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Abstract

Online algorithms with advice is an area of research where one attempts to measure how
much knowledge of the future is necessary to achieve a given competitive ratio. The lower bound
results give robust bounds on what is possible using semi-online algorithms. On the other hand,
when the advice is of an obtainable form, algorithms using advice can lead to semi-online
algorithms. There are strong relationships between advice complexity and randomization, and
advice complexity has led to the introduction of the first complexity classes for online problems.

This survey concerning online algorithms with advice explains the models, motivates the
study in general, presents some examples of the work that has been carried out, and includes a
fairly complete set of references, organized by problem studied.

1 Introduction

Online algorithms solve optimization problems where the input is a finite request sequence, with one
request arriving at a time. On receiving a request, the online algorithm must make some irrevocable
decision, generally without any knowledge of future requests, attempting to minimize or maximize
some objective function. There are various measures for the quality of online algorithms [33, 47],
but the most standard is the competitive ratio [74, 99], which is essentially the approximation
ratio. The performance of an online algorithm Alg is compared to the performance of an optimal
o✏ine algorithm Opt. Let Alg(I) denote the value of the objective function applied to the output
computed by Alg when given the request sequence I as input. Define Opt(I) similarly. For
minimization problems, Alg is c-competitive if there exists a constant b, such that for all finite
request sequences, I,

Alg(I)  c ·Opt(I) + b.

Similarly, for maximization problems,

Opt(I)  c ·Alg(I) + b.

⇤
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In both cases, if the inequality holds with b = 0, the algorithm is strictly c-competitive. The (strict)
competitive ratio of an algorithm is the infimum over all values of c for which the algorithm is
(strictly) c-competitive.

Note that competitive analysis is a worst-case measure. Thus, it can be useful to think of the input
as being generated by a malicious adversary who knows Alg. When studying an online problem,
it is customary to consider both deterministic and randomized online algorithms. A randomized
online algorithm Alg is c-competitive if it is c-competitive in expectation, i.e., if there exists a
constant b such that E[Alg(I)]  c ·Opt(I)+ b for all inputs I. This corresponds to the adversary
being oblivious to the random choices made by the algorithm. See [16,28] for further details.

We use n to denote the length of an input sequence. In some cases the competitiveness, c, is a
function of n. When referring to optimal algorithms or solutions, we always refer to a solution
which could have been produced by an optimal o✏ine algorithm.

Advice complexity. Note that there are three basic assumptions underlying competitive analy-
sis: The input is adversarial, decisions are irrevocable, and an online algorithm knows nothing about
the requests before they arrive. Many possible ways of relaxing one or more of these assumptions
have been studied. In the advice complexity model, the “no knowledge” assumption is relaxed in a
problem-independent and quantitative way (while the two first assumptions remain unaltered). In
this model, an online algorithm with advice is provided with some bits of advice about the request
sequence I. These bits are provided by a trusted oracle that knows the entire request sequence
and has no computational limitations (the formal definition of the advice complexity model(s) can
be found in Section 2). Obviously, an online algorithm with advice may perform better than a
traditional online algorithm, but if the amount of advice it receives from the oracle is bounded, it
may perform less well than an optimal o✏ine algorithm. The advice complexity of an algorithm is
the maximum number of bits read by that algorithm on any request sequence of a given length.

Motivation. Given an online problem considered in the advice model, the major question asked
is:

How many bits of advice are necessary and su�cient to obtain a competitive ratio c?

This includes determining the number of bits to become optimal (strictly 1-competitive) or to
beat the best deterministic or randomized algorithms. It also includes considerations in the other
direction, such as determining what can be obtained using a constant number of bits, for instance.

In what follows, we have attempted to list the most important reasons the advice complexity model
is interesting and relevant.

• Lower bounds give robust bounds on what is possible using semi-online algorithms. The value
of certain upper bounds, on the other hand, may be questioned for the following reason. Since
the advice is not restricted except by its size, it can happen that algorithms with advice are
not of practical interest; they sometimes rely on advice that we do not expect to possess.
However, lower bounds in the advice complexity model are very strong, exactly because we
do not impose any restrictions on the type of advice: They apply to any possible information

ACM SIGACT News 94 September 2016, vol. 47, no. 3



about the request sequence that can be encoded using a su�ciently small number of bits.
Thus, they can be very relevant for the study of semi-online algorithms (see Section 3).

• There are strong connections between online algorithms with advice and randomized online
algorithms. For example, important open problems regarding randomized online algorithms
(such as the best possible competitive ratio of a randomized k-Server or List Update al-
gorithm) can be stated equivalently as problems about online algorithms with advice. Some
results on online algorithms with advice lead to new lower and/or upper bounds on random-
ized online algorithms (see Section 4).

• It may be possible to use online algorithms with advice in settings where it is feasible to
run multiple algorithms and output the best solution. For example, Boyar et al. [34] gave
an algorithm using two bits of advice to choose between three algorithms for List Update,
obtaining a competitive ratio better than any deterministic online algorithm. In using a
List Update algorithm as a post-processing step of the Burrows-Wheeler Transform, the
algorithm performing the compression can compare the results obtained from more than one
algorithm, choose the best, and include as part of the compressed data which algorithm was
actually used; see Kamali and López-Ortiz [73].

• Suppose that an online algorithm with b bits of advice runs in time O(T (n)). Then one
may convert the algorithm into an o✏ine approximation algorithm with time complexity
O(2b · T (n)), by running the algorithm on all possible 2b advice strings. For Reordering
Buffer Management, the currently fastest (1+ ")-approximation algorithm is obtained in
exactly this way by using an online algorithm with advice due to Adamaszek et al. [2].

• Online algorithms with advice may be viewed as non-deterministic online algorithms since one
may think of the online algorithm as non-deterministically guessing the advice which it then
uses to compute its output. Thus, the advice complexity of a problem measures the amount of
non-determinism an online algorithm needs to achieve a given solution quality. Understanding
the power of non-determinism (as compared to determinism and randomization) is one of the
main challenges and most well-studied problems in theoretical computer science (P vs. NP,
DFA vs. NFA, etc.). It seems natural to try to improve our understanding of how non-
determinism may help when solving problems in an online environment.

• The first complexity classes for online algorithms have been based on advice complexity (see
Section 7.3). The first class, Asymmetric Online Covering (AOC), contains many problems
where the algorithm’s irrevocable decisions are whether or not to accept or reject each request.
All AOC-complete problems, such as Vertex Cover, Independent Set, Dominating
Set, Cycle Finding, and Disjoint Path Allocation, have essentially the same advice
complexity (linear in n

c , where c is the desired competitive ratio). Weighted versions of
AOC-complete minimization problems are even harder. These complexity classes are not
only interesting with respect to advice; in the online setting without advice, the complete
problems are also exceptionally hard.

We now give two examples of simple advice complexity results. Note that the minimum number
of bits required to encode the decisions Opt makes is an obvious upper bound for the amount of
advice needed to be optimal. Sometimes, though, encoding Opt’s decisions requires fewer bits than
one first expects. Paging is an example of this.

ACM SIGACT News 95 September 2016, vol. 47, no. 3



Example 1: In Paging, there is a set of N pages. A request sequence arrives online; each request
is a page. The algorithm has a cache which starts out empty and can contain up to k < N pages.
When a page not in cache is requested, the page must be brought into cache, at a cost of 1. This
is referred to as a page fault. If the cache is already full, the algorithm must select another page
from its cache to evict to make room for the new page; this is the irrevocable online decision.

The optimal o✏ine Paging algorithm is Longest Forward Distance (Lfd) [15] that always evicts the
page, which will not be requested for the longest time. For deterministic online Paging algorithms
without advice, the best attainable competitive ratio is k [99], and for randomized algorithms it is
Hk [1, 88], where Hk ⇡ ln k is the kth harmonic number.

How many advice bits does an algorithm need to be optimal? Clearly, dlog ken bits of advice
are enough to simulate Lfd by specifying the index in cache of the page to evict (if any) at each
request. However, using a more clever encoding, one can obtain the following result:

Theorem 1 [Dobrev et al. [44]] There is an optimal Paging algorithm, Alg, which reads n bits
of advice.

Proof Using a fixed optimal solution for the given input, the oracle provides one bit of advice per
request. That bit indicates whether or not, in the optimal solution, the page requested is kept in
cache until the next time it is requested. Alg only evicts pages which will cause faults on their
next request in the optimal solution as well. Thus, Alg is optimal. ⇤
Figure 1 shows that for the question of the number of advice bits necessary and su�cient to
achieve a certain competitive ratio, the “phase transitions” are essentially completely understood
for Paging. Mikkelsen [91] proved the following thresholds: For any fixed cache size k, a large but
constant total number of advice bits is su�cient to achieve a competitive ratio of Hk + " (for any
" > 0), and a linear number of advice bits is necessary to be better than Hk-competitive.

The connection between advice complexity and randomization is key to proving both the upper
and lower bounds of Hk. For more details on Paging, see Section 8.

Another problem with a sharp phase transition is Uniform Knapsack.

Example 2: In Uniform Knapsack, a sequence of requests arrives online. Each request is a
value in the range (0, 1]. When a request arrives, the online algorithm decides irrevocably whether
to pack it in the knapsack or reject it. The total size of accepted requests is not allowed to exceed 1,
the size of the knapsack. The goal is to maximize the sum of the sizes of the accepted requests.
Uniform Knapsack is the special case of the standard knapsack problem where the size and the
value of requests are always equal to each other. The problem is analyzed using strict competitive
analysis, since setting the additive constant in the definition of competitiveness equal to 1 would
make any algorithm 1-competitive.

A deterministic algorithm without advice for Uniform Knapsack has unbounded competitive
ratio [87]. However, with just one bit of advice it is possible to be 2-competitive. The one bit of
advice is used to indicate whether or not there is an item in the input sequence of size at least 1

2

.
That information might actually be available in some applications, so it can also be viewed as a
semi-online algorithm; an online algorithm which knows something about the request sequence in
advance.
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Figure 1: The (asymptotic) trade-o↵ between competitive ratio and advice for Paging. The
function f(k) is a rapidly growing function of k (but does not depend on n). Consider a trade-
o↵ point (b, c) where b is a number of advice bits and c is a competitive ratio. The red area
shows those trade-o↵s which provably cannot be achieved. The green area shows those trade-
o↵s that we currently have algorithms achieving. It is an open problem if trade-o↵s in the white
area are achievable or not. The horizontal dashed lines are the best possible competitive ratios of
deterministic and randomized algorithms without advice.

Theorem 2 [Böckenhauer et al. [26]] There exists a 2-competitive Uniform Knapsack algorithm
which reads one bit of advice.

Proof The oracle writes a 0 on the advice tape if no request of size at least 1

2

will arrive and a 1
otherwise. The algorithm reads this one bit, b, of advice. If b = 0, it packs each request if it has
enough space left for it. If b = 1, it rejects everything until it encounters an item of size at least 1

2

,
which it packs (it may pack additional items that fit after this point).

For b = 0, if the total size of all requests arriving is less than 1, the algorithm will be optimal;
otherwise, its knapsack will be at least half full the first time it rejects a request. If b = 1, the
knapsack will again be at least half full. Thus, the algorithm is 2-competitive. ⇤
Böckenhauer et al. [26] also prove that to obtain a competitive ratio better than 2, ⌦(log n) advice
bits are required. See Section 9 for more about the knapsack problem.

Organization of survey. First, we introduce the advice models in Section 2. Then, we discuss
the relationship between advice and semi-online algorithms in Section 3.

The strong connections between advice complexity and randomization, showing that results in
either area can often be carried over to the other, is discussed in Section 4. Some of the techniques
which can be used in designing online algorithms with advice are discussed in Section 5 and lower
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bound techniques are discussed in Section 6.

A specific frequently used lower bound technique is based on String Guessing and its variants,
which can also sometimes be used for proving upper bounds. These problems are discussed in
Section 7, along with the first complexity classes for online algorithms, developed based on String
Guessing results.

Note that all problems discussed in this survey are online unless explicitly stated otherwise. Met-
rical Task System problems, including k-Server and Paging, are discussed in Section 8. Bin
Packing, Scheduling, and further results on Uniform Knapsack are discussed in Section 9.
Graph Coloring is discussed in Section 10 and Graph Exploration in Section 11. Problems
studied using advice complexity, along with references, are listed in the appendix.

2 Advice Models

In this section, we define advice models and describe the historical development. We compare the
models and also discuss alternative views on what an advice model represents.

All models make use of a trusted oracle that knows the entire request sequence and has unlimited
computational power. Bits that we refer to as advice bits are supplied to the algorithm by the oracle
in some manner. These bits can be assumed to give a correct answer to any question the online
algorithm poses. For example, an online algorithm could pose the question of how many future
requests there are of a certain type and interpret the bits that are made available as the number of
interest. Note that the oracle knows the online algorithm, so the questions are not explicitly asked;
the oracle simply writes the answers and the algorithm reads them.

The term advice complexity for online algorithms was coined by Dobrev, Královič, and Par-
dubská [44]. They suggest two models, referred to as the helper mode and the answerer mode.
In the helper mode, the online algorithm receives a number of advice bits, which could be zero,
prior to processing each request. The advice complexity is defined to be the total number of bits
received from a perfectly designed oracle for the online algorithm to be optimal. The answerer
mode is similar, except that advice bits are only given when requested by the online algorithm, in
which case at least one bit is given. Note that the length itself of the bit sequence given as response
to a request for advice may transfer information in both the helper and the answerer mode.

Allowing the online algorithm to gain knowledge from not receiving any bits (or, in general, receiving
a varying number of bits) may be reasonable in some applications (see [44] for a discussion), but it
also introduces an additional complication which is not always desirable. Following the introduction
of online algorithms with advice in [44], two other models were suggested, both avoiding this
complication in di↵erent ways.

One model was introduced by Böckenhauer, Komm, Královič, Královič, and Mömke [25]. They
suggest using an infinite advice tape, written by the oracle; we refer to this model as the Tape Model.
The online algorithm may consult this advice tape at its discretion, and the advice complexity is
simply the number of bits read. The term “tape” is likely suggested by tradition; the important
properties are that the algorithm has an a priori unbounded supply of bits that it can receive one
at a time on request, and that there is no indication of an “end”, i.e., it is the algorithm that stops

ACM SIGACT News 98 September 2016, vol. 47, no. 3



asking for bits, not the supply that runs out. In other words, the Tape Model is similar to the
answerer mode of [44], except that the algorithm must specify how many bits it wants to receive
when asking for advice.

Another model was introduced by Emek, Fraigniaud, Korman, and Rosén [51]. They define a uni-
verse, U , of all possible answers, assume that dlog |U|e advice bits are given to the online algorithm
with every request, and define the advice complexity to be dlog |U|e. Phrased in terms of the first
models from [44], this corresponds to an advice complexity of dlog |U|en, where n is the length of
the request sequence. Thus, to obtain a good advice complexity, the size of the universe must be
minimized, which is equivalent to using as few advice bits per request as possible. We refer to this
model as the Per Request Model. The optimal solution for Paging discussed in the introduction
falls naturally into this model.

In the Per Request Model, any algorithm employing advice uses at least a linear number of bits,
making it impossible to explore a lack of information that can be overcome using a sublinear number
of advice bits (which is possible in the previously discussed models). Algorithms with sublinear
advice are of significant interest for Bin Packing (see Section 9) and several other online problems.

Earlier than [44], a similar notion of advice complexity was introduced by Fraigniaud, Ilcinkas, and
Pelc [56] in the setting of graph exploration (see Section 11), rather than for traditional online
algorithms. Here, all the advice is given in the beginning, and the algorithm learns the length of
the advice.

Unless explicitly stated otherwise, the results in this survey are in the Tape Model.

Further Technical Details. Now, we discuss some technical details that, although they can be
useful to know, are not essential to get an overview of the models.

Reading the advice from an infinite tape (as opposed to receiving a fixed number of bits) as in
the Tape Model comes at a small price. If an online algorithm wants to read a number of bits
encoding an integer X without a (good) known upper bound, the number of bits to be read must
also be provided as information. The standard technique for this is to use a so-called self-delimiting
encoding (also known as a prefix code), as in [24]. For example, one may write dlog(X + 1)e in
unary (using ones), then a zero as a delimiter, followed by X in binary, using 2 dlog(X + 1)e + 1
bits in total (this is similar to Elias gamma coding [50]). Slightly more e�cient encodings may
be obtained by iterating this construction. The next iteration (similar to Elias delta coding) uses
logX + 2 log logX + O(1) bits to encode an integer X. However, by Kraft’s inequality [41], there
does not exist a self-delimiting encoding of the integers using, for example, logX+log logX+O(1)
bits, and so we cannot obtain significantly better encodings.

In the model of [56], using a self-delimiting encoding may be unnecessary, since all of the advice
is given at the beginning and the algorithm learns its length. Furthermore, their oracle is able to
send

Pb
i=0

2i = 2b+1 � 1 di↵erent advice strings using at most b bits of advice.

Most lower bounds stated in the Tape Model in the literature are in reality shown in a model
similar to that of [56], not using that the algorithm does not know the length of the advice. This
means that upper bounds often contain a logarithmic lower-order term which is not present in the
lower bounds.
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Some bounds transfer between the Per Request Model and the Tape Model. An upper bound from
the Per Request Model of b bits for each of n requests gives an upper bound of bn bits in the Tape
Model (assuming that b is known to the algorithm, otherwise bn+O(log b) bits may be required).
Similarly, a lower bound stating that b bits are necessary in the Tape Model implies that at least⌃
b
n

⌥
bits per request are required in the Per Request Model.

Allowing the algorithm random access to the tape in the Tape Model (as opposed to sequential
access) does not make a di↵erence: Since the oracle knows both the algorithm and the input when
preparing the advice tape, it can predict which bits the algorithm would access in a random access
model and simply place them first sequentially on the advice tape.

Comparison to other computational models. The traditional approach of providing an on-
line algorithm with a specific type of knowledge is discussed in detail in Section 3 on semi-online
algorithms.

Hromkovič et al. [68] proposed parameterizing the Tape Model with an upper bound on the running
time of the algorithm to obtain an analogue of resource-bounded Kolmogorov complexity. These
ideas do not appear to have been investigated much yet.

As mentioned in [44, 51], the advice complexity model for online problems is similar to an earlier
advice complexity model for distributed computing [57]. There, the question was how much advice
the nodes in a network need in order to complete some task using as little communication as possible
(such as broadcasting, leader election, or coloring the nodes of the network).

Note that what is traditionally called a Turing machine with advice (see [6], for example) does not
correspond well to an online algorithm with advice. A Turing machine with advice receives advice
which may only depend on the length of the input, not the input itself.

3 Relationship to Semi-Online Algorithms

A major motivation for considering advice complexity is the relationship it has to semi-online
algorithms. In the literature, the term “semi-online” is used for many quite di↵erent types of
problems. For example, a semi-online algorithm may have a look-ahead, i.e., the ability to see some
of the future requests; the algorithm may be allowed to postpone some decisions or modify some
of them after arrival of more input; or the algorithm may be allowed to make assumptions about
the request sequence, such as non-increasing sizes. These types of semi-online problems have little
known relation to advice complexity. Those that do are the type that either assume some advance
knowledge about the input or maintain more than one solution and choose the best solution at the
end.

3.1 Assuming Advance Knowledge

Having advance knowledge available to a semi-online algorithm corresponds to advice from an
oracle in the advice complexity setting. Thus, depending on the type of advice an oracle provides,
an online algorithm with advice can be seen as a semi-online algorithm. Uniform Knapsack,

ACM SIGACT News 100 September 2016, vol. 47, no. 3



mentioned in the introduction, is a good example of where the advice model can lead to potentially
practical semi-online algorithms; it is only necessary to know if there exists an item of size at least
1

2

. Similarly, there is an online algorithm with advice for Bin Packing, where only knowledge of
the number of items with sizes in (1

2

, 2
3

] is necessary (see Section 9).

Lower bounds on advice complexity, on the other hand, can give proofs that no good semi-online
algorithm (of a certain type) exists. For example, a linear (or even super-logarithmic) lower bound
on the advice necessary to obtain a competitive ratio of c shows that knowing the number of
requests, which would only require a logarithmic number of bits of advice, cannot be su�cient to
obtain a competitive ratio of c. At the same time, it would also rule out many other semi-online
algorithmic possibilities.

We present some examples to show the interest in semi-online algorithms assuming advance knowl-
edge and show some of the types of advance knowledge that have been considered. Most of the
work of this type focuses on scheduling problems (see Section 9 for definitions of scheduling and the
makespan objective), and much of it has been for cases where the number of machines is a small
constant. In the examples we give, the number of machines, m, is unbounded.

For Scheduling on identical machines for makespan, Fleischer and Wahl [53] present an upper
bound of 1.9201 on the competitive ratio of deterministic algorithms, and Rudin reports a lower
bound of 1.88 [96]. However, if a semi-online algorithm knows the total sum of processing times,
algorithms can do better. A lower bound of 1.585 is proven in [3], and this lower bound is met by the
algorithm in [76] when the number of machines tends to infinity. On the other hand, knowing the
value of the optimal makespan, the problem becomes identical to Bin Stretching. This problem
was introduced in [8], and the currently best lower bound, 1.3, was proven there. A 1.5-competitive
algorithm for Bin Stretching was presented in [27].

For Scheduling preemptively on uniformly related machines for makespan, if the value of the
optimal makespan is given in advance, an optimal schedule is possible [49]. If only an approximation
to the optimal value is known, even for identical machines, the competitive ratio is increasing
with respect to both m and the uncertainty [70]. Note that in terms of advice complexity, more
uncertainty would generally imply less advice.

Seiden et al. [98] present a best possible online algorithm for Scheduling preemptively on identical
machines for makespan, assuming decreasing job sizes (a competitive ratio of about 1.36603), and
remark that the assumption of decreasing job sizes can be replaced with knowledge of the size of
the largest job.

As an example where quite a bit of advance knowledge (or advice) is used, fitting well into the Per
Request Model, Scheduling parallel batches with known arrival time of the first job among those
remaining with the longest processing times for makespan is considered in [108].

For Machine Covering (maximizing the minimum load), it was shown in [107] that the List
Scheduling algorithm [59] is m-competitive; it is well known that this is best possible (see [7]).
The ratio goes down to m � 1 (m � 3) if either the total sum of processing times or the longest
processing time is known [102]. Even if not all machines become available at the same time, the
ratio goes down to m � 2 (m > 3) if both of these are known [69]. If the optimal value is known,
the ratio is only 2� 1

m [7].
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3.2 Parallel Solutions

This model was considered by Albers and Hellwig [4] for Scheduling on identical machines for

makespan. For example, one of their results is a (4
3

+ ")-competitive algorithm using (1" )
O(log

1
"
)

parallel schedules. A corresponding (4
3

+ ")-competitive algorithm with advice would receive the

index of the best of the (1" )
O(log

1
"
) parallel schedules from an oracle using O(log2 1

" ) bits of advice and
perform the same computations as the algorithm with parallel schedules, but only using the schedule
indexed by the advice. Similarly, any algorithm with b(n) bits of advice to achieve competitive ratio
c can be converted into 2b(n) algorithms, each giving a schedule, and choosing the best schedule
will give a c-competitive result. Thus, advice complexity can conveniently be used to give lower
bounds for parallel solutions approaches.

Maintaining parallel solutions was also considered for the independent set problem in [64] in
a slightly di↵erent model. Their upper and lower bound results were asymptotically tight for
this model. However, using advice complexity techniques, asymmetric string guessing, and the
AOC-completeness (see Section 7) of the problem, both the upper and lower bounds were improved
in [31], determining the exact constant for the high-order term in the number of parallel solutions.

4 Advice vs. Randomization

Before covering algorithmic techniques for advice more broadly, we discuss the strong connection
to randomization as further motivation for studying advice complexity.

Derandomization using advice. It is trivial to see that if an online algorithm uses b random
bits, then an at least as good deterministic algorithm using b advice bits also exists: The oracle
chooses the random bits giving the best performance. However, it seems reasonable to ask for
derandomization results not depending on the number of random bits used by the algorithm.
Using derandomization techniques, Böckenhauer et al. [24] obtained the following result: Let I(n)
denote the number of inputs of length n to some minimization online problem (later extended to
maximization problems [22, 48, 91]). If there exists a randomized c-competitive algorithm without
advice, then for every constant " > 0, there exists a deterministic (c+")-competitive algorithm with
advice complexity O(log n + log log I(n)). For a large number of online problems, the number of

possible inputs of length n is at most 2n
O(1)

. Thus, for these problems, it is possible to convert any
randomized algorithm into an (almost) equally good deterministic algorithm with advice complexity
O(log n).

We remark that this result is essentially tight. It is shown by Mikkelsen [91] that for any increasing
function I(n), there exists (pathological) online problems where ⌦(log log I(n)) bits of advice are
indeed needed for such a conversion. Thus, for online problems with large input spaces, it is possible
that a lot of advice is required to simulate randomization. However, so far no one has stumbled
upon a “natural” online problem (that is, a problem not specifically constructed for this purpose)
where more than O(log n) bits of advice are needed to simulate randomization.

Finally, we note that this derandomization result can, of course, also be used to convert an algorithm
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which uses both advice and randomization into a deterministic algorithm with advice (see [91]).
Therefore, randomized algorithms with advice are rarely studied explicitly.

Replacing advice bits with random bits. Intuitively, it might appear that having access to
even a rather small number of advice bits provided by an omniscient oracle knowing the entire
input should often be more powerful than simply having access to (any number of) random bits.
Perhaps surprisingly, it turns out that for many important online problems, this is not the case.

Let us first consider the naive idea of simply running an algorithm with advice, Alg, with a tape
full of random bits (instead of bits provided by an oracle). Call the resulting randomized algorithm
Rand. It is easy to construct a pathological minimization problem where a single bit of advice
yields an optimal algorithm while no randomized algorithm can achieve any meaningful competitive
ratio (consider a problem where one of the first two requests should be chosen over the other, and
either can have arbitrarily larger weight than the other). On the other hand, for a maximization
problem with non-negative weights, the naive conversion will turn a c-competitive algorithm reading
b bits of advice into a (c ·2b)-competitive randomized algorithm. Indeed, for every input I, we have
Rand(I) = Alg(I) with probability at least 1

2

b . Since scores cannot be negative, this implies that

E[Rand(I)] � Alg(I)
2

b .

It is possible to do significantly better than the naive conversion for a large class of important
online minimization problems. In particular, it is possible to do better for any problem which
can be modeled as a Metrical Task System (see Section 8). Before the introduction of advice
models, this was studied as the problem of “combining online algorithms online”. In [20], Blum
and Burch showed how to use the celebrated machine learning algorithm Randomized Weighted
Majority to obtain the following result: For every " > 0, it is possible to combine m algorithms for
a Metrical Task System, Alg

1

, . . . ,Algm, into a single randomized algorithm, Rand, such
that for every input I,

E[Rand(I)] = (1 + ") · min
1im

Ai(I) +O(� logm).

Here, � is the normalized diameter of the underlying metric space. Note that if m 2 O(1), then
O(� logm) is just an additive constant. Thus, using our terminology, Blum and Burch show that
for any Metrical Task System, a c-competitive algorithm with advice complexity O(1) can be
converted into a (c+ ")-competitive randomized algorithm without advice! The result of Blum and
Burch was later extended in [91] by showing that such a conversion is also possible if the algorithm
uses o(n) bits of advice instead of constant advice. Together with the derandomization result, this
gives a striking equivalence between advice and randomization for many online problems, including
those mentioned in the following theorem:

Theorem 3 [Mikkelsen [91]] Let P be Metrical Task System, k-Server, List Update,
Paging, or Dynamic Binary Search Tree and assume that the underlying metric/node set
is finite. Let c be a constant independent of the input length. The following are equivalent

• For every " > 0, there exists a (c+ ")-competitive P algorithm with advice complexity o(n).

• For every " > 0, there exists a (c+ ")-competitive randomized P algorithm without advice.
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Note that for k-Server, for example, determining the best possible competitive ratio of a random-
ized algorithm is a long-standing open problem. In particular, the randomized k-Server conjecture
states that for every metric space, there exists an O(log k)-competitive randomized algorithm [83].
It was noted in [24] that, due to the derandomization result, a su�ciently large advice complexity
lower bound would disprove this conjecture. Theorem 3 shows that the randomized k-Server
conjecture is in fact equivalent to the conjecture that there exists an O(log k)-competitive deter-
ministic algorithm with advice complexity o(n) (assuming the underlying metric space is finite).
See Section 8 for more information on k-Server.

5 Algorithmic Techniques

We discuss general techniques for designing algorithms with advice.

Derandomization using advice. It is often possible to convert a randomized online algorithm
into a deterministic online algorithm reading O(log n) bits of advice. Section 4 was devoted to the
treatment of the relationship between advice and randomization.

Adapting o✏ine algorithms. It is sometimes possible to convert an existing (exact or approx-
imation) o✏ine algorithm into an online algorithm using a relatively small number of advice bits.
This has been done for Bin Packing and Scheduling [95] and Multi-Coloring [39] (see Sec-
tions 9 and 10.2). It can also be possible to convert streaming algorithms, for example, into online
algorithms with advice, as has been done for bipartite matching [48].

The now-or-later technique. The now-or-later technique is based on giving one bit of advice
per request. The technique has been used for Paging as described in Example 1 in the introduction:
Each time a page is requested, one bit of advice is given, indicating whether the requested page
can safely be evicted the next time a page fault occurs, or if the algorithm should keep the page in
cache until it has been requested at least once more.

Reordering Buffer Management is similar to paging: A bu↵er of a certain size is given, and
the input is a sequence of items. For each request, if the bu↵er is full, an item must be removed
from the bu↵er. Each item has a color, and if the evicted item has a color di↵erent from the
previously evicted item, a cost of 1 is incurred. A slightly more complicated version of the now-or-
later technique (using two advice bits per request to also include a “soon, but not now”-option) was
applied to Reordering Buffer Management in [2] (see also [93]), resulting in a 3

2

-competitive
algorithm, which was extended to a (1 + ")-competitive algorithm using O(log 1

" ) bits per request.

The follow-OPT technique. This technique was introduced in [51] and has been used for
Metrical Task System and k-Server [24,51,94]. In these problems, there is a bounded number
of possible states. With a lot of advice, it is possible to specify exactly which state the algorithm
should be in after each request. With fewer bits, the idea is to specify the exact state as often
as possible, ensuring that the state of the algorithm often coincides with the state of Opt. When
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serving those requests for which the precise state of Opt is not specified, the algorithm tries to be
conservative and not make risky decisions.

Combinatorial designs. In many cases, the amount of advice needed to achieve a given com-
petitive ratio is closely related to the minimum size of certain combinatorial structures. The idea
is to “compress” the optimal set S of advice strings into a smaller set S0. The strings in S0 have
the same length as those in S, and each string in S is “close to” some string S0, i.e., each string
in S0 can be thought of as representing a subset of S. The advice given is an index to a string in
the smaller set S0. If the aim is simply to minimize the Hamming distance between each string
in S and its representative in S0, covering codes can be used. However, in many cases, it must
be ensured that all ones (or all zeros) in the string in S be present in its representative in S0. In
this case, covering designs can be used. For example, upper bounds on the size of covering designs
have been used to obtain algorithms with advice for Paging (see Section 8) and minASG (see
Section 7.2). Similarly, upper bounds on the size of covering codes have been used to construct
algorithms with advice for, for example, String Guessing (see Section 7.1) and Matching on
paths and trees [75].

Note that since we generally do not restrict the running time of our online algorithms, the upper
bounds on the size of the given combinatorial structure need not be constructive. This is important
for the applications involving covering designs, for example, where good upper bounds proven via
the probabilistic method exist, but where it is not known how to construct such covering designs
e�ciently (see [31] for details).

The warning signal technique. An obvious technique for designing algorithms with advice is
to consider an online algorithm Alg without advice and try to use advice to pinpoint exactly when
Alg makes mistakes. The idea is that simply warning the algorithm of mistakes that it is about
to make might be much cheaper than telling the algorithm exactly what to do. This has been done
for edge coloring of trees (see Section 10.2).

Exponential sparsification. For weighted problems where a good advice algorithm exists for
the case where there are only few di↵erent weights, exponential sparsification can sometimes be
used. The requests are grouped based on their weights into intervals ((1 + ")k, (1 + ")k+1] for
k = �1 . . .1.

The first idea is to treat requests with weights in the same interval ((1 + ")k, (1 + ")k+1] as having
weight (1 + ")k+1. For some problems, this gives only a small loss in competitive ratio for the
algorithm. This idea was used in [95]. It has also been used for di↵erent variants of approximation
problems (no advice involved), such as developing a PTAS for minimizing makespan in scheduling;
see [103], for example.

The second idea is that requests with weights in an interval ((1 + ")k, (1 + ")k+1], for su�ciently
small (or large) k (compared to that of the other requests), may be served in some simple way
without using any advice with only a small loss in competitive ratio. For example, for Weighted
Independent Set, a policy could be to always reject vertices with a weight below some threshold.
Depending on this threshold, this might only give a small loss in competitive ratio. Note that in the
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beginning, some scheme should be used to identify which requests have (relatively) small weights.
This could for example involve using O(log n) bits to give the index of the first request which does
not have a small weight.

Combining the two ideas, we now just need an algorithm (for the remaining requests) which solves
the problem well when only few di↵erent weights are allowed. This approach was used in [32].

6 Lower Bound Techniques

We discuss general techniques for establishing lower bounds against algorithms with advice.

The pigeonhole technique. Construct a set of inputs, I, where |I| = m. Suppose that an
algorithm reads at most b bits of advice on any input from I. By the pigeonhole principle, this
algorithm must read the same advice for at least

⌃
m
2

b

⌥
of the inputs in I. Thus, it su�ces to show

that for any subset, I 0 ⇢ I, of size at least
⌃
m
2

b

⌥
and any fixed deterministic algorithm (without

advice), there is an input from I 0 on which the algorithm performs poorly. In many cases, this is
achieved by designing I such that all inputs have some common prefix. On this common prefix, a
deterministic algorithm selected for I 0, based on the advice, will always produce the same output.
So, if di↵erent inputs in I 0 require di↵erent outputs for the common prefix, this yields a lower
bound. More generally, one may use a partition tree [13], where nodes in the tree represent sets
of inputs with a common prefix. The pigeonhole technique is applied in [19, 24, 26, 35, 80, 95], for
example.

The multiple algorithms technique. Any algorithm Alg reading b bits of advice can be con-
verted into 2b algorithms, Alg

1

, . . . ,Alg
2

b , without advice such that for every input I, Alg(I) =
min

1i2

b Algi(I) for minimization problems (for maximization problems, min is replaced by max).
Thus, we can get a lower bound by showing how an adversary can construct an input such that all
of the 2b algorithms perform poorly on that input. One can, for example, create an input in rounds,
where each round ensures that some fraction of the algorithms perform poorly. This technique is
applied in [31,40,81,82,90], for example.

The probabilistic method. Suppose that we are able to construct a probability distribution
over a set of inputs I and show that for any deterministic algorithm without advice, the probability
that the algorithm performs “well” is very small. Then this gives an advice complexity lower bound.
For example, let Alg be an algorithm reading b bits of advice. Then Alg can be converted into
2b deterministic algorithms, Alg

1

, . . . ,Alg
2

b , without advice (as done in the multiple algorithms
technique). Assume that for every deterministic algorithm, Det, without advice, it holds that
Pr[Det(I)  c · Opt(I)] < �, where I is drawn from I according to our input distribution.
Then, by the union bound, this implies that Pr[Alg(I)  c ·Opt(I)] = Pr[min

1i2

b{Algi(I)} 
c · Opt(I)]  2b�. If 2b� < 1, then this implies that there exists an input I 2 I such that
Alg(I) > c · Opt(I), and hence Alg is not strictly c-competitive. The probabilistic method is
applied in [12,58,91], for example. See also Section 7.1 for a simple but useful lower bound obtained
via this technique.
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Advice-preserving reduction. Suppose that we already have a lower bound on the advice
complexity for a problem P. An easy way to obtain a lower bound on the advice complexity for a
related problem P0 is to reduce P to P0 in a suitable way. A number of abstract guessing games have
been introduced specifically with the purpose of serving as the starting point of such reductions
(see Section 7).

⌃-repeatable online problems. It was shown by Mikkelsen [91] that for online problems which
are “repeatable”, it is often possible to translate lower bounds for algorithms without advice into
lower bounds for algorithms with sublinear advice. Informally, an online problem is ⌃-repeatable if
it is possible to combine r inputs I

1

, . . . , Ir into a single input I = f(I
1

, . . . , Ir) such that serving I
essentially amounts to serving each Ii independently and adding the costs incurred. In particular,
the way an algorithm serves I

1

, . . . , Ii�1

should not significantly a↵ect how e�ciently the algorithm
can serve Ii. Paging is ⌃-repeatable since one may simply concatenate the inputs I

1

, . . . , Ir. The
only dependency between the number of page faults of two di↵erent rounds is that our initial
cache when serving the requests of Ii corresponds to our final cache when serving the requests of
Ii�1

. However, if we make sure that Opt(Ii) is much larger than the cache size, then this small
dependency can essentially be ignored when proving lower bounds. A problem which is not ⌃-
repeatable is Bin Packing. Consider inputs I

1

= (1
2

� ", . . . , 1
2

� ") and I
2

= (1
2

+ ", . . . , 1
2

+ "),
both of length n. While concatenating I

1

and I
2

does give a valid Bin Packing input I, if we
pack the items of I

1

two per bin, then we have to open n new bins for serving the items of I
2

. On
the other hand, if we pack each item of I

1

in a separate bin, we may pack the items of I
2

without
opening any new bins at all. Thus, the choice of how to serve the items of I

1

has a significant
influence on the number of bins needed to serve the items of I

2

. Of course, one might try to
construct I = f(I

1

, I
2

) in a more clever way than just concatenating I
1

and I
2

, but it can be shown
that no choice of f will work for Bin Packing.

For a ⌃-repeatable problem, we have the following result [91] (omitting some minor technical
conditions): Let P be a ⌃-repeatable online problem, where, for each n, the number of inputs of
length n is finite. Suppose that a randomized algorithm without advice cannot be better than
c-competitive, where c does not depend on the input length n. Furthermore, suppose that this
lower bound holds even if the adversary has to reveal an upper bound on the length of the input
in advance. Then, an algorithm reading o(n) bits of advice must have competitive ratio at least c.

The currently best known lower bounds (for algorithms with sublinear advice) for Paging, k-
Server, List Update, Max-SAT, Unit Clustering, Bipartite Matching and several other
problems have been achieved by combining the result above with the currently best known lower
bounds for randomized algorithms without advice [91].

_-repeatable online problems. For a ⌃-repeatable problem, the total cost has to be essentially
the sum of costs incurred in each individual round. It is also possible to consider another collection
of repeatable problems, where the total cost is the maximum cost incurred in a single round. We
call such problems _-repeatable. For those problems, we have the following lower bound result [91]:
Let P be an _-repeatable online problem. Suppose that a deterministic algorithm without advice
cannot be better than c-competitive, where c does not depend on n. Furthermore, assume that
the lower bound holds even if the algorithm knows Opt(I) in advance and knows an upper bound
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on the number of requests. Then no (possibly randomized) algorithm reading o(n) bits of advice
can be better than c-competitive. This result is similar to the result for ⌃-repeatable problems,
but note that for _-repeatable problems, we only need a lower bound for deterministic algorithms
without advice in order to apply the technique. On the other hand, for _-repeatable problems, we
have an additional assumption regarding the cost of an optimal solution. This assumption turns out
to be crucial (see the Machine Covering results in Section 9). Informally, since knowledge about
Opt(I) would not help the algorithm, we may essentially assume that the cost of Opt is the same
in each round. Intuitively, even if the algorithm uses o(n) bits of advice, there will still be a single
round where it has almost no advice available and, hence, will perform as poorly as an algorithm
without advice. The main examples of _-repeatable problems are graph coloring problems.

Direct product theorems. Direct product theorems were introduced as a way to prove lower
bounds in [91]. Intuitively, a direct product theorem says that if b bits of advice are needed for an
online algorithm to ensure a cost of at most t when faced with requests drawn from a probability
distribution p, then r · b bits of advice are needed to ensure a total cost of at most r · t when r
independent rounds of requests are drawn from p.

The result for ⌃-repeatable online problems discussed earlier is proven by having the requests of
each round be an entire input itself (drawn from some hard input distribution) and then applying
a direct product theorem. However, it is also sometimes possible to have each round be only a
single request of the input. Obviously, this approach will usually require more e↵ort since one no
longer treats the hard input distribution just as a black box (as was the case with the result for
⌃-repeatable problems). On the other hand, this approach can lead to significantly stronger lower
bounds than what can be achieved by only using the general result for ⌃-repeatable problems. For
example, a super-linear lower bound for Vertex Coloring has been proven using this approach
(see Section 10.1).

7 String Guessing and Complexity Classes

String Guessing is a rather artificial problem which is used primarily to show linear lower bounds
on the advice complexity of certain problems, so most of the problems considered here are hard
from an advice complexity point of view, i.e., much advice is needed to obtain a good competitive
ratio. Some of the problems are even hard o✏ine.

There are several types of string guessing problems. We start with the simplest version.

7.1 String Guessing

String Guessing was introduced by Böckenhauer et al. [23], and it is essentially the same as
Generalized Matching Pennies, defined and studied earlier by Emek et al. [51]. Both of these
problems consider strings of length n over an alphabet of size q. The goal is to guess as many of the
characters of the input string as possible correctly. There are two versions of the problem: String
Guessing with known history, where the correct answer to the previous request is revealed with
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each new request, and String Guessing with unknown history, where the correct answers are
revealed only at the end of the input.

Note that an algorithm which answers uniformly at random in each round will guess n
q characters

correctly in expectation. Clearly, one can achieve the same guarantee with a deterministic algo-
rithm, reading dlog qe bits of advice (identifying the most frequent character in the input string).
The following theorem gives a lower bound on the advice needed to guess more than a fraction of
1

q of the input characters correctly.

Theorem 4 [Böckenhauer et al. [23]] Any online algorithm with advice for String Guessing
with known history (over an alphabet of size q), guaranteeing guessing �n characters of the input
correctly, for some constant 1

q < � < 1, must read at least
✓
1 + (1� �) logq

✓
1� �

q � 1

◆
+ � logq �

◆
n log q 2 ⌦(n log q)

advice bits.

The lower bound (Theorem 4) can equivalently be written as (1�Hq(1� �))(log q)n, where Hq is
the q-ary entropy function [23]. Also, it may be useful to know that Theorem 4 is closely related to
the Cherno↵ bound [67]. Indeed, it can be proven using the probabilistic method (see Section 6) as
follows: Choose the input string uniformly at random. Let Det be a fixed deterministic algorithm
without advice. In each round, the probability that Det guesses the correct character is exactly
1

q , and this probability is independent of all other rounds. Thus, the number of characters guessed
correctly by Det is a sum of independent identically distributed Bernoulli random variables with
expected value 1

q . By the Cherno↵ bound, the probability that Det guesses �n (or more) characters

correctly is at most 2�(1�Hq(1��))(log q)n. It follows that an algorithm with advice needs at least
b � (1 � Hq(1 � �))(log q)n bits of advice to ensure that it always correctly guesses at least �n
characters [91]. This is exactly the lower bound of Theorem 4.

Via reductions, String Guessing with known history has been used to prove many advice com-
plexity lower bounds, including some in [2, 5, 17, 21,23,34,35,48,51,60,79].

For String Guessing with unknown history, Böckenhauer et al. [23] give (using known bounds on
the size of covering codes) an upper bound which matches the lower bound for String Guessing
with known history up to an additive O(log n) term. Note that the lower bound is for the easier of
the two problems, and the upper bound is for the harder version. Thus, both bounds are as general
as possible.

Other String Guessing Problems. Other string guessing variants were analyzed by Mikkelsen [91]:
Anti-String Guessing yields better lower bounds for Paging with advice and for Induced
Subgraph [79] and Weighted Binary String Guessing yields a better lower bound for Bin
Packing.

7.2 Asymmetric String Guessing

Consider accept/reject minimization problems, i.e., minimization problems where the irrevocable
decision for each request is either to accept or reject it. Assume that the problem is such that a
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superset of a feasible solution is always feasible. An example one could keep in mind is Vertex
Cover. This is the standard vertex cover problem in the vertex arrival model, so the vertices arrive
online, and each vertex arrives with a list of all previous vertices to which that vertex is adjacent.
The accepted vertices must form a vertex cover, so at least one endpoint of each edge must be
chosen. The fact that edges to vertices that have not been seen yet are unknown when a vertex
arrives means that the well known 2-approximation algorithm, accepting both endpoints of some
edges, cannot be used.

The obvious advice to give is a string of bits, one for each request, with ones indicating acceptance
and zeros indicating rejection for an optimal solution. One can also use this idea in a c-competitive
algorithm with advice. Suppose that for each request sequence length n and each t  dnc e, the
algorithm can compute a set of binary strings, Sn,t,c, such that for every request sequence of length
n with a minimum solution of size t, there is a string in Sn,t,c which indicates a superset of a
minimum solution, where the superset must have size at most ct. Then, the oracle can give the
algorithm n, t, and an appropriate index into Sn,t,c. The algorithm can be c-competitive by using the
indexed string and answering “accept” or “reject” based on that string, ignoring the actual request
sequence. If t > dnc e, it is safe to answer “accept” for every request. Note that the value n must
be given in a self-delimiting encoding, and the total length of the advice is dlog |Sn,t,c|e+O(log n).
One can think of the above algorithm as trying to guess a string corresponding to a minimum
solution, but being allowed to make a few errors in the direction of guessing ones for some zeros in
that optimal solution.

Realizing that many problems exhibit the same characteristics as Vertex Cover, Boyar et al. [31]
study an abstraction of this problem in the form of Minimum Asymmetric String Guessing, min-
ASG. As with other string guessing problems, minASG does not appear interesting in its own right,
but the above example shows its relation to other problems. In minASG, the request sequence is a
sequence of bits that the algorithm must try to guess (for example indicating a minimum solution
to an instance of Vertex Cover). The cost is the number of ones guessed, unless the algorithm
at some point guesses zero, when the correct bit was a one. In the latter case, the cost is infinite
(this corresponds to a, possibly, infeasible answer in the Vertex Cover case). The goal is, of
course, to minimize cost.

As with String Guessing, there are two variants of minASG, known history and unknown history.
There is also a maximization version of Asymmetric String Guessing, maxASG. For that version,
Independent Set could be the problem to keep in mind. The objective is to guess as many zeros
correctly as possible, and guessing a zero where the correct answer is a one gives a profit of �1.
Again, there is a version with known history and one with unknown history.

Using results on covering designs, tight bounds are proven in [31] on all four version of Asymmet-
ric String Guessing, showing that the number of advice bits necessary and su�cient to achieve
competitive ratio c is

B(n, c) = log

✓
1 +

(c� 1)c�1

cc

◆
n±⇥(log n), (1)

where
1

e ln 2

n

c
 log

✓
1 +

(c� 1)c�1

cc

◆
n  n

c
.

Returning to the motivating Vertex Cover example, the closed formula (1) bounds the term

ACM SIGACT News 110 September 2016, vol. 47, no. 3



dlog |Sn,t,c|e + O(log n) from that example. Vertex Cover is not exactly the same problem as
either minASG with known or unknown history, since it may be possible to deduce some but not all
information about past mistakes during the processing of vertices. However, minASG with known
history can be used to provide lower bounds, whereas minASG with unknown history can be used
for upper bounds.

7.3 Complexity Classes

Problems such as minASG and Vertex Cover led to the definition of the first complexity class
for online algorithms, AOC, Asymmetric Online Covering [31], which contains many accept/reject
problems, both minimization and maximization problems. The minimization problems have the
property that any superset of a feasible solution is a feasible solution, and the maximization prob-
lems have the property that any subset of a feasible solution is a feasible solution. In both cases,
the cost/profit of a feasible solution is the size of the accepted set, and the cost (profit) of an infea-
sible solution is 1 (�1). Maximization versions of minASG have the same advice complexity as
minASG. This is used to show an upper bound on the advice complexity of all problems in AOC.

The hardest problems in AOC, those which require

log

✓
1 +

(c� 1)c�1

cc

◆
n±⇥(log n)

bits of advice to be c-competitive, are called AOC-complete [31]. Using reductions from the asym-
metric string guessing problems, Vertex Cover, Independent Set, Dominating Set, Dis-
joint Path Allocation, Set Cover, and Cycle Finding are shown to be AOC-complete. All
but the last of these correspond to o✏ine problems which are NP-hard. Note that although these
problems are proven to be complete via reductions, there are no unproven assumptions, such as P
6= NP. Tight bounds on the advice complexity of these problems are known. The AOC-complete
problems are all hard online problems: Without advice, these problems have competitive ratios
which are ⌦( n

logn), and in fact, all the known AOC-complete problems [31] have ⌦(n) competitive
ratios (actually, n or n� 1 for all but one problem). Examples of problems which are in AOC, but
not AOC-complete, are Uniform Knapsack and Matching.

Corresponding to each AOC problem is a weighted version of the problem, which is still an ac-
cept/reject problem, but the cost/profit of each request may vary due to a weight associated with
the request. For example, for Weighted Independent Set, the vertex arrival model is used, but
each vertex arrives with a weight, in addition to a list of all previous vertices adjacent to it. The
goal is to accept a maximum weight independent set. In contrast to the unweighted case, when
weights are added to AOC-complete problems, the maximization and minimization problems have
di↵erent advice complexities. Boyar et al. [32] showed that the weighted versions of the complete
maximization problems have advice complexity at most an additive term O(log2 n) worse than the
unweighted versions, but the weighted versions of the known complete minimization problems all
have unbounded competitive ratios with fewer than n�O(log n) bits of advice. This latter result is
proven using length-preserving advice reductions; all known AOC-complete minimization problems
were proven complete for AOC using this type of reduction. Thus, the class containing the weighted
versions of these complete minimization problems is harder with respect to advice complexity than
the class containing the weighted versions of the complete maximization problems.
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The maximization (and not the minimization) problems in AOC are examples of problems where
the greedy algorithm is best possible according to online bounded analysis, which is defined by
Boyar et al. in [30].

In [79], Komm et al. consider the following problem: A graph property, ⇧, is a set of graphs. It is
said to be

• hereditary if for every graph G in ⇧, all induced subgraphs of G are also in ⇧.

• cohereditary if for every graph G in ⇧, all graphs containing G as an induced subgraph are
also in ⇧.

• non-trivial if there are an infinite number of graphs in ⇧ and an infinite number of graphs
not in ⇧.

Examples of non-trivial hereditary graph properties include independent sets, forests, and planar
graphs. Examples of non-trivial cohereditary graph properties include graphs containing a cycle and
non-planar graphs. Let a non-trivial hereditary graph property ⇧ be given. A graph is presented
in the vertex arrival model and the goal is for the algorithm to accept as many vertices as possible,
such that the induced subgraph defined by the accepted vertices is in ⇧. They show that at least

log

✓
1 +

(c� 1)c�1

cc

◆
n�⇥(log2 n)

bits of advice are required to be c-competitive for these problems (independent of the choice of
⇧). These problems are, in some sense, shown to be almost AOC-complete. For a cohereditary
graph property ⇧, the problem considered is the same, except that the goal is to accept as few
vertices as possible, such that the induced subgraph defined by the accepted vertices at the end is
in ⇧ (it is guaranteed that the graph presented is in ⇧). They show that for this problem, the
advice complexity depends crucially on the choice of graph property. For some properties, it is
AOC-complete; for others, it is possible for an algorithm to be optimal using only O(log n) advice
bits.

8 K-Server, Paging, and Friends

A Metrical Task System [29] is defined by a tuple (S, T , d) where S is a set of N states, T is a
set of tasks, and d : S⇥S ! [0,1) is a metric distance function. A task is a mapping t : S ! [0,1]
satisfying that there exists at least one state s 2 S such that t(s) 6= 1. An input consists of an
initial state s

0

2 S and n tasks t
1

, . . . , tn. Immediately after a task ti arrives, the online algorithm
must choose a state si for serving ti: The online algorithm moves from its current state si�1

to the
state si at a cost of d(si�1

, si) and serves the task ti at a cost of ti(si). The goal is to minimize the
total cost incurred. Each of the classic online problems of Paging, k-Server, and List Update
can be modeled as a Metrical Task System (see [28], for example).

For the classic online scenario, a matching upper and lower bound of 2N � 1 is known for de-
terministic Metrical Task System algorithms [29]. For the randomized case, there exists a
randomized O(log2N log logN)-competitive algorithm [52], whereas the best known lower bound
on the competitive ratio is the ⌦(logN) lower bound arising from Paging.
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The advice complexity of Metrical Task System is well understood. We know that sublinear
advice is equivalent to randomization (Theorem 3). Furthermore, it was shown in [51] that b bits of
advice per request are both necessary and su�cient to be ⇥( logNb )-competitive. The upper bound
is achieved using the follow-OPT technique. The matching lower bound is proven via a reduction
from Generalized Matching Pennies (see Section 7.1).

Advice bits

Competitive
Ratio

1

O
⇣
log k
b

⌘

Hk

eO(log2 k log3N)

k

2k � 1

0 f(k,N,�) ⌦(n) 4n bn ⇥(n log k)

Figure 2: The asymptotic trade-o↵ between competitive ratio and advice for k-Server. N is the
number of points in the metric space and � the (normalized) diameter. The function f(k,N,�) is a
rapidly growing function of k,N and � (but does not depend on n). For the randomized algorithm
with a competitive ratio depending on N , we assume that N is relatively small; polynomial in k,
for example.

The advice complexity of k-Server (see Figure 2) is not as well understood as for Metrical Task
System. Again, we know that randomization is equivalent to sublinear advice. Depending on the
size N of the metric space, the currently best known randomized algorithm without advice for
k-Server is either the O(log2 k log3N log logN)-competitive algorithm due to Bansal et al. [10]
or simply the deterministic (2k � 1)-competitive Work Function Algorithm by Koutsoupias and
Papadimitriou [84]. By [91], randomized k-Server algorithms (on finite metric spaces) can be
simulated using a number of advice bits depending only on k and the metric space. The current
best upper bound for algorithms using b � 3 bits of advice per request is O( log kb ), using the follow-
OPT technique [24, 94]. However, no matching lower bound is known. The lower bound used for
Metrical Task System does not seem to be applicable to k-Server. For k-Server, we only
know that ⌦(n log k) bits of advice are needed to be optimal [24] and that ⌦(n) bits of advice are
needed to be better than Hk-competitive (the last lower bound follows since Paging is a special
case of k-Server; see the next paragraph for details). In particular, it is an intriguing open problem
whether or not it is possible to be (1+")-competitive using O(n) bits of advice for arbitrarily small
". It was shown in [24] that this is in fact the case if the underlying metric space is the Euclidean
plane: Along with every request, one may use O(1) bits of advice to indicate as precisely as possible
in which “direction” the server used by Opt for serving this request is currently located. Also, for
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various sparse metric spaces (such as paths, trees, and planar graphs), algorithms which are better
than the algorithm for the general case are known [60,94].

The asymptotic advice complexity of Paging is essentially completely understood (see Figure 1).
Recall that the best possible competitive ratio for a randomized Paging algorithm without advice
is Hk 2 ⇥(log k). Using b bits of advice, it is possible to be (2k+2

2

b + 3b)-competitive, while any

algorithm using only b bits of advice must have a competitive ratio of at least k
2

b [25]. In particular,
O(log k) bits of advice su�ce to be O(log k)-competitive while o(log k) bits of advice is not enough
to be, for example, k0.99-competitive. Furthermore, it is possible to be (Hk + ")-competitive using
a number of advice bits depending only on k and " (and not the input length n) [91]. In order to
achieve a competitive ratio better than Hk, we need ⌦(n) bits of advice (since reading o(n) bits
of advice is equivalent to randomization, according to Theorem 3). On the other hand, n bits of
advice su�ce to be optimal using the algorithm described in the introduction.

The exact trade-o↵ between advice and the competitive ratio for Paging is still open. For constant
competitive ratios, the current best upper bound is (perhaps a bit surprisingly) achieved by using
the upper bound for the AOC-complete problem minASG (see Section 7.2 and in particular Equa-
tion (1)): Let x = x

1

. . . xn be a binary string such that xi is 0 if and only if the page requested
in round i will be requested once more before it is removed from the cache of Opt. As already
mentioned in the introduction, a Paging algorithm which is given x as advice can be optimal. It
was observed in [25] that if an algorithm is given an n-bit string x0 such that xi = 1 ) x0i = 1
and such that |x0|  c |x| (where |x| is the Hamming weight of x), then a Paging algorithm which
knows x0 can be c-competitive. This means that (for all cache sizes) there exists a c-competitive
Paging algorithm reading B(n, c) + O(log n) bits of advice on inputs of length n. In particular,
(log 5

4

)n+O(log n) > 0.3219n+O(log n) bits of advice su�ce to be 2-competitive. The best known
lower bound on the exact advice complexity of Paging was proven in [91] by a reduction from
Anti-String Guessing. This lower bound is quite far from the AOC-based upper bound. For
example, it only shows that at least 0.00877n�O(log n) bits are needed to be 2-competitive.

List Update has been studied with advice in [34]. The main result is a 5

3

-competitive algorithm
using just two bits of advice (in total). The advice tells which of the three classic algorithms
Timestamp, MoveToFront-Even, and MoveToFront-Odd is the best algorithm for the cur-
rent input. An interesting application of the idea of choosing the better of two classic algorithms
for List Update to a data compression problem is described in [73].

9 Bin Packing, Machine Scheduling, and Knapsack

In this section, we consider three related problems.

Bin Packing. InBin Packing, requests are sizes in the range (0, 1]. Bins of size one are available,
and items must be placed in a bin such that the total volume of items placed in that bin does not
exceed one. The objective is to minimize the number of bins used.

The ultimate advice for any online problem is to be informed of exactly how Opt behaves on the
request sequence. For Bin Packing, Opt uses Opt(I) bins on a request sequence I, so with
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n dlogOpt(I)e bits of advice, it is possible to mimic the behavior of Opt. This was observed by
Boyar et al. [35], where it was also established that this is essentially tight, in that a lower bound
of (n � 2Opt(I)) logOpt(I) was given. They employed the pigeonhole technique, giving a long
prefix which has to be packed exactly right, depending on the unknown su�x, in order to pack all
the items in the optimal number of bins.

To beat the best known lower bound for Bin Packing of 1.54037 [9] (the best known upper
bound is 1.5815 [66]), a ratio of 3

2

was obtained using log n + o(log n) bits of advice [35]. The
observation underlying this result is that large items fill bins su�ciently and small items are easy
to pack e↵ectively, so we need to know about medium-sized items (concretely in the range ( 1

2

, 2
3

]),
and dlog(n+ 1)e bits are su�cient to specify the number of such items in the input. Di↵erent
categorization schemes by Angelopoulos et al. [5] led to a competitive ratio of 1.47012 + ", for any
fixed ", using a constant number of advice bits, dependent on ". They also show that 16 bits of
advice are su�cient to beat the best algorithm without advice, obtaining a competitive ratio of
1.530.

Using a linear number of bits, 2n + o(n), to get limited information regarding Opt’s packing, a
ratio of 4

3

+ ", for any ", was obtained in [35]. Asymptotically, for quite large input, Renault et
al. [95] proved that one can get arbitrarily close to optimal, establishing (1 + ")-competitiveness
using O(1" log

1

" ) bits of advice per request.

A further improvement of the 4

3

result is claimed in [109], but we have not been able to verify the
result. An example problematic sequence for their algorithm is n

2

items of size 1

3

� " followed by n
2

items of size 2

3

+ ".

For negative results, Boyar et al. [35] showed that 9

8

� � is a lower bound for any � and sublinear
advice. Refining those methods, Angelopoulos et al. [5] raised this lower bound to 7

6

= 1.16 and

Mikkelsen [91] to 4� 2
p
2 > 1.1715.

An overview of these results is given in Figure 3.

Finally, we mention some special cases. For a limited number m of di↵erent items, by using
m dlog(n+ 1)e + o(log n) bits of advice to inform the algorithm in advance of how many items to
expect of the di↵erent types, one can be essentially optimal, achieving a packing of (1+")Opt(I)+1
bins. This is essentially tight, since (m � 1) log n � 2m logm bits of advice are required to be
optimal [35]. If all items are known to be larger than 1

3

, one bit of advice is su�cient to be
1.3904-competitive [5].

Machine scheduling. Consider Scheduling on m machines, where requests are real numbers,
referred to as job sizes, and the irrevocable decision is to assign a request to a particular machine.

In Section 3, we discuss a parallel solutions algorithm from [4], where the objective is to minimize
the makespan, i.e., the maximum sum of job sizes assigned to any one machine. The parallel
solutions algorithm can be viewed as a (4

3

+ ")-competitive algorithm using O(log2 1

" ) bits of advice
in the Tape Model. The same paper gives a (1 + ")-competitive algorithm which can be viewed as
using O(1" log

m
" log 1

" ) advice bits.

Boyar et al. [32] give (1+ ")-competitive algorithms for weighted scheduling problems with various
objective functions: For minimizing a norm (the makespan, for example) on related machines, an
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Advice bits

Competitive
Ratio

1

1 + "

1.1715

1.333

1.47012
1.5

1.54037
1.5815

0 1 16 O(1) ⌦(n) 2n O(n) ⇥(n log n)

Figure 3: The best known bounds on the advice complexity of Bin Packing. The horizontal
dashed line is the currently best lower bound on (possibly randomized) Bin Packing algorithms
without advice.

algorithm reading O(1" log
2 n) advice bits is given. For minimizing a norm on a constant number of

unrelated machines, an algorithm reading O( 1

"m logm+1 n) bits of advice is given. The same advice
complexity is obtained for maximizing a semi-norm (the minimum load as in Machine Covering,
for example) on a constant number of unrelated machines. For a non-constant number of unrelated
machines, the expressions for the advice complexity are more complicated; see the paper for details.

For the Per Request Model, Renault et al. [95] obtain a competitive ratio of 1 + " for minimizing
makespan using O(1" log

1

" ) bits of advice per request. Similar results are obtained for Machine
Covering and minimization of the Lp norm, p � 2. Complementing these results, using the
pigeonhole technique, they establish a (1� 2m

n ) logm lower bound on advice per request in order to
obtain optimality, i.e., almost as much advice is required as is used by the trivial optimal algorithm
with advice that receives dlogme bits of advice per request, indicating which machine to place a
job on.

Knapsack. In the introduction, Uniform Knapsack was used as an example (Example 2). An
algorithm from [26] using one advice bit was described: the advice bit indicates whether the input
sequence contains an item of size at least 1

2

. If it does, the first item accepted by the algorithm is
the first item of size at least 1

2

. Otherwise, the algorithm accepts items greedily. In this section,
we describe other results from this paper.

The competitive ratio of the above algorithm cannot be improved using a few additional advice
bits; no algorithm reading fewer than blog(n � 1)c bits of advice has a competitive ratio better
than 2. On the other hand, for any constant " > 0, there is a (1+ ")-competitive algorithm reading
O(1" log n) bits of advice. For optimality, n� 1 bits of advice are necessary and su�cient.
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If one considers the obvious randomized algorithm based on the above 2-competitive algorithm,
its competitive ratio is 4: Simply flip a coin instead of reading an advice bit. There is a related
2-competitive randomized algorithm using only one bit of randomness: One of the deterministic
algorithms to choose between is again just accepting everything possible; the other is rejecting until
the first item, which would have been rejected had everything before it been accepted, and then
accepting from there when possible. This is best possible, since no randomized algorithm can have
competitive ratio better than 2.

For the weighted version, where each item has both a size and a value, any (possibly randomized)
algorithm reading fewer than log n bits of advice has unbounded competitive ratio. On the other

hand, if all values and weights can be represented within polynomial space, then O(
p
1+"p

1+"�1

log n)

advice bits su�ce to be (1 + ")-competitive.

10 Graph Coloring

Being of both practical and theoretical interest, graph coloring problems have been extensively
studied from an online perspective. In fact, some of the earliest results on online graph coloring
predate the formal introduction of competitive analysis. We refer to [78] for a good (although
slightly dated) survey on Vertex Coloring. In this section, we survey some of the results
obtained on various graph coloring problems in the advice complexity model. With a single notable
exception, it generally turns out that a lot of advice is needed in order to obtain good online graph
coloring algorithms.

10.1 Vertex Coloring

The most classic graph coloring problem is Vertex Coloring, where the vertices of a graph must
be colored such that no two neighbors receive the same color. The aim is to use as few colors as
possible. In the most studied online model, the vertex-arrival model, vertices arrive one by one,
each with information about its edges to vertices that have already arrived. Usually, the colors are
enumerated starting from one.

Without advice, Vertex Coloring is an extremely di�cult problem; Halldórsson and Szegedy [65]
showed that any (possibly randomized) online algorithm has a competitive ratio of ⌦( n

log

2 n
). The

hardness of the problem carries over to the advice setting; applying a direct product theorem
(see Section 6) to the lower bound of [65], Mikkelsen showed in [91] that any O(n1�")-competitive
Vertex Coloring algorithm must read ⌦(n log n) bits of advice. This is an unusually strong
advice complexity lower bound. Vertex Coloring is so far the only known example of a natural
online problem where linear advice is not enough to obtain a truly sublinear competitive ratio.
Also, note that O(n log n) bits of advice trivially su�ce to achieve optimality. In fact, n log n �
n log log n + O(n) advice bits are necessary and su�cient for an optimal coloring, even necessary
if the vertices arrive in a breadth-first order [55]. Thus, Vertex Coloring has a sharp phase
transition in its advice complexity.

On trees, First-Fit (the greedy algorithm using the lowest available color) uses at most blog nc+ 1
colors [62], thus obtaining a competitive ratio of 1

2

log n. This is a best possible result, since, even
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on trees, any deterministic online algorithm can be forced to use blog nc+1 colors [63], while Opt,
of course, only needs two. Since Vertex Coloring is _-repeatable, and since the lower bound
of 1

2

log n 2 !(1) does not depend on the algorithm not knowing n or Opt(I), it follows that no
Vertex Coloring algorithm with o(n) bits of advice can achieve a constant competitive ratio,
even on trees [91] (see Section 6).

For bipartite graphs, any deterministic online algorithm without advice can be forced to use 2 log n�
10 colors [61]. Thus, coloring bipartite graphs is harder than coloring trees. On the other hand,
the online algorithm (without advice) Bipartite First-Fit (BFF) uses at most 2 log n colors [77] for
n � 2. For each vertex v, BFF simply uses the smallest color not used in the opposite partition of
the connected component containing v.

Building on BFF, a family of algorithms, Ak, with advice for coloring bipartite graphs was given
by Bianchi et al. [18], obtaining a trade-o↵ between competitive ratio and advice. For k � 2, the
algorithm Ak uses advice to ensure that the color k � 1 is only used in one partition of the final
graph, and that the color k is only used in the other partition. For each vertex v, if BFF would
use a color no larger than k � 2, Ak uses this color. Otherwise, if at least one of the colors k � 1
and k is already used in the connected component containing v, the algorithm can deduce which
color to use. If this is not the case, the algorithm reads one bit of advice to decide which of the
colors k � 1 and k to use. Since BFF uses color k � 1 only if the requested vertex is contained in

a connected component of at least 2
k�1
2 vertices, and since the algorithm does not use advice for

more than one vertex within a connected component, the number of advice bits used is at most
n�1

2

k�1
2

= n�1p
2

k�1
. This shows that O(

p
n) advice bits su�ce to use fewer than log n colors, beating

the lower bound for deterministic online algorithms without advice. For 2 and 3 colors, the upper
bound is complemented with essentially tight lower bounds of n� 3 and n

2

� 4 bits, respectively.

Note that the approach taken by the algorithms Ak resembles the warning signal technique described
in Section 5. However, a sublinear number of advice bits is obtained, because the algorithms can
detect themselves when they need advice.

In [101], Ste↵en specialized the algorithm Ak from [18] to trees, using First-Fit instead of Bipartite
First-Fit. Since, on trees, First-Fit uses the color k � 1, only if the requested vertex belongs to a
component of at least 2k�2 vertices [63], a k-coloring is obtained using at most n�1

2

k�2 bits of advice.
Thus, for each additional color, the number of advice bits is halved.

For 3-coloring of trees, a linear lower bound of approximately 0.0328n advice bits is given in [101].
The dissertation also contains linear lower (and upper) bounds for coloring combs and caterpillars
with 2 or 3 colors. Note that caterpillars can be 4-colored without advice, since no vertex has more
than three neighbors.

For 3-colorable graphs, the trivial upper bound of (log 3)n is essentially tight, even if the graphs
are chordal [97].

10.2 Edge Coloring and Variants of Vertex Coloring

Many variants of Vertex Coloring have been studied. Here we mention two of them.
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For L(i, j)-Coloring, each pair of neighboring vertices must receive colors that are at least i apart,
and each pair of vertices at distance two must receive colors that are at least j apart. The aim is
to minimize the span of the coloring, i.e., the di↵erence, �, between the largest and smallest color
used (thus, potentially, �+ 1 colors are used).

For Multi-Coloring, a graph is given from the beginning and the requests are vertices, with
possible repetitions. For each request, an (additional) color must be assigned to the requested
vertex. The colors assigned to a vertex and its neighbors must all be distinct.

Though not as famous asVertex Coloring, many papers have been devoted to Edge Coloring.
Analogous to Vertex Coloring, the edges of a graph must be colored such that no two adjacent
edges receive the same color, and the aim is to use as few colors as possible. In the online version,
one typically uses the edge arrival model, where the edges arrive one by one, each with information
about adjacent edges among those that have already arrived. Adhering to standard notation in
graph theory, where n denotes the number of vertices and m the number of edges, we let m denote
the sequence length for this particular problem.

Bianchi et al. [19] studied L(2, 1)-Coloring of paths. In the o✏ine setting, the color range
0, 1, . . . ,� = 4 is su�cient. For the best possible online algorithm without advice, the color span is
� = 6 in the worst case, resulting in a competitive ratio of 3

2

. To obtain a better competitive ratio,
a linear number of advice bits are necessary (a lower bound of approximately 3.9402 · 10�10n bits
for obtaining � = 5 is given in [19]). This was the first example of a natural online problem with
the property that beating the best deterministic online algorithm without advice requires a linear
number of advice bits. Note that linear advice trivially su�ces to be optimal (in fact, approxi-
mately 0.6955n bits of advice are su�cient [19]). Since � = 4 is obtainable in the o✏ine setting,
the linear lower bound for � = 5, together with the derandomization technique of [24] mentioned in
Section 4, implies a lower bound of 5

4

on the competitive ratio of any randomized online algorithm
for the problem.

For edge coloring of a graph with m vertices and maximum degree �, m dlog(�+ 1)e bits of advice
trivially su�ce for an optimal solution (by Vizing’s Theorem [104]). Mikkelsen [90] showed that, in
the Per Request Model, this bound is asymptotically tight. On the other hand, the paper also shows
that, for graphs of bounded degeneracy (including planar graphs), O(m) advice bits are su�cient to
be optimal. For trees, the warning signal technique applied to First-Fit yields an optimal algorithm
for trees using exactly one bit of advice per edge: If the advice bit is a 0, then First-Fit colors the
current edge as usual. If the advice bit is a 1, then First-Fit will skip the lowest numbered color
available and instead use the second lowest numbered color available.

For edge coloring without advice, the competitive ratio is 2, on trees as well as in general [11]. In [90],
Mikkelsen showed that, even for trees, linear advice is necessary to beat the best deterministic
online algorithm without advice. Comparing the proof and the proof of the corresponding result
for L(2, 1)-Coloring, it turns out that they are in fact quite similar. Based on this observation,
Mikkelsen showed in [91] that these problems are indeed hard for essentially the same reason; they
are both _-repeatable (see Section 6).

Recall that a problem being _-repeatable is not enough for a lower bound to carry over from
deterministic online algorithms to online algorithms with sublinear advice; it is required that the
lower bound does not depend on the online algorithm not knowing Opt(I) (or n). It turns out that
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this requirement is vital for the lower bound technique to work. In fact, Christ et al. showed in [39]
that sublinear advice su�ces to be optimal for Multi-Coloring on a path whereas it is known
that an algorithm without advice cannot be better than 4

3

-competitive [38]. This may seem at odds
with the previously mentioned result, but the reason is that the 4

3

lower bound relies heavily on
the algorithm not knowing Opt(I). In fact, it is shown in [39] that if Opt(I) is known (note that
Opt(I) can be encoded using O(log n) bits of advice), then it is easy for an online algorithm to
be optimal. The case where the exact value of Opt(I) is not known (or not communicated to the
algorithm) is also considered, resulting in a trade-o↵, where the competitive ratio ranges from 1 to
9

8

and the number of advice bits ranges from log n+O(log log n) to O(log log n).

On hexagonal graphs, no Multi-Coloring algorithm without advice can be better than 3

2

-
competitive [37]. In [39], it is shown that ⌦(n) bits are necessary for obtaining a ratio better
than 5

4

, n + 2|V | bits are su�cient to obtain a ratio of 4

3

, and log n + O(log log n) bits su�ce to
obtain a ratio of 3

2

.

11 Graph Exploration

Graph Exploration is a family of problems where an agent (sometimes called a robot) with
a fixed starting point explores an unknown graph. The goal is usually to visit each vertex of
the graph, minimizing the total cost of following edges. Sometimes assumptions are made on the
structure of the graph.

These problems are unusual online problems in the following sense: For most other online problems,
it is possible to fix an input sequence, I = x

1

, . . . , xn, such that xi is revealed in round i no matter
how the algorithm behaves (of course, if it is deterministic, we know what it will do). In Graph
Exploration, even when an input is fixed, the new information the algorithm gains in each step
still depends on what it has done in previous steps. Thus, an input sequence cannot be defined
independently of an algorithm.

In [71], Kalyanasundaram and Pruhs present an algorithm for Graph Exploration which is 16-
competitive on planar graphs. Megow, Mehlhorn, and Schweitzer [89] show that this algorithm
does not have a constant competitive ratio on general graphs, but is 16(1 + 2g)-competitive for
graphs with genus at most g. Furthermore, [89] give an algorithm with constant competitive ratio
for general graphs with a bounded number of distinct weights. The main open question is whether
there exists an algorithm which has a constant competitive ratio for arbitrary graphs with arbitrary
weights.

In [56], Tree Exploration with advice is considered by Fraigniaud et al. A robot explores an
unknown undirected tree and its goal is to visit every vertex at least once. Each move incurs a cost
of one. When the robot is at a given vertex, it can see the labels of the neighboring vertices, but the
advice is only allowed to depend on the structure of the tree and not the labels (which are assigned
adversarially after the advice is given). Without advice, the best possible competitive ratio for
deterministic online algorithms is 2. This is achieved by depth-first-search, DFS. It is shown that
roughly log logD bits of advice are necessary and su�cient to achieve a better competitive ratio
(D is the diameter of the graph). For the upper bound, one bit is used to choose between two
algorithms; one is DFS and the other is a more sophisticated algorithm using an approximation
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of D. The model used is the Tape Model, except that the length of the advice is known to the
algorithm (see Section 2). The lower bound is shown on paths.

The more general case, Graph Exploration, is studied by Dobrev et al. in [43]. Here, the
unknown undirected graph is arbitrary and edges have non-negative weights. When the robot is
at a vertex, it can see the weight of each adjacent edge and the label of its other endpoint. The
goal is to visit each vertex and return to the starting point. Each time an edge is traversed, it
costs the weight of that edge. Here the advice is allowed to depend on the labels. It is shown that
⇥(n log n) bits are necessary and su�cient to be optimal. A (6 + ")-competitive algorithm with
O(n) advice is also given. The algorithm works by traversing edges of a minimum spanning tree
and some additional light edges.

A related problem, Treasure Hunt, is studied by Komm et al. in [80]. The model is the same
as in [43] with the following di↵erence: The robot is given the label of a target vertex and the goal
is to visit that vertex. It is observed that a simple greedy algorithm has competitive ratio ⇥(n)
and this is best possible for online algorithms without advice (even on unweighted graphs and if
randomization is allowed). It is shown that there is an optimal algorithm reading n bits of advice.
For each vertex, one bit of advice indicates if that vertex is on a fixed shortest path. For the
unweighted case, it is shown that ⇥(nc ) bits are necessary and su�cient to achieve a competitive
ratio of c (where c has to be of a certain form, but may depend on n).

12 Open Problems

We end the survey with a few open problems:

• Can advice complexity be used to build a complexity theory for online computation?

The study of online algorithms with advice has led to the first complexity classes in online
algorithms and to new possibilities for proving results on randomized online algorithms and
semi-online algorithms. Further study may lead to additional meaningful complexity classes
and new fundamental insights into the properties of online problems.

• Is it possible for a k-Server algorithm to be (1+ ")-competitive with O(1) bits of advice per
request?

Currently, it is known that the answer to this problem is “yes” if the underlying metric space
is the Euclidean plane. It is also known that ⌦(log k) bits per request are required to be
1-competitive.

• How small a competitive ratio can be achieved for Bin Packing using constant advice?

• Are there further connections between advice and randomization in online computation which
have not yet been discovered?
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set in sparse and bipartite graphs. Theor. Comput. Syst., 56(1):197–219, 2015. Preliminary version in
WAOA’12. doi:10.1007/s00224-014-9592-2.
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A Problems Studied in Advice Complexity Models

We list problems explicitly studied in advice complexity models.

• Inherently online problems

– K-server [24, 51,91,94]

– K-server on sparse graphs [60]

– K-server on a path [100]

– List update [34, 91]; application in [73]

– Paging [25,91]

– Metrical task systems [51]

– Sleep state management [21,91]

– Online search [40]

• Scheduling and packing problems

– Scheduling on identical machines with constant advice [4, 45]

– Scheduling with sublinear advice [32]

– Job shop scheduling [81,105,106]

– Job shop with randomized adversary [105]

– Linear advice approximation schemes for bin packing and scheduling [95]

– Bin packing with sublinear advice [5, 35, 91]

– Dual bin packing [93]

– Bin packing [109] (see Section 9, though)

– Square packing [72]

– Reordering bu↵er management [2, 91]

– Bu↵er management [46]

– Knapsack [26]

– Set cover [82]

• Coloring problems

– 2-vertex coloring [18,91]
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– 3-vertex coloring [97]

– Graph coloring, general graphs [55,91]

– Graph coloring on paths [54]

– Multi-coloring paths and grids [39]

– Edge coloring [90]

– L(2, 1)-coloring on paths [19]

• Other graph problems

– Tree exploration with advice [56]

– Graph exploration [14,43]

– Treasure hunt [80]

– Bipartite matching [48,91,92]

– Independent set [31, 64]

– Independent set with known supergraph [42]

– Vertex cover on restricted graph classes [101]

– Steiner trees [12]

– Disjoint path allocation [13,58]

– Minimum spanning tree [17]

– Matching on restricted graph classes [75]

• Asymmetric online covering

– AOC [31] (complexity class comprising, among other problems, independent set, vertex
cover, dominating set, disjoint path allocation)

– Induced subgraph [79]

– Weighted AOC [32]

• Miscellaneous

– String guessing/generalized matching pennies [23, 51,86]

– Repeated matrix games [91]

– Graph coloring with randomized adversary [36]

– Brief survey [85]
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