedy algorithm repeatedly schedules each job on some least loaded machine. The algo-
rithm is online in the sense that the scheduling of the jth job takes place before seeing the remaining
jobs. The algorithm is greedy in the sense that at any step the algorithm schedules so as optimize as
best as it can given the current state of the computation without regard to possible future jobs. In
other words, a greedy algorithm receiving the jth input item acts as if this item was the last input
item.
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Figure 2.1: This figure illustrates the situation described in the proof of Theorem 2.3.1.

We note that as stated, the algorithm is not fully defined. That is, there may be more than
one machine whose current makespan is minimal. When we do not specify a “tie-breaking” rule, we
mean that how the algorithm breaks ties is not needed for the correctness and performance analysis.
That is the analysis holds even if we assume that an adversary is breaking the ties.

We now provide an example of competitive analysis by analyzing the online greedy algorithm
for the Makespan problem.

Theorem 2.3.1. For all m and all input sequences I = (p1, p2, . . . , pn) we have

GreedyMakespan(I) 

✓
2�

1

m

◆
·OPT (I).

That is, ⇢strict(GreedyMakespan)  (2� 1/m).

Proof. Let pmax denote the maximum processing time of a job in I, i.e., pmax = maxj2[n] pj . We
begin by establishing two necessary lower bounds for any solution and thus for OPT (I):

• OPT (I) � (
P

n

k=1 pk)/m; that is the maximum load must be at least the average load.

• OPT (I) � pmax; that is an item of maximum processing time must be scheduled on some
machine.

Now we want to upper bound the makespan of GreedyMakespan in terms of these necessary
OPT bounds. Let machine i be one of the machines with maximum makespan in the schedule
produced by GreedyMakespan and lets say that job j is the last item to be scheduled on machine
i. If we let qi be the load on machine i just before job j is scheduled then (see Figure 2.1)

|GreedyMakspan(I)| = qi + pj .

Consider what happened at the time job j was scheduled. By the greedy nature, the load of
machine i, that is qi, was minimum at the time pj was scheduled on machine i. The average of loads
of all machines immediately prior to scheduling job j is

P
k<j

pk/m, since all past jobs must have
been scheduled on m machines. Since the minimum load of a machine can be at most the average
load of a machine we have

qi 
X

k<j

pk/m 
X

k 6=j

pk/m.
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Figure 2.2: This figure illustrates the situation described in the proof of Theorem 2.3.2 for m = 4.
All the small jobs arrive before the large job. On the left hand side OPT schedule is shown, which
is perfectly balanced. Due to the greedy nature of GreedyMakespan all unit jobs are first balanced
on the machines, but the last large job still has to be scheduled on some machine, almost doubling
the required makespan.

Combining all of the above we obtain

GreedyMakespan(I) = qi + pj 

0

@
X

k 6=j

pk
m

1

A+ pj =
X

k2[n]

pk
m

+

✓
1�

1

m

◆
pj

 OPT (I) +

✓
1�

1

m

◆
·OPT (I) =

✓
2�

1

m

◆
·OPT (I),

where the last inequality follows from the two necessary lower bounds on OPT (I) mentioned at the
beginning of the proof.

The following theorem demonstrates that this strict competitive ratio is “tight”.

Theorem 2.3.2. For every m there exists an input sequence I such that

GreedyMakespan(I) =

✓
2�

1

m

◆
·OPT (I).

That is, ⇢strict(GreedyMakespan) � (2� 1/m).

Proof. We construct such an input sequence I with n = m(m� 1)+ 1 jobs, comprised of m(m� 1)
initial jobs having unit load pj = 1 followed by a final job having load pn = m. The optimal
solution would balance the unit load jobs on say the first m� 1 machines leaving the last machine
to accommodate the final big job having load m. Thus each machine has load m and OPT = m. On
the other hand, GreedyMakespan would balance the unit job of all m machines and then be forced
to place the last job on some machine which already has load m� 1 so that |GreedyMakespan(I)|
is m+ (m� 1). It follows that for this sequence the ratio is 2m�1

m
= 2� 1/m matching the bound

in Theorem 2.3.1. This construction for m = 4 is illustrated in Figure 2.2.

Our formalization of the Makespan problem and the greedy algorithm posses the following scaling
property. For an input sequence I = (p1, . . . , pn) and a number s > 0 define the scaled instance
s · I := (s · p1, . . . , s · pn) and observe that

OPT (s · I) = s ·OPT (I) and GreedyMakespan(s · I) = s ·GreedyMakespan(I).
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This implies that ⇢strict(GreedyMakespan) = ⇢(GreedyMakespan), since a nemesis instance I can
be converted into a family of nemesis instances {k · I}

1
k=1 with OPT (k · I) ! 1 as k ! 1. The

rest of the argument establishing ⇢strict(GreedyMakespan) = ⇢(GreedyMakespan) is similar to
the discussion in Section 2.2. In order to rule out such trivial reasons for the equality of the two
types of competitive ratios, one could restrict inputs to the Makespan problem to the normalized
input sequences (p1, . . . , pn) with the condition that minj pj = 1. Any input sequence I without
trivial 0-duration jobs can be converted into a normalized input sequence 1

minj pj
· I, therefore this

restriction does not have any conceptual impact on the problem. The discussion of the asymptotic
considerations below is with respect to these restricted inputs.

We note that for m = 2 and m = 3, it is not difficult to show that the bound 2� 1
m

is tight for any
(not necessarily greedy) online algorithm. For example, for m = 2, an adversary can either provide
the input sequence (1, 1) or (1, 1, 2). If the algorithm schedules the two initial unit jobs on the
same machine, the adversary ends the input having only presented (1, 1); otherwise the adversarial
input is (1, 1, 2). Even though it may seem that this problem is pretty well understood, there is
still much to reflect upon concerning the Makespan problem and the greedy algorithm analysis. We
note that the lower bound as given relies on the number n of inputs not being known initially by
the algorithm. Moreover, the given inapproximation holds for input sequences restricted to n  3
and does not establish an asymptotic inapproximation. For m � 4, there are online (non-greedy)
algorithms that improve upon the greedy bound. The general idea for an improved competitive
ratio is to leave some space for potentially large jobs. Currently, the best known “upper bound”
that holds for all m is 1.901 and the “lower bound” for m � 80 is 1.85358.

Although the greedy inapproximation is not an asymptotic result, the example suggests a simple
greedy (but not online) algorithm. The nemesis sequence for all m relies on the last job being a
large job. This suggests sorting the input items so that p1 � p2 � · · · � pn. This is the LPT
algorithm (“longest processing time”) algorithm which has a tight approximation ratio of 4

3 �
1
3m .

2.4 Minimization Problem Example: Bin Packing

In the Bin Packing problem, items arrive in a sequence (x1, x2, . . . , xn) where each item is described
by its weight xi 2 [0, 1]. The goal is to pack all items into as few bins as possible. Each bin is
restricted to hold the maximum total weight 1. This restriction is often referred to as bins being of
“unit capacity.” We have an unlimited supply of bins. Formally, the problem is stated as follows.

Bin Packing
Input: (x1, x2, . . . , xn) where xi is the weight of an item i.
Output: � : {1, 2, . . . , n} ! {1, 2, . . .m} where �(j) = i indicates that item j is packed in bin i
and m denotes the maximum number of bins used.
Objective: To find � so as to minimize m subject to the constraints

P
j:�(j)=i

xj  1 for each
i 2 [m].

The Bin Packing problem is extensively studied within the context of offline and online ap-
proximation algorithms. Like the Makespan problem, it is an NP-hard optimization problem. In
fact, the hardness of both Makespan and Bin Packing is derived by a reduction from the Subset
Sum problem. In this section, we shall analyze the competitive ratios of the following three online
algorithms: NextF it, F irstF it, and BestF it.

• NextF it: if the newly arriving item does not fit in the most recently opened bin, then open a
new bin and place the new item in that bin. See Algorithm 5 for pseudocode.

• FirstF it: find the first (according to the order in which bins were opened) bin among all
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opened bins that has enough remaining space to accommodate the newly arriving item. If
such a bin exists, place the new item there. Otherwise, open a new bin and place the new
item in the new bin. See Algorithm 6 for pseudocode.

• BestF it: find a bin among all opened bins that has minimum remaining space among all bins
that have enough space to accommodate the newly arriving item. If there are no bins that
can accommodate the newly arriving item, open a new bin and place the new item in the new
bin. See Algorithm 7 for pseudocode.

The algorithms FirstF it and BestF it are greedy in the sense that they will never open a new
bin unless it is absolutely necessary to do so. The difference between these two algorithms is in
how they break ties when there are several existing bins that could accommodate the new item:
FirstF it simply picks the first such bin, while BestF it picks the bin that would result in the
tightest possible packing. The algorithm NextF it is not greedy since it always considers only the
most recently opened bin and does not check any of the older bins that could accommodate the
current item.

Algorithm 5 The NextF it algorithm
procedure NextF it

m 0 . total number of opened bins so far
R 0 . R is the amount of remaining space in the most recently opened bin
j  1
while j  n do

if xj > R then
m m+ 1
R 1� xj

else
R R� xj

�(j) m
j  j + 1

The simplest algorithm to analyze is NextF it so we start with it. Later we introduce the
weighting technique that is used to analyze both FirstF it and BestF it.

Theorem 2.4.1.
⇢strict(NextF it) = 2.

Proof. First we show ⇢(NextF it)  2. Define B[i] = 1 � R[i], which keeps track of how much
weight is occupied by bin i. Assume for simplicity that NextF it created an even number of bins,
i.e., m is even. Then we have B[1] + B[2] > 1, since the first item of bin 2 could not fit into the
remaining space of bin 1. Similarly we get B[2i � 1] + B[2i] > 1 for all i 2 {1, . . . ,m/2}. Adding
all these inequalities, we have

m/2X

i=1

B[2i� 1] +B[2i] > m/2.

Now, observe that the left hand side is simply
P

n

j=1 xj and that OPT �
P

n

j=1 xj . Combining
these observations with the above inequality we get OPT > m/2 = NextF it/2. Therefore, we have
NextF it < 2 ·OPT .
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Algorithm 6 The FirstF it algorithm
procedure FirstF it

m 0 . total number of opened bins so far
R a dynamically growing array, initially empty
. R keeps track of the remaining space in all opened bins
j  1
while j  n do

flag  False
for i = 1 to m do

if xj  R[i] then
R[i] R[i]� xj
�(j) i
f lag  True
break

if flag = False then
m m+ 1
Grow the size of R by 1
R[m] 1� xj
�(j) m

j  j + 1

Algorithm 7 The BestF it algorithm
procedure BestF it

m 0 . total number of opened bins so far
R 1 . array R keeps track of remaining space in all opened bins
j  1
while j  n do

ind �1 . ind will be the index of the bin having the best fit
for i = 1 to m do

if xj  R[i] then
if ind = �1 or R[i] < R[ind] then

ind i
if ind = �1 then

m ind m+ 1
R[m] 1

�(j) ind
R[ind] R[ind]� xj
j  j + 1

Next we show that ⇢(NextF it) � 2. Fix an arbitrary small ✏ > 0 such that n := 1/(2✏) 2 N. The
input consists of n pairs of items 1� ✏, 2✏. Thus, the input looks like 1� ✏, 2✏, 1� ✏, 2✏, . . . , 1� ✏, 2✏,
where the “. . . ” indicate that the corresponding pattern repeats n times. Observe that NextF it
on this instance uses 2n bins, since the repeating pattern of pairs 1 � ✏, 2✏ forces the algorithm to
use a new bin on each input item (1 � ✏ + 2✏ = 1 + ✏ > 1). The optimal solution places items of
weight 1 � ✏ in distinct bins and places all items of weight 2✏ into a single bin. This is possible
by the choice of ✏ and n. Thus, we have OPT = n + 1 whereas NextF it = 2n. This means that
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⇢(NextF it) � 2n/(n+ 1)! 2 as n!1.

Before we analyze the competitive ratio of FirstF it we introduce some notation. We use Si to
denote the set of items that FirstF it packs into bin i for i 2 [m]. We use Qi to denote the set of
items that OPT packs into bin i. The upper bound on the performance of FirstF it is established
by means of a weighting technique. This technique is applicable not only to Bin Packing, but to a
variety of other packing problems and can be derived via the primal-dual framework (see Chapter 8)
for the Gilmore-Gomory integer programming formulation of Bin Packing. The basic version of the
technique is based on the following idea. Let w : [0, 1]! R be a function that accepts an item size
as an input and produces a modified item size as an output. This function naturally extends to
accept a (multi) set of items as an input and to output the sum of the modified item sizes in the set.
That is for a (multi) set of items S the weight function is defined as w(S) =

P
x2S w(x). Suppose

that the weight function w satisfies the following properties:

1. The function is nonnegative, i.e., w(y) � 0 for all y 2 [0, 1].

2. For all, but a constant number, of bins produced by FirstF it the weight function has value
at least 1, i.e.,

w(Si) � 1 for all but a constant number of i 2 [m].

3. For an arbitrary (multi) set of item sizes that could fit in a single bin, the weight function has
value at most �, i.e.,

w(S)  � for all S such that S consists of item sizes in [0, 1] and
X

y2S
y  1.

Observe that the second property is with respect to (multi) sets of items that correspond to bins
of FirstF it, while the last property is with respect to arbitrary (multi) sets of arbitrary item sizes
(as long as they fit into a single bin) and not necessarily items coming from (x1, . . . , xn).

The key observation is that the existence of such a weight function implies that the asymptotic
competitive ratio of FirstF it is at most �. Consider an arbitrary input (x1, . . . , xn) to FirstF it.
Let k denote the number of bins to which the second property doesn’t apply. Then we have

nX

i=1

w(xi) =
mX

i=1

w(Si) � m� k = FirstF it(x1, . . . , xn)� k.

The first equality above follows from the fact that FirstF it packs all items, so S1, . . . , Sm form a
partition of all items (x1, . . . , xn). The inequality follows from the fact that w(Si) � 1 for all but at
most k bins and that w(Si) � 0 by the first property for the bins to which w(Si) � 1 doesn’t apply.
Next, observe that we can rewrite

P
n

i=1w(xi) in another way, namely, according to the partition of
items due to OPT :

nX

i=1

w(xi) =
OPTX

i=1

w(Qi)  � ·OPT (x1, . . . , xn).

The inequality follows from the third property of the weight function. Combining the two inequali-
ties, we obtain that FirstF it(x1, . . . , xn)  � ·OPT (x1, . . . , xn)+ k. Since k is constant, the upper
bound of � on the asymptotic competitive ratio of FirstF it follows.

This technique was used to establish the first tight bound on the competitive ratio of FirstF it,
except that the second property turns out to be to restrictive and needs to be replaced by a
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more relaxed version of the property. The proof based on this version of the weighting technique
is still quite involved and unintuitive precisely because of the difficulty in handling the second
property. Intuitively, the difficulty of the earlier proofs lies in the fact that the above properties are
stated for bins independently of each other, whereas the defining property of FirstF it bins involves
relationships between items packed into bins Si and Sj for i < j. If one hopes to prove a ratio that
holds for FirstF it but doesn’t for NextF it, the defining property of FirstF it bins has to come up
in the proof somewhere and it is difficult to do that (although possible) with the original weighting
technique.

A much simpler proof, which we are about to present, is based on a modified weighting technique.
The idea is to decompose the weight function w into a sum of two components, i.e., w(x) :=
w(x) + w(x), where the first component w(x) is called a scaled size of an item and the second
component w(x) is called a bonus associated with an item. Consider a version of the second
property where the scaled size of one bin plus the bonus of a related later bin is at least 1. This
modified version of the second property immediately refers to the defining property of FirstF it
bins, so establishing it requires less argumentation and results in a much easier and shorter proof
(this is not to say that the proof becomes “trivial” or “obvious” – far from it, it is simply much easier
than original proofs). Of course, this is just a high-level intuitive explanation. Next, we present the
formal proof with all the details.

Theorem 2.4.2.
⇢(FirstF it)  1.7.

Proof. Define the weight function w(x) = w(x) + w(x) for x 2 [0, 1] as follows:

• The component w(x) is referred to as the scaled size of an item x and is defined as

w(x) =
6

5
x.

• The component w(x) is referred to as the bonus of an item x and is defined as

w(x) =

8
>><

>>:

0 if x  1
6 ,

3
5

�
x� 1

6

�
if x 2

�
1
6 ,

1
3

�
,

0.1 if x 2
⇥
1
3 ,

1
2

⇤
,

0.4 if x > 1
2 .

This weight function and its two component functions extend to (multi) sets of items in a natural
way as discussed before the statement of this theorem. Next, we establish the three properties
sufficient to prove the stated competitive ratio.

Property 1. For every x 2 [0, 1] we clearly have w(x) � 0.
Property 2. Consider bins i and j created by FirstF it such that i < j (i.e., bin i is opened

before bin j). If
P

x2Si
x � 2/3 (i.e., bin i has total load at least 2/3) and |Sj | � 2 (i.e., bin j has

at least 2 items) then
w(Si) + w(Sj) � 1.

Proof of property 2. Let y1 and y2 be two distinct items in Sj guaranteed to exist since
|Sj | � 2. Since

P
x2Si

x � 2
3 we have w(Si) �

6
5 ·

2
3 = 0.8. If either y1 > 1/2 or y2 > 1/2 then

w(Sj) � 0.4 and the claim follows immediately. Moreover, if y1 � 1
3 and y2 �

1
3 then w(Sj) � 0.2

and the claim also follows. Thus, it is only left to consider the subcases: (1) y1 < 1
3 and y2 2

⇥
1
3 ,

1
2

⇤
;

and (2) y1 <
1
3 and y2 <

1
3 .
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Examining bin i, observe that if
P

x2Si
x � 5

6 then w(Si) � 1, so the claim follows immediately.
Thus, suppose that

P
x2Si

x < 5
6 and let z denote the slack, i.e., z > 0 and

P
x2Si

x = 5
6 � z.

Observe that z  1
6 since otherwise

P
x2Si

x < 2/3 violating one of the assumptions. Since bin j
was opened after bin i, every item placed in bin j has to be of size greater than the empty space in
bin i. Then y1, y2 >

1
6 + z. Therefore we have

Subcase (1). w(Si) + w(Sj) �
6
5

�
5
6 � z

�
+ w(y1) + w(y2) > 1 � 6

5z + 3
2z + 0.1 = 1.1 � 3

5z �
1.1� 3

5 ·
1
6 = 1.

Subcase (2). w(Si) + w(Sj) �
6
5

�
5
6 � z

�
+ w(y1) + w(y2) > 1� 6

5z +
3
5z +

3
5z = 1.

Property 3. Let S be a (multi) set of items that can fit into a single bin, i.e.,
P

x2S x  1.
Then

w(S)  1.7.

Proof of property 3. Observe that w(S)  6
5 = 1.2. Thus, it suffices to check that w(S)  0.5.

We split it into several cases.
Case 8x 2 S we have x  1/2. In this case S has at most 5 items with non-zero bonus and each

such item can contribute at most 0.1. Therefore w(S)  0.5, as desired.
Case 9x 2 S such that x > 1/2. Then w(x) = 0.4. Note that either all remaining items have

zero bonus (in which case we are done), or one item can have non-zero remaining bonus and that
bonus is at most 0.1 (we are also done in this case), or two items, say, y1 and y2, have non-zero
remaining bonus. In the latter case, we have y1, y2 2

�
1
6 ,

1
3

�
and y1 + y2 <

1
2 , so we have

w(S) = w(y1) + w(y2) =
3

5

✓
y1 �

1

6

◆
+

3

5

✓
y2 �

1

6

◆
=

3

5
(y1 + y2)�

2

10
<

3

10
�

2

10
= 0.1.

This finishes the verification of all three properties. Next, we show how to combine these
properties to derive the bound on the competitive ratio of FirstF it.

Recall that S1, . . . , Sm denote the bins opened by FirstF it. Observe that at most one bin can
have total load less than 1/2, otherwise items from a later bin of load < 1/2 could have been placed
in an earlier bin of load < 1/2, which violates the definition of FirstF it. Without loss of generality
suppose that bin is Sm and ignore this bin from future consideration. Now, split the remaining bins
into two categories. The first category consists of those bins that contain a single item each. Let C1

denote the indices of such bins. The second category consists of those bins that contain at least two
items each. Let C2 denote the indices of such bins. Therefore, we have C1 [ C2 = {1, . . . ,m � 1}
and C1 \ C2 = ;. Observe that at most one bin from C2 has total load < 2/3: suppose that two
bins i1, i2 2 C2 have total loads < 2/3 and suppose i1 < i2 without loss of generality. Since bin
i2 contains at least two items and has total load < 2/3 then Si2 contains an item of size < 1/3;
however, then this item should have been placed in Si1 by the definition of FirstF it. This is a
contradiction, therefore at most one bin from C2 has total load < 2/3. Let C 0

2 be C2 without that
bin. Observe that since we have omitted at most two bins in C1 and C 0

2 we have |C1|+ |C 0
2| � m�2.

With this notation, we are ready to finish the argument.
Observe that for all i 2 C1 load of bin i is greater than 1/2 and bin i contains a single item.

Thus, the bonus of that item is 0.4 whereas the scaled size of that item is at least 6
5 ·

1
2 = 0.6.

Therefore, we have w(Si) � 1 and consequently:
X

i2C1

w(Si) �
X

i2C1

1 = |C1|. (2.1)

Let C 0
2 = {p1 < p2 < · · · < p`}. Since the load of each Spk

is at least 2/3 and each Spk
contains

at least two items we can repeatedly apply property 2 to subsequent pairs of bins, i.e., Spk
playing
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the role of Si in property 2 and Spk+1 playing the role of Sj in property 2, for k 2 {1, . . . , `� 1}. In
other words, we have

`X

k=1

w(Spk
) =

`X

k=1

w(Spk
) + w(Spk

) �
`�1X

k=1

w(Spk
) + w(Spk+1) �

`�1X

k=1

1 = `� 1 = |C 0
2|� 1. (2.2)

Combining Equations (2.1) and (2.2), we obtain:

nX

i=1

w(xi) =
mX

i=1

w(Si) �
X

i2C1

w(Si) +
X

i2C0
2

w(Si) � |C1|+ |C 0
2|� 1 � m� 2� 1 = FirstF it� 3.

Recall that Q1, . . . , QOPT denote the contents of bins created by OPT . Now, by applying
property 3 we get

nX

i=1

w(xi) =
OPTX

i=1

w(Qi) 
OPTX

i=1

1.7 = 1.7 ·OPT.

Combining the above two equations we obtain FirstF it(x1, . . . , xn)  1.7 ·OPT (x1, . . . , xn)+3.
This finishes the proof of the theorem.

The big mystery in the above proof is where the weight function w comes from and how does
one go about finding a weight function for problems similar to Bin Packing. Is there a recipe? Is
there a method? Unfortunately, there isn’t a completely satisfactory answer to this question. We
didn’t come up with the above proof and research papers do not mention how one could discover
such a weight function. We suspect that it is mostly an educated guess based on analysis of many
particular instances and specifically of hard instances on which FirstF it gets competitive ratio close
to 1.7. The first step towards finding the appropriate weight function is to realize that the weight
function method proves the competitive ratio based on properties 1, 2, and 3. The next step is to
“guess” a weight function of some general form, for example, a linear function w(x) = ↵ ·x for some
constant ↵. Then one could try to find what value of ↵ proves the best competitive ratio by leaving
it as a parameter in the analysis and optimizing the parameter at the end. This is similar to the
analysis of RandomizedSkiRental in Chapter 1. Unfortunately, one finds that a linear function is
not good enough to establish the competitive ratio 1.7, so a richer class of weight function needs to
be considered. The next natural choice seems to be piece-wise linear functions – this is when one
can conceivably arrive at the w used in the above proof. The mystery behind the “right” weight
function is akin to the mystery behind finding the right potential function in the potential function
method to be discussed in Chapter 4. Alternatively, the weight function may be found more or less
systematically by using the primal-dual framework which we discuss in Chapter 8, but even then it
is hard to find such a nice, succinct and general description of the function.

The same weight function as in the above proof can be used to establish an asymptotic com-
petitive ratio 1.7 for BestF it with some modifications to the way the weight function is applied.
Properties 1 and 3 continue to hold since they do not depend on the algorithm being analyzed. In
the proof for FirstF it, property 2 was applied to a particular sequence of bins, two bins at a time.
Unfortunately, this property breaks down when applied to the same sequence of bins for BestF it.
The problem lies in the fact that FirstF it places item y in bin Sj because y exceeds free space in
Si for i < j. This is no longer true for BestF it since y might be placed in bin Sj even when it could
also fit in Si for i < j provided that placing y in Sj resulted in a tighter packing. Thus, property
2 needs to be applied to a carefully chosen sequence of bins, two at a time, that is different from
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the sequence of bins with at least two elements each in the order of bins being opened. We omit
the details and simply state the result. At the end of this chapter, we refer the interested reader to
related literature where full details may be found.

Theorem 2.4.3.
⇢(BestF it)  1.7.

We finish this section by demonstrating that the asymptotic competitive ratio of 1.7 is tight for
both FirstF it and BestF it. The same adversarial input is used to prove both results simultaneously.

Theorem 2.4.4.
⇢(FirstF it) � 1.7 and ⇢(BestF it) � 1.7.

Proof. Let k 2 N, � 2 R so that 0 < � ⌧ 18�k, and define �i = � · 18k�i. The adversary presents
a sequence of 30k items arriving in three regions. The first region consists of items whose weights
are close to 1/6 – we call these type A items. The second region consists of so-called type B items
whose weights are close to 1/3. The last region consists of type C items whose weights are close to
1/2. Each region consists of k blocks and each block consists of 10 items.

Type A items (first region) in block i are defined as follows for i 2 [k]:

• a1,i =
1
6 + 33�i,

• a2,i =
1
6 � 3�i,

• a3,i = a4,i =
1
6 � 7�i,

• a5,i =
1
6 � 13�i,

• a6,i =
1
6 + 9�i,

• a7,i = a8,i = a9,i = a10,i =
1
6 � 2�i.

Type B items (second region) in block i are defined as follows for i 2 [k]:

• b1,i =
1
3 + 46�i,

• b2,i =
1
3 � 34�i,

• b3,i = b4,i =
1
3 + 6�i,

• b5,i =
1
3 + 12�i,

• b6,i =
1
3 � 10�i,

• b7,i = b8,i = b9,i = b10,i =
1
3 + �i.

Type C items (third region) in block i are defined as follows for i 2 [k]:

• c1,i = c2,i = · · · = c10,i =
1
2 + �.

This finishes the description of the adversarial sequence. Specifically, the items are presented in
order:

a1,1, a2,1, · · · , a10,1| {z }
block 1, type A

, a1,2, a2,2 · · · , a10,2| {z }
block 2, type A

, · · · , a1,k, a2,k · · · , a10,k| {z }
block k, type A

,

followed by a similar presentation of type B items, followed by a similar presentation of type C
items. Let x denote the entire sequence.

Let ALG denote either FirstF it or BestF it. Observe that ALG creates the following bins in
processing this input sequence:
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• a1,i, . . . , a5,i are placed in bin 2i� 1 resulting in load 5
6 + 3�i for i 2 [k],

• a6,i, . . . , a10,i are placed in bin 2i resulting in load 5
6 + �i for i 2 [k],

• b1,i, b2,i are placed in bin 2k + 5i� 4 resulting in load 2
3 + 12�i for i 2 [k],

• b3,i, b4,i are placed in bin 2k + 5i� 3 resulting in load 2
3 + 12�i for i 2 [k],

• b5,i, b6,i are placed in bin 2k + 5i� 2 resulting in load 2
3 + 2�i for i 2 [k],

• b7,i, b8,i are placed in bin 2k + 5i� 1 resulting in load 2
3 + 2�i for i 2 [k],

• b9,i, b10,i are placed in bin 2k + 5i resulting in load 2
3 + 2�i for i 2 [k],

• cj,i is placed bin bin 7k + 10(i� 1) + j resulting in load 1/2 + � for i 2 [k] and j 2 [10].

Verification of this claim is omitted, as it is an easy although tedious exercise. The property that
�i�1 = 18�i is crucially important for this claim. Thus, ALG opens 17k bins to pack this sequence.

Next, we show that OPT  10k+1. We start by filling in 10k�1 bins with type C items. Then
we pad these bins with one of the following combinations:

• aj,i, bj,i for j 2 {3, 4, . . . , 10} and i 2 [k],

• a1,i, b2,i for i 2 [k],

• a2,i, b1,i+1 for i 2 [k � 1].

This leaves b1,1, a2,k and one item of weight 1
2+�, which may be packed in two more bins. Therefore,

we have

ALG(x)

OPT (x)
�

17k

10k + 1
! 1.7 as k !1.

2.5 Competitive Ratio for Maximization Problems

As defined, competitive and approximation ratios for a minimization problem always satisfy ⇢ � 1
and equal to 1 if and only if the algorithm is (asymptotically) optimal. Clearly, the closer ⇢ is to 1,
the better the approximation.

For maximization problems, there are two ways to state competitive and approximation ratios
for a maximization algorithm ALG.

1. ⇢(ALG) = lim infOPT (I)!1
ALG(I)
OPT (I) .

2. ⇢(ALG) = lim supOPT (I)!1
OPT (I)
ALG(I) .

There is no clear consensus as to which convention to use. In the first definition we always have
⇢  1. It is becoming more standard to express competitive and approximation ratios as the fraction
of the optimum value that the algorithm achieves especially if the ratio is a non-parameterized
constant. For some examples, see the results in Chapter 5 for Bipartite Matching and Chapter 6)
for MaxSAT. With this convention, we have to be careful in stating results as now an “upper bound”
is a negative result and a “lower bound” is a positive result. Using the second definition we would be
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following the convention for minimization problems where again ⇢ � 1 and upper and lower bounds
have the standard interpretation for being (respectively) positive and negative results. For both
conventions, it is unambiguous when we say, for example, “achieves approximation ratio . . .” and
“has an inapproximation ratio . . .”. We will use a mixture of these two conventions, stating constant
ratios as fractions while, as in this section and many of the results in Chapter 5), we will use ratios
⇢ � 1 when ⇢ is expressed as a function of some input parameter.

As for minimization problems, the term “competitive ratio” will refer by default to the asymptotic
competitive ratio that holds for large enough inputs (as measured by OPT ) whereas the term “strict
competitive ratio”, denoted by ⇢strict, is reserved for the competitive ratio that holds for all inputs
regardless of the size of the input.

2.6 Maximization Problem Example: Time-Series Search

As an example of a deterministic algorithm for a maximization problem, we first consider the
following Time-Series Search problem. In this problem one needs to exchange the entire savings in
one currency into another, e.g., dollars into euros. Over a period of n days, a new exchange rate
pj is posted on each day j 2 [n]. The goal is to select a single day with a maximally beneficial
exchange rate and exchange the entire savings on that day. If you have not made the trade before
day n, you are forced to trade on day n. You might not know n in advance, but you will be informed
on day n that it is the last day. Without knowing any side information, an adversary can force any
deterministic algorithm to perform arbitrarily badly. There are different variations of this problem
depending on what is known about currency rates a priori. We assume that before seeing any of
the inputs, you also have access to an upper bound U and a lower bound L on the rates pj , that is
L  pj  U for all j 2 [n]. We also assume no transaction costs. Formally, the problem is defined
as follows.

Time-Series Search
Input: (p1, p2, . . . , pn) where pj is the rate for day j meaning that one dollar is equal to pj euros;
U,L 2 R�0 where L  pj  U for all j 2 [n].
Output: i 2 [n].
Objective: To compute i so as to maximize pi.

We introduce a parameter � = U/L which is the ratio between the maximum possible rate and
the minimum possible rate. Observe that any algorithm achieves competitive ratio �. Can we do
better?

The following deterministic algorithm is particularly simple and improves upon the trivial ratio
�. The algorithm trades all of its savings on the first day that the exchange rate is at least p⇤ =

p
UL.

If the rate is always less than p⇤, the algorithm will trade all of its savings on the last day. The
value p⇤ is referred to as the reservation price, and the algorithm is known as the reservation price
policy or RPP for short.

Theorem 2.6.1.
⇢strict(ReservationPricePolicy) 

p
�.

Proof. Consider the case where pj < p⇤ for all j 2 [n]. Then the reservation price algorithm
trades all dollars into euros on the last day achieving the objective value pn � L. The optimum is
maxj pj  p⇤ =

p
UL. The ratio between the two is

OPT (p1, . . . , pn)

ReservationPricePolicy(p1, . . . , pn)


p
UL

L
=

p
�.
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Algorithm 8 The reservation price policy algorithm.
procedure ReservationPricePolicy

p⇤  
p
UL

flag  0
j  1
while j  n and flag = 0 do

if j < n and pj � p⇤ then
Trade all savings on day j
flag  1

else if j = n then
Trade all savings on day n

Now, consider the case where there exists pj � p⇤ and let j be the earliest such index. Then the
reservation price algorithm trades all dollars into euros on day j achieving objective value pj �

p
UL.

The optimum is maxj pj  U . The ratio between the two is

OPT (p1, . . . , pn)

ReservationPricePolicy(p1, . . . , pn)


U
p
UL

=
p
�.

We can also show that
p
� is optimal among all deterministic algorithms for Time-Series Search.

Theorem 2.6.2. Let ALG be an arbitrary deterministic algorithm for Time-Series Search. Then

⇢(ALG) �
p
�.

Proof. The adversary specifies pi =
p
UL for i 2 [n� 1]. If the algorithm trades on day i  n� 1,

the adversary then declares pn = U . Thus, OPT trades on day n. In this case, the competitive
ratio is

OPT (p1, . . . , pn)

ALG(p1, . . . , pn)
=

U
p
UL

=

r
U

L
=

p
�.

If the algorithm does not trade on day i  n � 1, the adversary declares pn = L. Thus the
algorithm is forced to trade on day n with exchange rate L, while OPT trades on an earlier day
with exchange rate

p
UL. In this case, the competitive ratio is

OPT (p1, . . . , pn)

ALG(p1, . . . , pn)
=

p
UL

L
=

r
U

L
=

p
�.

Observe that ReservationPricePolicy algorithm requires the knowledge of both U and L. What
if instead of providing both U and L to an algorithm, we provided only the ratio � to an algorithm?
A similar argument to the one used in Theorem 2.6.2 shows that knowing just � is not sufficient to
improve upon the trivial competitive ratio of �.

Theorem 2.6.3. Suppose that instead of U and L only � = U

L
� 1 is known to an algorithm a

priori. Let ALG be an arbitrary deterministic algorithm for this version of Time-Series Search.
Then

⇢(ALG) � �.
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Proof. The adversary declares � and presents the input sequence (p1, . . . , pn), where pi = 1 for
i 2 [n� 1].

If ALG trades on day i  [n � 1] then the adversary declares pn = �. In this case, an optimal
solution is to trade on day pn achieving objective value pn = �, and the algorithm traded when the
exchange rate was 1.

If ALG doesn’t trade on day n � 1 or earlier, then the adversary declares pn = 1/�. In this
case, an optimal solution is to trade on day 1 achieving objective value 1, and the algorithm trades
on the last day achieving 1/�.

In either case, the adversary can force competitive ratio �.

2.7 Maximization Problem Example: One-Way Trading

A natural generalization of Time-Series Search is the One-Way Trading problem. In this problem,
instead of requiring an algorithm to trade all of its savings on a single day, we allow the algorithm
to trade a fraction fj 2 [0, 1] of its savings on day j for j 2 [n]. An additional requirement is that
by the end of the last day all of the savings have to be traded, that is

P
n

j=1 fj = 1. As before,
the bounds U and L on exchange rates are known in advance. Also as before, we assume that the
algorithm is forced to trade all of the remaining savings at the specified rate on day n.

One-Way Trading
Input: (p1, p2, . . . , pn) where pj is the rate for day j meaning that one unit of savings is equal to
pj units of new currency; U,L 2 R�0 where the rates must satisfy L  pj  U for j 2 [n].
Output: f1, . . . fn 2 [0, 1] where fj indicates that the fraction fj of savings are traded on day j
and

P
n

j=1 fj = 1.
Objective: To compute f so as to maximize the aggregate exchange rate

P
j
fjpj .

The ability to trade a fraction of savings on each day is surprisingly powerful resulting in
an exponential improvement in the best achievable competitive ratio as compared to Time-Series
Search. More specifically, next we show that one can almost achieve competitive ratio log � instead
of
p
� that is best possible when one is forced to trade entire savings on a single day.

Algorithm 9, called MixtureOfRPP , shows how this is done. To simplify the presentation we
assume that � = 2k for some positive integer k. Consider exponentially spaced classes of reservation
prices {pj}. More specifically, we are partitioning the prices into k classes {pj |L · 2i  pj < 2i+1

}

for i 2 {0, 1, . . . , k�2} and {pj |L ·2k�1
 pj  L ·2k}. We refer to L ·2i as the ith reservation price.

Upon receiving p1, the algorithm computes index i of the largest reservation price that is exceeded
by p1 and trades (i + 1)/k fraction of its savings. This index i is recorded in i⇤. For each newly
arriving exchange rate pj we compute index i of the reservation price that is exceeded by pj . If
i  i⇤ the algorithm ignores day j. Otherwise, the algorithm trades (i� i⇤)/k fraction of its savings
on day j and updates i⇤ to i. Thus, we can think of i⇤ as keeping track of the best reservation price
that has been exceeded so far, and whenever we have a better reservation price being exceeded we
trade the fraction of savings proportional to the difference between indices of the two reservation
prices. Thus, the algorithm is computing some kind of a mixture of reservation price policies, hence
the name of the algorithm3.

Theorem 2.7.1.
⇢(MixtureOfRPPs)  c(�) log �,

where c(�) is a function such that c(�)! 1 as �!1.
3See Exercise 3 in Chapter 3 for further motivation of the naming of the Algorithm
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Algorithm 9 The mixture of RPPs algorithm.
procedure MixtureOfRPPs

. U,L, and � = U/L = 2k are known in advance
i⇤  �1
for j  1 to n do

i max{i | L · 2i  pj}
if i = k then Line . The price U = L · 2k is in the class {pj |L · 2k�2

 pj  L · 2k�1
}

i k � 1
if i > i⇤ then

Trade fraction (i� i⇤)/k of savings on day j
i⇤  i

Trade all remaining savings on day n

Proof. Consider the input sequence (p1, . . . , pn) and let i1, . . . , in be the indices of the corresponding
reservation prices. That is, ij is the largest index such that L · 2ij  pj for all j 2 [n]. Observe that
the definition of ij states that pj < L · 2ij+1 for all j 2 [n] (with the exception of pj = U = L · 2k).
Let ` denote the day with the highest exchange rate, that is p` = maxj2[n] pj . Clearly, we have

OPT (p1, . . . , pn) = p` < L · 2i`+1.

Note that the value of i⇤ changes during the execution of MixtureOfRPPs. The observed
values form a non-decreasing sequence during the execution of the algorithm. Ignore those days
when the value of i⇤ does not change and consider only the distinct values of i⇤ that are observed.
Let i⇤0 < i⇤1 < · · · < i⇤q denote that sequence of values. We have i⇤0 = �1 and i⇤q = i`. With this
notation we can describe the value of the objective function achieved by MixtureOfRPPs:

0

@
qX

j=1

i⇤
j
� i⇤

j�1

k
L · 2i

⇤
j

1

A+
k � i`
k

L,

where the first term is the lower bound on the contribution of trades until day ` and the second
term is the lower bound on the contribution of trading the remaining savings on the last day.

In order to bound the first term, we note that if we wish to minimize the expression
qX

j=1

(i⇤j � i⇤j�1)2
i
⇤
j (2.3)

over all increasing sequences i⇤
j

with i⇤0 = �1 and i⇤q = i` then we can set i⇤
j
= j � 1. That is the

unique minimizer of expression (2.3) is the sequence �1, 0, 1, 2, . . . , i`, i.e., it doesn’t skip any values.
In this case we have

P
p

j=1(i
⇤
j
� i⇤

j�1)2
i
⇤
j =

P
i`

j=0 2
j = 2i`+1

� 1. Why is this a minimizer? We will
show that an increasing sequence that skips over a particular value v cannot be a minimizer. Suppose
that you have a sequence such that i⇤

j�1 < v < i⇤
j

and consider the jth term in expression (2.3)
corresponding to this sequence. It is (i⇤

j
�i⇤

j�1)2
i
⇤
j = (i⇤

j
�v+v�i⇤

j�1)2
i
⇤
j = (i⇤

j
�v)2i

⇤
j +(v�i⇤

j�1)2
i
⇤
j >

(i⇤
j
� v)2i

⇤
j + (v � i⇤

j�1)2
v; that is, if we change our sequence to include v we strictly decrease the

value of expression (2.3). Thus, the unique minimizing sequence is the one that doesn’t skip any
values.

From the above discussion we conclude that we can lower bound MixtureOfRPPs as follows:

MixtureOfRPPs(p1, . . . , pn) �
2i`+1

� 1

k
L+

k � i`
k

L.
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Finally, we can bound the competitive ratio:

OPT (p1, . . . , pn)

MixtureOfRPPs(p1, . . . , pn)


L · 2i`+1

(2i`+1 � 1)L/k + (k � i`)L/k
= k

2i`+1

2i`+1 + k � i` � 1
.

The worst case competitive ratio is obtained by maximizing the above expression. We can do so
analytically (taking derivatives, equating to zero, and so on), which gives i` = k � 1 + 1/ ln(2).
Thus, the competitive ratio is log � = k times a factor that is slightly larger than 1 and approaching
1 as k !1.

We saw that with Time-Series Search knowing U or L was crucial and knowing just � was not
enough. In contrast, it turns out that for One-Way Trading one can prove a similar positive result
to the above assuming that the algorithm only knows � and doesn’t know U or L. Exercise 10 is
dedicated to this generalization. Another generalization is that we don’t need to assume that � is
a power of 2, which we state here without a proof.

2.8 Exercises

1. Show that 2� 1
m

is an asymptotic lower bound for the GreedyMakespan algorithm. That is,
for loads in some range [1, Rm], show that there are arbitrarily long input sequences forcing
the stated competitive ratio fofr every m.

2. Consider the Makespan problem for temporary jobs, where now each job has both a load
pj and a duration dj . When a job arrives, it must be scheduled on one of the m machines
and remains on that machine for dj time units after which it is removed. The makespan
of a machine is the maximum load of the machine at any point in time. As for permanent
jobs, we wish to minimize (over all machines) the maximum makespan. Show that the greedy
algorithm provides a 2-approximation for this problem.

3. Consider the following algorithm called WorstF it: find a bin among all opened bins that has
maximum remaining space among all bins that have enough space to accommodate the newly
arriving item. If there are no bins that can accommodate the newly arriving item, open a new
bin and place the new item in the new bin.

(a) Write down pseudocode for WorstF it.
(b) Analyze the competitive ratio of WorstF it by giving matching lower and upper bounds.

4. (*) Find an algorithm ALG different from FirstF it and BestF it that also achieves competi-
tive ratio 1.7 for the Bin Packing problem.

5. (*) Define a general class of algorithms that includes FirstF it, BestF it and ALG from
the previous exercise as special cases and such that every algorithm in that class achieves
competitive ratio 1.7.

6. We have shown that for every input sequence (x1, . . . , xn) we have FirstF it(x1, . . . , xn) 
17
10OPT (x1, . . . , xn) + 3 using the modified weighting technique. The proof was a bit in-
volved. One can show a much simpler proof if one aims for a slightly weaker result, namely:
FirstF it(x1, . . . , xn) 

7
4OPT (x1, . . . , xn) + 2. In this case one doesn’t even have to use the

modified weighting technique and can apply the original weighting technique instead. This is
what you are asked to do in this question.



2.9. HISTORICAL NOTES AND REFERENCES 39

(a) Consider the following weight function w

w(x) =

⇢
3
2x if 0  x  1/2
1 if x > 1/2

Prove that for all k 2 N and for all y1, . . . , yk 2 R�0 if
P

k

i=1 yi  1 then
P

k

i=1w(yi) 
7/4. This shows that applying the weight function to a bin can never stretch the total
weight over 7/4.

(b) Consider an arbitrary input sequence (x1, . . . , xn) and the bins produced by the FirstF it
algorithm. Define the following bin types:
Type I. Each bin of this type contains a single item of weight > 1/2.
Type II. Each bin of this type contains more than one item and the total weight of the

bin is > 2/3.
Type III. Any bin that is not of Type I or Type II.
Prove that the weight function applied to each bin of Type I or Type II is � 1.

(c) Prove that there can be at most 2 bins of Type III.
(d) Combine all of the above to show that FirstF it(x1, . . . , xn) 

7
4OPT (x1, . . . , xn) + 2.

7. Prove that no online algorithm can achieve competitive ratio better than 4/3 for the Bin
Packing problem.

8. Suppose that in the Time-Series Search problem the algorithm only knows L beforehand.
Does there exist a deterministic algorithm with competitive ratio better than �?

9. Suppose that in the One-Way Trading problem the algorithm only knows L beforehand. Does
there exist a deterministic algorithm with competitive ratio better than �?

10. (*) Suppose that in the One-Way Trading problem the algorithm only knows � beforehand.
Design a deterministic algorithm with competitive ratio as close to log � as possible.

11. Consider the Makespan problem in the random order input model (ROM): adversary creates
an input sequence by specifying the processing times p1, . . . , pn, the algorithm receives this
instance in some random order. That is, after the adversary specifies the input sequence, a
permutation � : [n] ! [n] is sampled uniformly at random, and the algorithm receives items
in the order p�(1), p�(2), . . . , p�(n). Consider the greedy algorithm for the Makespan problem
in ROM. Prove that for every ✏ > 0 there exists a sufficiently large m and an input sequence
such that E[Greedy]/OPT � 2 � ✏. Here, the expectation is with respect to the uniform
distribution on input arrival order.

2.9 Historical Notes and References

Request-answer games were introduced in Ben-David et al. [32]. As mentioned, request-answer
games serve as a very general abstract model that applies to almost all optimization problems that
we will be considering in this text. Moreover, as we will see in Chapter 3, within this model the
different types of adversaries (with respect to randomized online algorithms) can be compared.

The Makespan problem for identical machines was studied by Graham [92, 93]. These papers
present online and offline greedy approximation algorithms for the Makespan problem on identical



40 CHAPTER 2. DETERMINISTIC ONLINE ALGORITHMS

machines as well as presenting some surprising anomalies. The papers precede Cook’s seminal pa-
per [58] introducing NP completeness but still Graham conjectures that it is not be possible to have
an efficient optimal algorithm for this problem. This work also precedes the explicit introduction of
competitive analysis by Sleator and Tarjan [137] and does not emphasize the online nature of the
greedy algorithm, but still the 2� 1

m
appears to be the first approximation and competitive bound

to be published.
Once competitive analysis emerged as a prominent research area, attention turned to some

classical optimization problems including the Makespan problem. In particular, it was natural to
ask if Graham’s greedy algorithm was the best online algorithm for any number m of machines. As
mentioned, the greedy algorithm is the optimal online algorithm for m = 2 and 3. Galambos and
Woenginger [85] provided the first improvement over the classical greedy bound for larger values
of m. Namely, they show that for every m � 4, there is a deterministic online algorithm RLS(m)
such that the competitive ratio of RLS(m) is equal to 2� 1

m
� ✏m for some small constant ✏m > 0

that converges to 0. This was the beginning of a series of papers establishing improved upper
and lower bounds for the Makepsan problem on m identical machines establishing 2 � ✏ bounds
for ✏ > 0 independent of m. The first such result is due to Bartal et al. [24]. Currently the best
approximation ratio is 1 +

q
1+ln 2

2 ⇡ 1.9201 due to Fleischer and Wahl [82] where the bound
improves upon previous results for m � 64. They also provide an account of the papers leading
up to their result. In particular, for all m � 2, Albers [6] established a 1.923 competitive ratio.
The current best lower bound is ⇡ 1.85358 due to Gormley et al. [90]. Their bound is obtained by
a general procedure using linear programming to generate deterministic adversaries for a class of
request-answer games. Perviously, an explicit adversarial sequence in [6] was used to prove a 1.852
lower bound. These lower bounds are not asymptotic lower bounds.

The Makespan problem belongs to a wider class of scheduling problems called load balancing
problems, including other machine models and routing problems (see Chapter 4), other performance
measures (e.g., where the load on a machine is its Lp norm for p � 1) as well as other performance
measures (see Chapter 15). In particular, the so-called “Santa Claus problem” [20] considers the
max�min performance measure for scheduling jobs in the unrelated machines model. The name
of the problem derives from the motivation of distributing n presents amongst m children (where
now pi,j is the value of the jth present when given to the ith child) so as to maximize the the value
of the least happy child.

The Bin Packing problem is a classic NP-hard optimization problem and one that continues
to be a subject of interest for both the offline and online settings. Early work on the Bin Packing
problem popularized the field of approximation algorithms although Graham’s Makespan results
preceded the results for Bin Packing. This chapter was restricted to the classical one-dimensional
Bin Packing problem. Until recently, the most precise results for FirstF it and BestF it appeared
in Johnson et al. [101] following an earlier conference version by Garey, Graham and Ullman [87]
which itself was preceded by a technical report for FirstF it by Ullman [139]. Namely, these results
showed the asymptotic competitive ratio to be 1.7 and upper bounds were established by means of
a weighting technique. We preented a modified weighting technique and weighting function analysis
for FirstF it introduced by Sgall [135] in order to simplify the asymptotic analysis of BestF it.
Building on this work after more than 40 years since the asymptotic bound, Dósa and Sgall ([67] and
[68]) adapt the modified weighting technique to prove that the bounds for FirstF it and BestF it are
strict competitive ratios. Specifically, they showed that FirstF it(x1, . . . , xn), BestF it(x1, . . . , xn) 
b1.7 · OPT (x1, . . . , xn)c for any input sequence (x1, . . . , xn). Johnson [100] asked whether or not
FirstF it (or BestF it) is the best online algorithm for Bin Packing. In what might be the first
explicit study of competitive analysis (before the term was introduced), Yao [145] provided an
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improved online algorithm called RefinedF irstF it with competitive ratio 5
3 . Furthermore, Yao

gave the first negative result for competitive analysis showing that no online Bin Packing algorithm
can have a competitive ratio better than 3

2 . Since these early Bin Packing online algorithms, there
have been a number of improvements in the competitive ratio based on the Harmonic algorithm of
Lee and Lee [118]; in particular, the current best ratio is 1.57829 due to Balogh et al. [16]. Currently
the best lower bound for online Bin Packing is 1.54278 due to Balogh, Békés and Galambos [17]
providing a small improvement over a much earlier 1.54037 lower bound by van Vliet [141]. A
comprehensive review of the many papers and ideas leading up to the current best ratio can be
found in [16]. The lower bounds for bin packing are asymptotic lower bounds in contrast to the
offline analysis of the bin packing problem where Karp and Karmacher [107] provide an algorithm
ALG such ALG  OPT + o(OPT ); That is, the asymptotic approximation ratio = 1 whereas
NP -hardness implies that the strict approximation ratio is at least 3

2
Given the applications and historical interest in Bin Packing, it is not surprising that there

are many variants of the problem. The most important variant is arguably the two dimensional
problem, which itself comes in different versions; for example, can the items be rotated 90 degrees
or must they fit according to the given axis parallel orientation. We will be considering variants
such as two dimensional bin packing and dynamic bin packing in Chapter 7.

Competitive algorithms for the Time-Series Search and One-Way Trading problems were in-
troduced and analyzed in El-Yaniv et al. [72]. It is interesting to note the relation between the
Time-Series Search problem and the secretary problem in Chapter 16. . In Time-Series we do not
know the number n of inputs in advance and we studied the problem in the adversarial input medel
assuming we are given the hyper-parameters L,U . In the secretary problem, we assume n is known
but inputs arrive according to what is called the random order input model (ROM) and we are
not given any initial hyper-parameters. It follows that the positive and negative results concerning
deterministic online algorithms for Time-Series Search apply immediately to the secretary problem
if the input sequence is generated by an adversary and the hyper-parameters are known. In the
same way, the positive and negative results for the secretary problem would apply to the Time-Series
Search problem in the random order model.

- two figures for Theorem 2.4.2: one with the plot of the bonus function and another schematic
demonstrating how property 2 is applied to FirstF it bins;

- one figure for Theorem 2.4.4 demonstrating different types of bins created by FirstF it/BestF it
on the adversarial sequence;

- one figure for an example of Time-Series Search problem, another figure illustrating Theorem
2.6.2;

- one figure illustrating proof of Theorem 2.7.1;
- add a theorem or an exercise about a lower bound for One-Way Trading;
- add more exercises.
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Chapter 3

Randomized Online Algorithms

The central theme of this chapter is how much randomness can help in solving an online problem.
To answer this question, we need to extend the notion of the competitive ratio to randomized
algorithms. Measuring the performance of randomized algorithms is not as straightforward as
measuring the performance of deterministic algorithms, since randomness allows for different kinds
of adversaries. We look at the notions of oblivious, adaptive online, and adaptive offline
adversaries, and explore relationships between them. We introduce Yao’s minimax theorem, which is
a basic technique for proving lower bounds against an oblivious adversary. Lastly, we briefly discuss
some issues surrounding randomness as an expensive resource and the topic of derandomization.

We refer the reader to Appendix 25 for a brief review of probability theory.

3.1 Randomized Online Algorithm Template

Our convention will be that random variables are denoted by capital letters and particular outcomes
of random variables are denoted by small case letters. For example, suppose that B is the Bernoulli
random variable with parameter p. Then B is 1 with probability p and 0 with probability 1 � p,
and when we write B the outcome hasn’t been determined yet. When we write b, we refer to the
outcome of sampling from the distribution of B, thus b is fixed to be either 0 or 1. In other words B
is what you know about the coin before flipping it, and b is what you see on the coin after flipping
it once.

A randomized online algorithm generalizes the deterministic paradigm by allowing the decision
in step 5 of the deterministic template to be a randomized decision. We view the algorithm as
having access to an infinite tape of random bits. We denote the contents of the tape by R, i.e.,
Ri 2 {0, 1} for i � 1, and the Ri are distributed uniformly and independently of each other.

Randomized Online Algorithm Template
1: R infinite tape of random bits
2: On an instance I, including an ordering of the data items (x1, . . . , xn):
3: i := 1
4: While there are unprocessed data items
5: The algorithm receives xi and makes an irrevocable randomized decision Di :=

Di(x1, . . . , xi, R) for xi
(based on xi, all previously seen data items, and R).

6: i := i+ 1
7: EndWhile

43
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Remark 3.1.1. You might wonder if having access to random bits is enough. After all, we often
want random variables distributed according to more complicated distributions, e.g., Gaussian with
parameters µ and �. Turns out that you can model any reasonable random variable to any desired
accuracy with access to R only. For example, if you need a Binomial random variable with parame-
ters 1/2 and n, you can write a subprocedure that returns

P
n

i=1Ri. If you need a new independent
sample from that distribution, you can use fresh randomness from another part of the string R.
This can be done for all other standard distributions, for example Bernoulli with parameter p, Bi-
nomial with parameters p and n, exponential, Gaussian, etc. We will often skip the details of how
to obtain a particular random variable from R and simply assume that we can sample from a given
distribution.

Remark 3.1.2. Letting R be an infinite tape of random bits allows online algorithms to sample
irrational numbers. This is in line with the information theoretic nature of online algorithms and is
done for convenience only. For example, if we wanted to sample from a uniform distribution from
interval [0, 1], we could exactly sample from that distribution by simply interpreting the entire R
as a binary expansion of a random number between 0 and 1. If we wanted to convert an algorithm
using such a sample into a more realistic algorithm, we would have to fix some precision k and
approximate the uniform distribution by 0.R1R2 . . . Rk, where Ri is the ith bit of the infinite random
tape R. Then we would have to argue that this approximation does not significantly affect the rest
of the algorithm. This typically follows by taking k to be large enough (and still polynomial in the
input size) and proving bounds on the approximation error for all computations. The details are
typically tedious and routine. We will avoid this issue by always working with distributions that
can be efficiently approximated within any specified finite precision. Thus, all our algorithms using
potentially irrational samples could be converted into more realistic algorithms in this sense.

Note that the decision in step 4 is now a function not only of all the previous inputs but also
of the randomness R. Thus each decision Di is a random variable. However, if we fix R to be
particular infinite binary string r 2 {0, 1}N, each decision becomes deterministic. This way, we can
view an online randomized algorithm ALG as a distribution over deterministic online algorithms
ALGr indexed by randomness r. Then ALG samples r from {0, 1}N uniformly at random and runs
ALGr. This viewpoint is essential for the predominant way to prove inappoximation results for
randomized algorithm, namely the use of the von Neumann-Yao principle.

3.2 Types of Adversaries

For this section we recall the view of an execution of an online algorithm as a game between an
adversary and the algorithm. In the deterministic case, there is only one kind of adversary. In the
randomized case, we distinguish between three different kinds of adversaries: oblivious, adaptive
offline, and adaptive online, depending on the information that is available to the adversary
when it needs to create the next input item. We will discuss these adversaries in the context of
minimization problems; the analogous concepts for maximization problems can be defined following
the corresponding discussion of competitive ratio for deterministic setting in Chapter 2.

Oblivious adversary: this is the weakest kind of an adversary that only knows the (pseudocode
of the) algorithm, but not the particular random bits r that are used by the algorithm. The
adversary has to come up with the input sequence x1, x2, . . . , xn in advance — before learning any
of the decisions made by the online algorithm on this input. Thus, the oblivious adversary knows
the distribution of D1, D2, . . . , Dn, but it doesn’t know which particular decisions d1, d2, . . . , dn are
going to be taken by the algorithm. Let OBJ(x1, . . . , xn, d1, . . . , dn) be the objective function. The
performance is measured as the ratio between the expected value of the objective achieved by the
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algorithm to the offline optimum on x1, . . . , xn. More formally it is

ED1,...,Dn
(OBJ(x1, . . . , xn, D1, . . . , Dn))

OPT (x1, . . . , xn)
.

Observe that we don’t need to take the expectation of the optimum, because input items
x1, . . . , xn are not random.

Remark 3.2.1. Note that good performance in expectation does not preclude that a randomized
algorithm may have terrible performance with some small probability.

Adaptive offline adversary: this is the strongest kind of an adversary that knows the (pseu-
docode of the) algorithm and its online decisions, but not R. Thus, the adversary creates the first
input item x1. The algorithm makes a decision D1 and the adversary learns the outcome d1 prior
to creating the next input item x2. We can think of the input items as being defined recursively
xi := xi(x1, d1, . . . , xi�1, di�1). After the entire input sequence is created we compare the per-
formance of the algorithm to that of an optimal offline algorithm that knows the entire sequence
x1, . . . , xn in advance. More formally it is

ED1,...,Dn
(OBJ(x1, . . . , xn, D1, . . . , Dn))

ED1,...,Dn
(OPT (x1, . . . , xn))

.

Observe that we now have to take the expectation of the optimum in this case, because input items
x1, . . . , xn are random as they depend on D1, . . . , Dn (implicit in our notation). a

Adaptive online adversary: this is an intermediate kind of an adversary that creates an input
sequence and an output sequence adaptively. As before the adversary knows the (pseudocode of the)
algorithm, but not R. The adversary creates the first input item x1 and makes its own decision d01
on this item. The algorithm makes a random decision D1, the outcome d1 of which is then revealed
to the adversary. The adversary then comes up with a new input item x2 and its own decision
d02. Then the algorithm makes a random decision D2, the outcome d2 of which is then revealed to
the adversary. And so on. Thus, the order of steps is as follows: x1, d01, d1, x2, d

0
2, d2, x3, d

0
3, d3, . . .

We say that the adaptive online adversary can create the next input item based on the previous
decisions of the algorithm, but it has to serve this input item immediately itself. The performance
of an online algorithm is measured by the ratio of the objective value achieved by the adversary
versus the objective value achieved by the algorithm. More formally, it is

ED1,...,Dn
(OBJ(x1, . . . , xn, D1, . . . , Dn))

ED1,...,Dn
(OBJ(x1, . . . , xn, d01, . . . , d

0
n))

.

Observe that we have to take the expectation of the objective value achieved by the adversary, since
both input items x1, . . . , xn and adversary’s decisions d01, . . . , d0n depend on random decisions of the
algorithm D1, . . . , Dn (implicit in our notation).

Based on the above description one can easily define competitive ratios for these different kinds
of adversaries for both maximization and minimization problems (using lim infs and lim sups in the
obvious way). We denote the competitive ratio achieved by a randomized online algorithm ALG
with respect to the oblivious adversary, adaptive offline adversary, and adaptive online adversary
by ⇢OBL(ALG), ⇢ADOFF(ALG), and ⇢ADON(ALG), respectively.

The most popular kind of adversary in the literature is the oblivious adversary. When we analyze
randomized online algorithms we will assume the oblivious adversary unless stated otherwise. The
oblivious adversary often makes the most sense from a practical point of view, as well. This reflects
settings where the actions of an algorithm have no impact on future input arrivals. We already
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assumed an oblivious adversary for the ski rental problem. Whether you decide to buy or rent
skis should (logically) have no affect on the weather — this is precisely modelled by an oblivious
adversary. However, there are problems for which decisions of the algorithm can affect the behaviour
of the future inputs. This happens, for example, for paging. Depending on which pages are in the
cache, the future pages will either behave as cache misses or as cache hits. In addition, one can write
programs that alter their behaviour completely depending on a cache miss or cache hit. One real-life
example of such (nefarious) programs are Spectre and Meltdown that use cache miss information
together with speculative execution to gain read-only access to protected parts of computer memory.
Thus, there are some real-world applications which are better modelled by adaptive adversaries, since
decisions of the algorithm can alter the future input items.

3.3 Relationships between Adversaries

We start with a basic observation that justifies calling oblivious, adaptive offline, and adaptive
online adversaries as weak, strong, and intermediate, respectively.

Theorem 3.3.1. For a minimization problem and a randomized online algorithm ALG we have

⇢OBL(ALG)  ⇢ADON(ALG)  ⇢ADOFF(ALG).

An analogous statement is true for maximization problems.

The following theorem says that the adaptive offline adversary is so powerful that any randomized
algorithm running against it cannot guarantee a better competitive ratio than the one achieved by
deterministic algorithms.

Theorem 3.3.2. Consider a minimization problem given as a request-answer game. Assume that
the set of possible answers/decisions is finite (e.g., Ski Rental) and consider a randomized online
algorithm ALG for it. Then there is a deterministic online algorithm ALG0 such that

⇢(ALG0)  ⇢ADOFF(ALG).

An analogous statement is true for maximization problems.

Proof. We refer to (x1, . . . , xk, d1, . . . , dk) as a position in the game, where the xi are input items,
provided by an adversary, and di are decisions, provided by an algorithm. We say that a posi-
tion (x1, . . . , xk, d1, . . . , dk) is immediately winning for the adversary if fk(x1, . . . , xk, d1, . . . , dk) >
⇢ADOFF(ALG)OPT (x1, . . . , xk), where fk is the objective function. We call a position winning for
adversary if there exists t 2 N and an adaptive strategy of choosing requests such that an imme-
diately winning position is reached no matter what answers are chosen by an algorithm within t
steps.

Note that the initial empty position cannot be a winning position for the adversary. Sup-
pose that it was, for contradiction. The randomized algorithm ALG is a distribution on deter-
ministic algorithms ALGz for some z ⇠ Z. If the initial empty position was winning for the
adversary, then for every z we would have a sequence Iz of requests and answers (depending on
z) such that ALGz(Iz) > ⇢ADOFF(ALG)OPT (Iz). Taking the expectation of both sides, we get
EZ(ALGZ(IZ)) > ⇢ADOFF(ALG)EZ(OPT (IZ)), contradicting the definition of ⇢ADOFF(ALG).

Observe that a position (x1, . . . , xn, d1, . . . , dn) is winning if and only if there exists xn+1 such
that for all dn+1 the position (x1, . . . , xn, xn+1, d1, . . . , dn, dn+1) is also winning. Thus, if a position
is not winning, then for any new input item xn+1 there is a decision dn+1 that leads to a position
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that is also not winning. This precisely means that there is a deterministic algorithm ALG0 that
can keep the adversary in a non-winning position for as long as needed. Since the game has to
eventually terminate, it will terminate in a non-winning position, meaning that after any number t
of steps of the game we have ft(x1, . . . , xt, d1, . . . , dt)  ⇢ADOFFOPT (x1, . . . , xt), where di are the
deterministic choices provided by ALG.

The gap between offline adaptive adversary and online adaptive adversary can be at most
quadratic.

Theorem 3.3.3. Consider a minimization problem and a randomized online algorithm ALG for it.
Then

⇢ADOFF(ALG)  (⇢ADON(ALG))2 .

An analogous statement is true for maximization problems.

Proof. Let ADV be an arbitrary adaptive offline adversary against ALG. Let R denote the random-
ness used by ALG, and let R0 be a copy of R. We represent ALG as a distribution on deterministic
algorithms ALGr where r ⇠ R. Let x(R) be the requests given by ADV when it runs against
ALGR. Let d(R) denote ithe decisions by ALGR when it runs against ADV .

Consider a fixed value r and the well-defined sequence of requests x(r). In order to avoid
ambiguity, we are going to label randomness of ALG by a copy of R, namely R0. Since ALGR0 is
⇢ADON(ALG)-competitive against any adaptive online adversary, it is also ⇢ADON(ALG)-competitive
against any oblivious adversary (by Theorem 3.3.1). In particular ALGR0 is ⇢ADON-competitive
against the oblivious adversary that presents request sequence x(r):

ER0(ALGR0(x(r)))  ⇢ADON(ALG) ·OPT (x(r)).

Taking the expectation of both sides with respect to r we get

ERER0(ALGR0(x(R)))  ⇢ADON(ALG) · ER(OPT (x(R))). (3.1)

Let f denote the objective function. Now, consider a fixed value of r0. Define an adaptive
online strategy working against ALGR that produces a request sequence x(R) and provides its own
decision sequence d(r0), while ALGR provides decision sequence d(R). Since ALG is ⇢ADON(ALG)-
competitive against this adaptive online strategy, we have:

ER(ALGR(x(R))  ⇢ADON(ALG) · ER(f(x(R), d(r0))).

Taking the expectation of both sides with respect to r0 we get

ER(ALGR(x(R))  ⇢ADON(ALG) · ER0ER(f(x(R), d(R0))).

The right hand side can be written as ER0ER(f(x(R), d(R0))) = ERER0(ALGR0(x(R)). Combining
this with (3.1) we get

ER(ALGR(x(R)))  ⇢ADON(ALG)2 · E(OPT (x(R))).

The left hand side is the expected cost of the solution produced by ALG running against the adaptive
offline adversary ADV .

In the following section we establish that the gap between ⇢OBL and ⇢ADOFF (as well as between
⇢OBL and ⇢ADON) can be arbitrary large. The relationships between competitive ratios with respect
to different adversaries are summarized in Figure 3.1.
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⇢OBL(ALG) ⇢ADON(ALG) ⇢ADOFF (ALG) (⇢ADON(ALG))2

⇢(ALG0) deterministic

 

gap can be arbitrarily large

=

better competitive ratio worse competitive ratio

Figure 3.1: The figure summarizes the relationships between the competitive ratios with respect to
the different types of adversaries.

3.4 How Much Can Randomness Help?

We exhibit a somewhat contrived algorithmic problem which shows that the gap between the com-
petitive ratio achieved by a randomized algorithm and a deterministic algorithm can be arbitrary
large. We begin by fixing a particular gap function g : N! R. Consider the following maximization
problem:

Modified Bit Guessing Problem
Input: (x1, x2, . . . , xn) where xi 2 {0, 1}.
Output: z = (z1, z2, . . . , zn) where zi 2 {0, 1}
Objective: To find z such that zi = xi+1 for some i 2 [n � 1]. If such i exists the payoff is
g(n)/(1� 1/2n�1), otherwise the payoff is 1.

In this problem, the adversary presents input bits one by one and the goal is to guess the bit
arriving in the next time step based on the past history. If the algorithm manages to guess at least
one bit correctly, it receives a large payoff of g(n)/(1� 1/2n�1), otherwise it receives a small payoff
of 1.

Theorem 3.4.1. Every deterministic algorithm ALG achieves objective value 1 on the Modified Bit
Guessing Problem.

There is a randomized algorithm that achieves expected objective value g(n) against an oblivious
adversary on inputs of length n for the Modified Bit Guessing Problem.

Proof. For the first part of the theorem consider a deterministic algorithm ALG. The adversarial
strategy is as follows. Present x1 = 0 as the first input item. The algorithm replies with z1. The
adversary defines x2 = ¬z1. This continues for n � 2 more steps. In other words, the adversary
defines xi = ¬xi�1 for i = {2, . . . , n} making sure that the algorithm does not guess any of the bits.
Thus, the algorithm achieves objective function value 1.

Consider the randomized algorithm that selects zi uniformly at random. The probability that
it picks z1, . . . , zn�1 to be different from x2, . . . , xn in each coordinate is exactly 1/2n�1. Therefore
with probability 1�1/2n�1 it guesses at least one bit correctly. Therefore the expected value of the
objective function is at least g(n)/(1� 1/2n�1) · (1� 1/2n�1) = g(n).

Corollary 3.4.2. The gap between ⇢OBL and ⇢ADOFF can be arbitrarily large.
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Thus, there are problems for which randomness helps a lot. What about another extreme
possibility? Are there problems where randomness does not help at all? It turns out “yes” and, in
fact, we have already seen such a problem, namely, the One-Way Trading problem.

Theorem 3.4.3. Let ALG be a randomized algorithm for the One-Way Trading problem. Then
there exists a deterministic algorithm ALG0 for the One-Way Trading problem such that

⇢(ALG0)  ⇢OBL(ALG).

Proof. Recall that ALG is a distribution on deterministic algorithms ALGR indexed by randomness
R. For each r consider the deterministic algorithmALGr running on the input sequence p1, . . . , pn.
Let fi(r, p1, . . . , pi) be the fraction of savings exchanged on day i. We can define the average fraction
of savings exchanged on day i, where the average is taken over all deterministic algorithms in the
support of ALG. That is

efi(p1, . . . , pi) :=
Z

fi(r, p1, . . . , pi) dr.

Observe that efi(p1, . . . , pi) � 0 and moreover

nX

i=1

efi(p1, . . . , pi) =
nX

i=1

Z
fi(p1, . . . , pi) dr =

Z nX

i=1

fi(p1, . . . , pi) dr =

Z
1 dr = 1.

Therefore, efi form valid fractions of savings to be traded on n days. The fraction efi depends
only on p1, . . . , pi and is independent of randomness r. Thus, these fractions can be computed by
a deterministic algorithm (with the knowledge of ALG) in an online fashion. Let ALG0 be the
algorithm that exchanges efi(p1, . . . , pi) of savings on day i. It is left to verify the competitive ratio
of ALG0. On input p1, . . . , pn it achieves the value of the objective

nX

i=1

pi efi(p1, . . . , pi) =
nX

i=1

pi

Z
fi(r, p1, . . . , pi) dr =

Z nX

i=1

pifi(r, p1, . . . , pi) dr

= ER(ALGR(p1, . . . , pn)) � OPT (p1, . . . , pn)/⇢OBL(ALG).

The Modified String Guessing problem provides an example of a problem where using random-
ness improves competitive ratio significantly. Notice that the randomized algorithm uses n bits
of randomness to achieve this improvement. Next, we describe another extreme example, where a
single bit of randomness helps improve the competitive ratio.

Proportional Knapsack
Input: (w1, . . . , wn) where wi 2 R�0; W — bin weight capacity, known in advance.
Output: z = (z1, z2, . . . , zn) where zi 2 {0, 1}
Objective: To find z such that

P
n

i=1 ziwi is maximized subject to
P

n

i=1 ziwi W .
In the proportional knapsack optimization problem1 the goal is to pack a maximum total weight

of items into a single knapsack of weight capacity W (known in advance). Item i is described by
1The problem is often referred to as the subset-sum problem. Subset-sum also refers to the NP-complete decision

problem; namely, given a set of weights and a target W , is there a subset of weights whose sum equals the target
W . The subset-sum decision problem is often used to show that other scheduling problems are NP-hard. Clearly, an
optimal algorithm for the proportional knapsack problem provides a solution for the subset-sum decision problem.
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its weight wi. For item i the algorithm provides a decision zi such that zi = 1 stands for packing
item i, and zi = 0 stands for ignoring item i. If an algorithm produces an infeasible solution (that
is total weight of packed items exceeds W ), the payoff is �1. Thus, without loss of generality, we
assume that an algorithm never packs an item that makes the total weight exceed W . Our first
observation is that deterministic algorithms cannot achieve any constant competitive ratio.

Theorem 3.4.4. Let ✏ > 0 be arbitrary and let ALG be a deterministic online algorithm for the
Proportional Knapsack problem. Then we have

⇢(ALG) �
1� ✏

✏
.

Proof. Let n 2 N. We describe an adversarial strategy for constructing inputs of size n. First, let
W = n. Then the adversary presents inputs ✏n until the first time ALG packs such an input. If
ALG never packs an input item of weight ✏n, then ALG packs total weight 0, while OPT � ✏n,
which leads to an infinitely large competitive ratio.

Suppose that ALG does not pack any of the first n� 1 items, then the adversary declares that
the nth item has value 0 which again results in an infinitely large competitive ratio. Otherwise,
suppose that ALG packs wi = ✏n for the first time for some i < n. Then the adversary declares
wi+1 = n(1� ✏) + ✏ and wj = 0 for j > i+ 1. Therefore ALG cannot pack wi+1 since wi + wi+1 =
n + ✏ > W . Moreover, packing any of wj for j > i + 1 doesn’t affect the value of the objective
function. Thus, we have ALG = ✏n, whereas OPT = wi+1 = n(1� ✏) + ✏. We get the competitive
ratio of n(1�✏)+✏

✏n
�

n(1�✏)
✏n

= 1�✏

✏
.

Next we show that a randomized algorithm, which we call SimpleRandom, that uses only 1 bit
of randomness achieves competitive ratio 4. Such 1 bit randomized algorithms have been termed
“barely random”. Algorithm 10 provides a pseudocode for this randomized algorithm. The algorithm
has two modes of operation. In the first mode, the algorithm packs items greedily — when a new
item arrives, the algorithm checks if there is still room for it in the bin and if so packs it. In
the second mode, the algorithm waits for an item of weight � W/2. If there is such an item, the
algorithm packs it. The algorithm ignores all other weights in the second mode. The algorithm
then requires a single random bit B, which determines which mode the algorithm is going to use in
the current run.

Algorithm 10 Simple randomized algorithm for Proportional Knapsack
procedure SimpleRandom

Let B 2 {0, 1} be a uniformly random bit . W is the knapsack weight capacity
if B = 0 then

Pack items w1, . . . , wn greedily, that is if wi still fits in the remaining weight knapsack
capacity, pack it; otherwise, ignore it.

else
Pack the first item of weight �W/2 if there is such an item. Ignore the rest of the items.

Theorem 3.4.5.
⇢OBL(SimpleRandom)  4.

Proof. The goal is to show that OPT  4 · E(SimpleRandom) on any input sequence w1, . . . , wn.
We distinguish two cases.
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Case 1: for all i 2 [n] we have wi < W/2. Subcase 1(a):
P

n

i=1wi  W . In this subcase,
SimpleRandom running in the first mode packs all of the items. This happens with probability
1/2, thus we have E(SimpleRandom) � 1/2

P
i
wi and OPT =

P
i
wi. Therefore, it follows that

OPT  2 ·E(SimpleRandom) in this subcase. Subcase 1(b):
P

i
wi > W . Consider SimpleRandom

running in the first mode again. There is an item that SimpleRandom does not pack in this case.
Let wi be the first item that is not packed. The reason wi is not packed is that the remaining
free space is less than wi, but we also know that wi < W/2. This means that SimpleRandom
has packed total weight at least W/2 by the time wi arrives. Since SimpleRandom runs in the
first mode with probability 1/2 we have that E(SimpleRandom) � (1/2)(W/2) = W/4 � OPT/4,
where the last inequality follows from the trivial observation that OPT W . Rearranging we have
OPT  4 · E(SimpleRandom) in this subcase.

Case 2: there exists i 2 [n] such that wi �W/2. Consider SimpleRandom running in the second
mode: it packs the first wi such that wi � W/2. Since SimpleRandom runs in the second mode
with probability 1/2 we have E(SimpleRandom) � (1/2)(W/2) = W/4 � OPT/4. Thus, it follows
that OPT  4 · E(SimpleRandom).

This covers all possibilities. We got that in all cases the competitive ratio of SimpleRandom is
at most 4.

3.5 Derandomization

Randomness is a double-edged sword. On the one hand, when we are faced with a difficult problem
for which no good deterministic algorithm exists, we hope that adding randomness would allow one
to design a much better (and often simpler) randomized algorithm. On the other hand, when we
have a good randomized algorithm, we hope that we can remove its dependence on randomness,
since randomness as a resource is quite expensive. The question then is whether or not a given
algorithm can be “de-randomized”. It is hard to define a precies definition for what we allow in
terms of transforming a randomized algorithm into a deterministic algorithm. We will see some
examples of de-randomizations later in the text; for example, see Section 6.1.1 and the method of
conditional expectations. However, in what sense can we say that an online algorithm cannot be
de-randomized? If we show that no deterministic online algorithm exists with (nearly) the same
guarantees (e.g., competitive ratio) as the randomized algorithm ALG, we can then say that the
ALG cannot be “derandomized”. Whether all algorithms can be derandomized or not depends on the
computational model. For example, we have seen that, in general, derandomization is not possible
for online algorithms with respect to an oblivious adversary, but it is possible for online algorithms
with respect to an adaptive offline adversary. In the Turing machine world, it is a fundamental
open problem whether all of bounded-error polynomial time algorithms (i.e., the class BPP) can be
derandomized or not. Some complexity theorists believe that such a derandomization of BPP should
be possible. When derandomization is not possible in general, it is still an interesting question to see
if derandomization is possible for a particular problem. We saw one such example for the One-Way
Trading problem. Derandomization is an important topic and it will come up several times in this
book.

In the remainder of this subsection, we would like to briefly discuss why randomness as a resource
can be expensive. Prominent scientists throughout history have argued whether “true randomness”
exists, or if randomness is simply a measure of our ignorance. The latest word on the subject is
given by quantum mechanics, which says that, indeed, to the best of our understanding of how the
world works, there are truly random events in nature. In principle, one could build machines that
generate truly random bits based on quantum effects, but there are no cheap commercially available



52 CHAPTER 3. RANDOMIZED ONLINE ALGORITHMS

solutions like that at this moment (to the best of our knowledge). Instead, random bit generators
implemented on the off-the-shelf devices are pseudo-random. The pseudo-random bits can come
from different sources — they can be mathematically generated, or they can be generated from
some physical processes, such as coordinates of the latest mouse click on the desktop, or voltage
noise in the CPU. Standard programming libraries take some combination of these techniques to
produce random-looking bits. How can one detect if the bits that are being generated are truly
random or pseudo-random? For that we could write a program, called a test, that receives a string
of bits and outputs either “YES” for truly random or “NO” for pseudo-random. The test could be
as simple as checking sample moments (mean and variance, for example) of the incoming bits and
seeing if it falls not too far from the true moments of the distribution. The test could also compute
autocorrelation, and so on. Typically, it is not hard to come up with pseudo-random generators
that would “fool” such statistical tests to believe that the bits are truly random. But it is again
a major open problem to come up with a pseudo-random generator that would provably fool all
reasonable tests. Fortunately, typically all we need for a randomized algorithm to run correctly is
for the pseudo-random bits to pass statistical tests. This is why Quicksort has an excellent empirical
performance even with pseudo-random generators. In addition, even if the bits are not truly random,
it is possible that the only side-effect is that your program might experience a slight degradation
in performance, which is not critical. However, there are cases where violating the truly random
assumption can result in catastrophic losses. This often happens in security, where using pseudo-
random tactics (such as generating randomness based on mouse clicks) introduces a vulnerability in
the security protocol. Since this book doesn’t deal with the topic of security, we will often permit
ourselves to use randomness freely. Nonetheless, we realize that random bits might be expensive
and we shall often investigate whether a particular randomized algorithm can be derandomized or
not.

3.6 Lower Bound for Paging

In this section we revisit the Paging problem. We shall prove a lower bound on the competitive
ratio achieved by any randomized algorithm. In the process, we shall discover a general-purpose
technique called Yao’s minimax principle. In the following section, we will formally state and discuss
the principle. To state the result we need to introduce the nth harmonic number.

Definition 3.6.1. The nth Harmonic number, denoted by Hn, is defined as

Hn = 1 +
1

2
+ · · ·+

1

n
=

nX

i=1

1

i
.

An exercise at the end of this chapter asks you to show that Hn ⇡ ln(n). Now, we are ready to
state the theorem:

Theorem 3.6.1. Let ALG be a randomized online algorithm for the Paging problem with cache size
k. Without loss of generality we will assume that there are at least k + 1 pages in slow memory.
Then we have

⇢OBL(ALG) � Hk.

Proof. We will first show that there is a distribution on input sequences x1, . . . , xn such that every
deterministic algorithm will result in average competitive ratio at least Hk with respect to this
distribution. We will then see how this implies the statement of the theorem.
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Here is the distribution: pick each xi uniformly at random from [k + 1], independently of all
other xj . For every deterministic algorithm, we can observe that the expected number of page
faults is k + (n � k)/(k + 1) � n/(k + 1); that is, there are k initial page faults, and there is a
1/(k+1) chance of selecting a page not currently in the cache in each step after the initial k steps.
Next, we analyze the expected value of OPT . As in Section 1.6, let’s subdivide the entire input
sequence into blocks B1, . . . , BT , where block B1 is the maximal prefix of x1, . . . , xn that contains
k distinct pages, B2 is obtained in the same manner after removing B1 from x1, . . . , xn, and so
on. Arguing as in Section 1.6, we have a bound on OPT  T � 1. Note that T is a random
variable, and E(OPT )  E(T ) � 1. Thus, the asymptotic competitive ratio is bounded below by
limn!1

n

(k+1)E(T ) . If |Bi| were i.i.d., then we could immediately conclude that E(T ) = n/E(|B1|).
Unfortunately, the |Bi| are not i.i.d., since they have to satisfy |B1|+ · · ·+ |BT | = n. For increasing
n, |Bi| start behaving more and more as i.i.d. random variables. Formally, this is captured by the
Elementary Renewal Theorem from the theory of renewal processes, which for us implies that the
competitive ratio is bounded below by limn!1

n

(k+1)n/E(W ) = E(W )/(k+1), where W is distributed
as |B1| in the limit (i.e., n =1).

Thus, let’s consider n = 1 and compute |B1|. Computing E(|B1|) is known as the coupon
collector problem. We can write |B1| = Z1 + · · ·+ Zk + Zk+1 � 1, where Zi is the number of pages
we see before seeing an ith new page (i.e., seeing it for the first time). The last term (�1) means
that we terminate B1 one step before seeing the k + 1st new page for the first time. Then Z1 = 1,
i.e., any page that arrives first is the new first page. After that, we have the probability k/(k+1) of
seeing a page different from the first one in each consecutive step. Therefore, Z2 is a geometrically
distributed random variable with parameter p2 = k/(k + 1), hence E(Z2) = 1/p2 = (k + 1)/k.
Similarly, we get Zi is geometrically distributed with parameter pi = (k � i + 2)/(k + 1), hence
E(Zi) = 1/pi = (k + 1)/(k � i + 2). Thus, we have E(|B1|) = E(Z1) + E(Z2) + · · · + E(Zk) =
1+ (k+1)/k+ · · ·+(k+1)/(k� i+2)+ · · ·+(k+1)/2+ ((k+1)/1� 1) = (k+1)(1/k+ · · ·+1) =
(k+1)Hk. Combining this with above, we get the bound on the competitive ratio of any deterministic
algorithm: (k + 1)Hk/(k + 1) = Hk.

Let Xn denote the random variable which is the input sequence generated as above of length
n. Also note that ALG is a distribution on deterministic algorithms ALGR. We have proved above
that for each deterministic algorithm ALGr it holds that

EXn(ALGr(X
n)) � HkEXn(OPT (Xn)) + o(EXn(OPT (Xn)).

Taking the expectation of the inequality over r, we get

EREXn(ALGR(X
n)) � HkEXn(OPT (Xn)) + o(EXn(OPT (Xn)).

Exchanging the order of expectations, it follows that

EXnER(ALGR(X
n)) � HkEXn(OPT (Xn)) + o(EXn(OPT (Xn)).

By the definition of expectation, it means that there exists a sequence of inputs xn such that

ER(ALGR(x
n)) � HkOPT (xn) + o(OPT (xn)).

3.7 Yao’s Minimax Principle

In the proof of Theorem 3.6.1 we deduced a lower bound on randomized algorithms against oblivious
adversaries from a lower bound on deterministic algorithms against a particular distribution of
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inputs. This is a general technique that appears in many branches of computer science and is often
referred to as Yao’s Minimax Principle. In words, it can be stated as follows: the expected cost
of a randomized algorithm on a worst-case input is at least as big as the expected cost of the best
deterministic algorithm with respect to a random input sampled from a distribution. Let ALG
denote an arbitrary randomized algorithm, i.e., a distribution over deterministic algorithms ALGR.
Let µ denote an arbitrary distribution on inputs x. Then we have

max
x

ER(cost(ALGR, x)) � min
ÂLG:deterministic

EX⇠µ(cost(]ALG,X)). (3.2)

Observe that on the left-hand side ALG is fixed in advance, and x is chosen to result in the largest
possible cost of ALG. On the right-hand side the input distribution µ is fixed in advance, and
]ALG is chosen as the best deterministic algorithm for µ. Thus, to apply this principle, we fix some
distribution µ and show that the expected cost of every deterministic algorithm with respect to
µ has to be large, e.g., at least ⇢. This immediately implies that any randomized algorithm has
to have cost at least ⇢. In the above, cost() is some measure function. For example, in online
algorithms cost() is value of the objective function, or for oblivious adversaries, the competitive
ratio (strict or asymptotic), in offline algorithms cost() can be the approximation ratio or the
time complexity, in communication complexity cost() is the communication cost, and so on. Yao’s
minimax principle is by far the most popular technique for proving lower bounds on randomized
algorithms. The interesting feature of this technique is that it is often complete. This means that
under mild conditions you are guaranteed that there is a distribution µ that achieves equality in (3.2)
for the best randomized algorithm ALG. This way, not only can you establish a lower bound on
performance of all randomized algorithms, but you can, in principle, establish the strongest possible
such lower bound, i.e., the tight lower bound, provided that you choose the right distribution µ.

In order to state Yao’s minimax principle formally, we need to have a formal model of algorithms.
This makes it a bit awkward to state for online algorithms, since there is no single model. We would
have to state it separately for request-answer games, for search problems, and for any other “online-
like” problems that do not fit either of these categories. In addition, for a maximization problem
(for example, see the poof of Theorem 5.5.5 in Chapter 5), the statement of the Yao minimax
principle is different than for minimization games (i.e., the inequality is reversed) . Moreover,
completeness of the principle depends on finiteness of the answer set in the request-answer game
formulation. Therefore, we prefer to leave Yao’s Minimax Principle in the informal way stated
above, especially considering that it’s application in each particular case is usually straightforward
(as in Theorem 3.6.1) and doesn’t require a stand-alone black-box statement.

3.8 Upper Bound for Paging

In this section we present an algorithm called Mark that achieves competitive ratio  2Hk against
an oblivious adversary for the Paging problem. In light of Theorem 3.6.1, this algorithm is within
a factor of 2 of the best possible online algorithm.

The pseudocode of Mark appears in Algorithm 11 and it works as follows. The algorithm keeps
track of cache contents, and associates a Boolean flag with each page in the cache. Initially the
cache is empty and all cache positions are unmarked. When a new page arrives, if the page is in the
cache, i.e., it’s a page hit, then the algorithm marks this page and continues to the next request. If
the new page is not in the cache, i.e., it’s a page miss, then the algorithm picks an unmarked page
uniformly at random, evicts it, brings the new page in its place, and sets the status of the new page
to marked. If it so happens that there are no unmarked pages at the beginning of this process, then
the algorithm unmarks all pages in the cache prior to processing the new page.
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By tracing the execution of the algorithm on several sample input sequences one may see the
intuition behind it: pages that are accessed frequently will often be present in the cache in the
marked state, and hence will not be evicted, while other pages are evicted uniformly at random
from among all unmarked pages. In the absence of any side information about the future sequence
of requested pages, all unmarked pages seem to be equally good candidates. Therefore, picking a
page to evict from a uniform distribution is a natural choice.

Algorithm 11 Randomized algorithm for Paging against oblivious adversaries
procedure Mark

C[1...k] stores cache contents
M [1...k] stores a Boolean flag for each page in the cache
Initialize C[i] �1 for all i 2 [k] to indicate that cache is empty
Initialize M [i] False for all i 2 [k]
j  1
while j  n do

if xj is in C then . page hit!
Compute i such that C[i] = xj
if M [i] = False then

M [i] True

else . page miss!
if M [i] = True for all i then

M [i] False for all i
S  {i | M [i] = False}
i uniformly random element of S
Evict C[i] from the cache
C[i] xj
M [i] True

j  j + 1

Theorem 3.8.1.
⇢OBL(Mark)  2Hk.

Proof. Let x1, . . . , xn be the input sequence chosen by an oblivious adversary. As in Section 1.6,
subdivide the entire input sequence into blocks B1, . . . , Bt, where block B1 is the maximal prefix
of x1, . . . , xn that contains k distinct pages, B2 is obtained in the same manner after removing B1

from x1, . . . , xn, and so on.
Pages appearing in block Bi+1 can be split into two groups: (1) new pages that have not appeared

in the previous block Bi, and (2) those pages that have appeared in the previous block Bi. Clearly,
the case where all pages of type (1) appear before all pages of type (2) results in the worst case
number of page faults of algorithm Mark. Let mi be the number of pages of type (1) in block Bi,
then block Bi contains k �mi pages of type (2).

It is easy to see that while processing the first page from each block Bi all existing pages in
the cache are unmarked. Every new page of type (1) that is brought in results in a page fault and
becomes marked in the cache. A page of type (2) may or may not be present in the cache. If it is
not present in the cache, then it is brought in marked; otherwise, it becomes marked. A marked
page is never evicted from the cache while processing block Bi.
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Consider the first page of type (2) encountered in block Bi. Since all mi pages of type (1)
have already been processed, there are k �mi unmarked pages of type (2) currently in the cache.
Moreover, since the choice of an unmarked page to evict during a page fault is uniform, then
the k �mi unmarked pages of type (2) currently in the cache are equally likely to be any of the
original k jobs of type (2) in the cache. Thus, the probability that the first page of type (2) is
present (unmarked) in the cache is

�
k�1
mi

�
/
�

k

mi

�
= (k �mi)/k. Consider the second page of type (2)

encountered in block Bi. We can repeat the above analysis by disregarding the first job of type (2)
and pretending that cache size is k � 1 (since the first job of type (2) has been marked and for the
duration of block Bi it will never be evicted). Therefore, the probability that the second page of
type (2) is present (unmarked) in the cache is (k �mi � 1)/(k � 1). Proceeding inductively, the
probability that the jth job of type (2) in block Bi is present (unmarked) in the cache when it is
encountered for the first time is (k �mi � j + 1)/(k � j + 1). Therefore, the expected number of
page faults in block Bi is

mi +
k�miX

j=1

✓
1�

k �mi � j + 1

k � j + 1

◆
= mi +

k�miX

j=1

mi

k � j + 1
= mi +mi(Hk �Hmi

)  miHk.

Note that the number of distinct pages while processing Bi�1 and Bi is k +mi. Therefore, OPT
encounters at least mi page faults. The number of page faults of OPT in B1 is m1. Thus, OPT
encounters at least (

P
i
mi) /2 page faults overall, whereas Mark has expected number of page faults

at most Hk

P
i
mi.

3.9 Exercises

1. Prove Theorem 3.3.1.

2. Prove that ln(n)  Hn  ln(n) + 1.

3. The deterministic Algorithm 9 in Chapter 2 for the One-Way Trading problem was obtained
from some randomized algorithm (essentially following the steps of Theorem 3.4.3). Find
such a randomized algorithm and show that after applying the conversion in the proof of
Theorem 3.4.3, you get back Algorithm 9 in Chapter 2.

4. Prove that ⇢OBL(Mark) > Hk.

5. (*) Prove that ⇢OBL(Mark) � 2Hk � 1.

6. If requested pages are restricted to come from [k + 1], prove that Mark is Hk-competitive.

7. Give an example of an online problem where there is a gap between strict competitive ratio
and asymptotic competitive ratio. First, do it for deterministic algorithms, then do it for
randomized algorithms against oblivious adversaries. Try to achieve the gap that is as large
as possible.

8. Let A be an n ⇥ n matrix with entries in {+1,�1}. Let ai denote the ith column of A, i.e.,
A = (a1a2 · · · an). Let x be an n ⇥ 1 vector with entries in {+1,�1}. Consider the result of
the matrix-vector multiplication Ax =

P
n

i=1 aixi. The jth row of this result is denoted by
(Ax)j . The jth row is said to be good if (Ax)j � 0.
The Maximum Goodness problem is the following: given A the goal is to find x that maximizes
the number of good rows in Ax.



3.10. HISTORICAL NOTES AND REFERENCES 57

In the online version of the problem, the columns of A are revealed one by one, i.e., a1, a2,
. . ., an. An online algorithm responds to ai with an irrevocable decision on how to set the ith

entry of x, i.e., xi 2 {+1,�1}.

(a) Design a simple randomized online algorithm that for every A outputs x that gives at
least n/2 good rows in Ax on average. Explain your algorithm in plain English and prove
that it achieves the stated expected performance.

(b) Derandomize the algorithm from part (a): present a deterministic algorithm that on
every A outputs x that gives at least n/2 good rows. Prove that your algorithm satisfies
this guarantee.

Hint: let Z denote the number of good rows produced by the randomized algorithm from part
(5.1). Let a1 be the first column of A revealed by adversary and consider x1 set randomly by
the algorithm from part (5.1). Observe that E(Z|a1) = EE(Z|x1, a1) = Pr(x1 = �1)E(Z|x1 =
�1, a1) + Pr(x1 = +1)E(Z|x1 = +1, a1). Provided that you proved E(Z) � n/2 in the first
part, it implies that either E(Z|x1 = �1, a1) � n/2 or E(Z|x1 = +1, a1) � n/2. How can you
use this observation to decide on the value of x1 deterministically?

3.10 Historical Notes and References

The different types of adversaries and their relative power is studied in Ben-David et al [32].
The modified bit guessing game is an adaption of the Böckenhauer el al [38] string guessing

game that was used to establish inapproximations for online algorithms with advice.
The 2Hk Mark algorithm for randomized paging and the Hk lower bound for any randomized

online algorithm is due to Fiat et al [80]. This was followed by McGeoch and Sleator who obtained
the optimal Hk competitive Partitioning algorithm. Randomized paging is the most prominent
natural example for which randomization leads to a signiifcant improvement in the competitive
ratio. Achlioptas, Chrobak and Noga [3] provide a simpler and more efficient Hk competitive
algorithm Equitable in which the time complexity for each request does not depend on the number
of previous requests.

The minimax theorem was originally proved by John von Neumann [140] in the context of
zero-sum games, and it was adapted to randomized algorithms by Andrew Yao [143]. It is the
central technique used for proving negative results about randomized algorithms. Yao’s application
was in proving negative results concerning the minimum time needed for a problem in a given
computational model. As we have seen in this chapter, it applies equally well to proving negative
results concerning competitive ratios. Since paging is a minimization problem, the application of
Yao’s minimax principle in Section 3.6 follows the statement given in Section 3.7. For a maximization
problem, we have the ambiguity as to whether or not competitive ratios are stated to be at most
or at least equal to one. In applying the principle when dealing with ratios ⇢ < 1, we need a
different statement of the principle so as to prove an “upper bound” (i.e., a negative result) on the
competitive ratio.


