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Online Load Balancing of Related Machines with Temporary Jobs

Scheduling

Problem Description

Related Machines

Definition

a set of machines {m1 . . . }
each machine mi has a speed vi

W.L.O.G if i < j then vi > vj

Each event consists of a Job arriving or leaving

Each j consists of a weight wj

The load of mi is the sum of the weights of jobs assigned to
that machine divided by vi .



4/57

Online Load Balancing of Related Machines with Temporary Jobs

Scheduling

Problem Description

Competitive Ratio

Definition

Ji is the set of jobs from J active at time i

COST(J ) is the maximum load on any machine at any point
in the assignment of J
COST(j) = max1≤i≤j{COST(Ji )}
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Problem Description

Previous Results

Deterministic

Competitive ratio of 20 using SLOW-FIT algorithm by Azar et al
[1]

Randomized

Randomizing SLOW-FIT gives competitive ratio of 13.59 [2]
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Online Load Balancing of Related Machines with Temporary Jobs

Scheduling

Problem Description

Informal Heuristics

Definition (Eligibility)

The machine is fast enough for the job.

Definition (Saturation)

The machine is too busy with current jobs.
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Problem Description

Formal Heuristics

Define two constants l and s

Definition (Eligibility)

A machine mi is eligible for a job j if wj/vi ≤ l ·OPT(j). We say
that a job is permitted on the set of machines for which it is
eligible.

Definition (Saturation)

A machine mi is saturated if the load at time j exceeds s ·OPT(j).
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Online Load Balancing of Related Machines with Temporary Jobs

Scheduling

Problem Description

Algorithm

Algorithm PushRight

Assign each job to the rightmost(slowest) unsaturated eligible
machine.

Proof of Competitive Ratio.

Assume that there is always some unsaturated eligible machine
when each job j arrives.
Then j is assigned to a machine m such that
LOAD(m) < s ·OPT(j) and wj/v < l ·OPT(j).
Thus COST(j) ≤ (s + l) ·OPT(j) ≤ (s + l) ·OPT
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Online Load Balancing of Related Machines with Temporary Jobs

Scheduling

Problem Description

Proof of Soundness

Lemma

let s ≥ 4 and let {ai}∞i=0 be any sequence of numbers such that ∀i
1 a0 = 0

2 a1 > 0

3 ai+2 ≥ s(ai+1 − ai )

Then ∀i , s(ai+1 − ai ) > ai+1
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Problem Description

Proof of Soundness(Flawed)

Theorem (Spurious)

if s ≥ 4, then whenever a job arrives at-least one of it’s eligible
machines is unsaturated.
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Problem Description

For contradiction assume that some job arrives and all of its
eligible machines are saturated.
Construct a sequence of machines {mi}∞i=0, jobs {ji}∞i=0 and speed
sums {Vi}∞i=0 such that j0 is the first such job and:

1 Vi =
∑mi

k=1 vk
2 ∀i ,Vi+2 ≥ s(Vi+1 − Vi )

3 m1 > 0 and {mi} increases monotonically. m0 = 0 for
convenience

4 ∀i job ji is permitted on mi + 1, . . .mi+1 but ji is not assigned
to the right of mi . (mi + 1, . . .mi+1 are all saturated)

5 ∀i , ji+1 precedes ji in J
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Problem Description

Proof Outline

Property 5 asserts that j0 is preceded by an infinite number of jobs.
(A contradiction)
Property 1 holds by construction
Property 5 holds by construction
Property 4 ⇒ s ·OPT(ji )

∑mi+1

k=mi+1 vk ≤ OPT(ji )
∑mi+2

k=1 vk ∗
∗ ⇒ 2
Properties 2, 1, m1 > 0 and Lemma⇒ Vi+1 < s(Vi+1 − Vi ) ∗ ∗
1 and ∗ ∗ ⇒ 3
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Problem Description

Property 1 is the definition of {Vi} from {mi}.
Construct {mi}∞i=0, {ji}∞i=0 inductively
Let mi+1 be the rightmost machine eligible for job ji . Then given
mi+1 and ji we can define ji+1 and mi+2.
By Property 1 and 3 Lemma 1 applies to Vi and thus
Vi+1 < s(Vi+1 − Vi ). By property 4 since mi + 1 . . .mi+1 are all
saturated they each have weight ≥ s ·OPT(ji ).
Then, total weight on mi + 1 to mi+1 ≥ s ·OPT(ji )

∑mi+1

k=mi+1 vk
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Online Load Balancing of Related Machines with Temporary Jobs

Scheduling

Problem Description

let J denote the set of jobs assigned to {mi + 1 . . .mi+1}.
let A be an optimal assignment of all active jobs at time ji .
Define mi+2 to be the rightmost machine A assigns some j ∈ J.
Define ji+1 to be one such job assigned by A. Note that ji+1

precedes ji (Therefore Property 5 holds).
Since A is optimal every machine m has weight ≤ vm ·OPT(ji )
Therefore,

s ·OPT(ji )

mi+1∑
k=mi+1

vk ≤total weight on mi + 1 . . .mi+1

≤total weight on m1 . . .mi+2

≤OPT(ji )

mi+2∑
k=1

vk
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Problem Description

From property 1 and above equation:

mi+1∑
k=1

vk =Vi+1

<s(Vi+1 − Vi )

=s

mi+1∑
k=mi+1

vk

≤
mi+2∑
k=1

vk

=Vi+2

Therefore property 3 holds. (mi+2 > mi+1 and
Vi+2 ≥ s(Vi+1 − Vi ))
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Online Load Balancing of Related Machines with Temporary Jobs

Scheduling

Problem Description

Property 4 does not hold because we use OPT(ji ) while
determining whether ji+1 is permissible for mi+2.
OPT(ji+1) ≤ OPT(ji ) so mi+2 may only become eligible after ji+1

was scheduled.
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Problem Description

Proof of Soundness(Fixed)

Theorem (Fixed)

If s − (s + l)/l ≥ 4 then whenever a job arrives at least one of its
eligible machines is unsaturated.
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Problem Description

Replace property 2 with ∀i ,Vi+2 ≥ 4(Vi+1 − Vi )
Define J ′ = {j ∈ J | OPT(ji ) ≤ lOPT(j)}
Define mi+2 to be the rightmost machine A assigns some j ∈ J ′.
Define ji+1 ∈ J ′ to be one such job assigned by A.
Now since OPT(ji ) ≤ lOPT(ji+1) by definition of J ′, mi+2 is
eligible for ji+1
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Scheduling

Problem Description

as before

4 ·OPT(ji )

mi+1∑
k=mi+1

vk <s ·OPT(ji )

mi+1∑
k=mi+1

vk

≤total weight on mi + 1 . . .mi+1

≤total weight on m1 . . .mi+2

≤total weight of jobs in J
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Problem Description

Assume J ′ 6= J and let j∗ be the last arriving job in J − J ′. By
definition of J ′, lOPT(j∗) < OPT(ji ). Therefore, immediately
after j∗ has been assigned

The maximum weight on a machine = max
m

LOAD(m) · vm

≤ (s + l)OPT(j∗)

< (1/l)(s + l)OPT(ji )
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Problem Description

(1/l)(s + l)OPT(ji )

mi+1∑
k=mi+1

vk > total weight on mi + 1 . . .mi+1

≥ (s + l)OPT(j∗)

mi+1∑
k=mi+1

vk

> 4OPT(j∗)

mi+1∑
k=mi+1

vk

= 4OPT(j∗)(Vi+1 − Vi )

> OPT(j∗)Vi+1 (By lemma 1)

= OPT(j∗)

mi+1∑
k=1

vk
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Problem Description

(1/l)(s + l)OPT(ji )

mi+1∑
k=mi+1

vk > total weight on mi + 1 . . .mi+1

> OPT(j∗)

mi+1∑
k=1

vk

≥
∑

j∈J−J′
wj
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Online Load Balancing of Related Machines with Temporary Jobs

Scheduling

Problem Description

By definition of OPT, ∀j ∈ J − J ′,OPT(j) ≤ OPT(j∗)

total weight of jobs in J ′ =
∑
j∈J

wj −
∑

j ′∈J−J′
wj ′

> (s − (s + l)/l)OPT(ji )

mi+1∑
k=mi+1

vk

≥ 4OPT(ji )

mi+1∑
k=mi+1

vk
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Problem Description

Additionally, since A assigns j ∈ J ′ to machines 1 . . .mi+2

total weight of jobs in J ′ < OPT(ji )

mi+2∑
k=1

vk

Therefore,

4OPT(ji )

mi+1∑
k=mi+1

vk < (s − (s + l)/l)OPT(ji )

mi+1∑
k=mi+1

vk

< total weight of jobs in J ′

< OPT(ji )

mi+2∑
k=1

vk
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Problem Description

From property 1 and above equation:

mi+1∑
k=1

vk =Vi+1

<4(Vi+1 − Vi )

=4

mi+1∑
k=mi+1

vk

≤
mi+2∑
k=1

vk

=Vi+2
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Scheduling

Problem Description

Theorem

For s = 5 +
√

5 and l = 1 +
√

5, Algorithm PushRight is sound
and guarantees competitive ratio of s + l = 6 + 2

√
5 ≈ 10.47
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Problem Description

Use a common technique called doubling to turn the deterministic
algorithm into a randomized one.
Deterministic doubling algorithm provides a weaker bound then
PushRight
The bound improves when Randomness is introduced.
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Scheduling

Problem Description

Doubling PushRight

Definition (Eligibility)

When job j with weight w arrives machine i is eligible if
w/vi ≤ GUESS

Definition (Saturation)

A machine i is saturated if the total weight of jobs assigned to it
since GUESS was last doubled is ≥ 4OPT(j)
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Online Load Balancing of Related Machines with Temporary Jobs

Scheduling

Problem Description

Algorithm 1 Doubling PushRight Algorithm

1: procedure DoublingPushRight
Initialize: When the first job arrives:

2: Initialize GUESS← w/v1
To assign job j do:

3: while GUESS < OPT(j) do
4: GUESS← k · GUESS
5: Assign j to the rightmost unsaturated eligible machine



29/57

Online Load Balancing of Related Machines with Temporary Jobs

Scheduling

Problem Description

Theorem (Doubling)

Whenever a job arrives at least one of its eligible machines is
unsaturated.

Let J from the spurious proof be the set of active jobs between the
doubling of GUESS and the arrival of ji .
let g be the cost of GUESS during this period.
Optimal assignment A has cost ≤ OPT(ji ) ≤ g and ji+1 is placed
on mi+2.
Then, w

vmi+2
≤ g and mi+2 is eligible for job ji+1
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Problem Description

Theorem

Algorithm Doubling PushRight is ≈ 14.47 competitive
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Problem Description

Algorithm 2 Randomized PushRight Algorithm

1: procedure RandomizedPushRight
Initialize: When the first job arrives:

2: r ← rand(0, 1)
3: Initialize GUESS← k r−1 · w/v1

To assign job j do:
4: while GUESS < OPT(j) do
5: GUESS← k · GUESS
6: Assign j to the rightmost unsaturated eligible machine
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Scheduling

Problem Description

Theorem

Algorithm Random Doubling PushRight is ≈ 9.572 competitive for
an oblivious adversary
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Channel Assignment Problem in Cellular Networks

Scheduling

Problem Description

Load balancing of Temporary jobs on Restricted
Machines

Definition

a set of machines M = {m1, . . . ,mn}.
let T ⊆ 2M be a set of job types

A job type represents the set of processors it can be scheduled
on

Each job j consists of a weight wj and a job type xj ∈ T the
set of machines it can be assigned to.

The load of mi is the sum of the weights of jobs assigned to
that machine.
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Channel Assignment Problem in Cellular Networks

Scheduling

Problem Description

Associated Bipartite Graph

Can create an associated bipartite graph for any restricted
assignment problem:

G =(X ∪ P,E )

P =The set of Processors

X ={x | x is a job type}
E ={(x , y) | job type x is assignable to processor y}
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Scheduling

Problem Description

Cellular Network Channel Assignment Problem

Definition

Given a set of overlapping 2 dimensional circular cells (a.k.a.
base stations)

At any point at most 3 cells overlap

Receive communication requests r consisting of points pr and
bandwidth br

Each r must be served by one of the cells including pr

requests can move themselves from one point to another

Simulated by the original job ending and a new job arriving
whenever a cell border is reached.
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Scheduling

Problem Description

Cellular Network Channel Assignment Problem
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Channel Assignment Problem in Cellular Networks

Scheduling

Problem Description

Reduce Channel Assignment to Restricted Machines

To create a corresponding instance of the restricted assignment
problem:

Each Base Station is a processor

One job type for the interior of each hexagon

One job type for each edge between 2 hexagons

One job type for each vertex between 3 hexagons

request position ⇒ job type

request bandwidth ≡ job weight
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Channel Assignment Problem in Cellular Networks

Scheduling

Problem Description

For the channel assignment problem the bipartite graph is:

G =(X ∪ P,E )

P =the set of Base Stations

X ={xA | A ∈ P}
∪ {xAB | A,B ∈ P, A,B share an edge}
∪ {xAB | A,B,C ∈ P, A,B,C share a vertex}

E ={(xA,A) | xA ∈ X}
∪ {(xAB , y) | xAB ∈ X , y ∈ {A,B}}
∪ {(xABC , y) | xABC ∈ X , y ∈ {A,B,C}}
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Channel Assignment Problem in Cellular Networks

Scheduling

Problem Description

Intuition

Consider On-line load balancing of identical machines with
temporary jobs.
Since every job can be assigned to every machine, we can create
the complete associated bipartite graph:

G =(X ∪ P,E )

P =the set of Processors

X ={x | x ∈ T }
E ={(x , y) | x ∈ X , y ∈ P}

Therefore, the greedy algorithm is optimal on the complete
bipartite graph! Break the graph down into Complete Bipartite
subgraphs and then run greedy on those!
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Scheduling

Problem Description

Definition (Cluster)

let G = (X ∪ P,E ) be a bipartite graph and let X ′ ⊆ X and
P ′ ⊆ P. Then, C = (X ′,P ′) is a cluster for G if G ′ induced by
X ′ ∪ P ′ is complete bipartite. X(C) and P(C) denote X ′ and P ′.

Definition (Neighbourhood of a Cluster)

Let C be a cluster then N(C) the neighbourhood of C is the set of
vertices adjacent to any vertex in X (C ).
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Channel Assignment Problem in Cellular Networks

Scheduling

Problem Description

Definition (Decomposition into Clusters)

A set D of clusters for a bipartite graph G = (X ∪ P,E ) is a
decomposition into clusters of G if every vertex of X belongs to
one cluster of D and in P belongs to at most one cluster of D
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Problem Description

Cellular Network Channel Assignment Problem

Algorithm 3 Cluster Algorithm

1: procedure GreedyClusterAssignment
Initialize:

2: Create the Graph G = (X ∪ P,E )
3: Decompose into clusters D

To assign job j = (w , x) do:
4: C ← C∈ D containing x
5: Assign j to p ∈ C with lowest load
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Scheduling
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Competitive Ratio

The Cluster Algorithm is dependant on decomposition.
Define rw = maxC∈D{ |N(C)|−1

|P(C)| }

Theorem

For any set of processors P and any set of task types T and for
any decomposition into clusters D of the associated bipartite
graph, the cluster algorithm is (1 + rw ) competitive.
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Problem Description

Cellular Network Channel Assignment Problem

Let pi be the processor that reaches maximum load l during the
algorithm. Let Cj be the cluster containing pi . Consider an
iteration where job j with weight w is assigned to pi such that it
reaches maximum load.
Then immediately before j arrives LOAD(pi ) = l − w
Because the algorithm assigns j to minp∈Ck

LOAD(p), l − w is a
lowerbound on the weight of any machine. Therefore the total
weight of jobs assigned to Ck is at-least | P(Ck) | (l − w) + w .
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Proof of Competitive Ratio

Since those jobs can only be assigned to N(Ck) and w ≤ OPT.

(l − w)· | P(Ck) | +w ≤ Total weight of jobs assigned to P(Ck)

≤ Total weight of jobs assignable to N(Ck)

≤ | N(Ck) | ·OPT

Therefore,

l

OPT
=

l − w

OPT
+

w

OPT
≤ | N(Ck) |
| P(Ck) |

+
w

OPT

(
1− 1

| P(Ck) |

)
≤ 1 +

| N(Ck) |
| P(Ck) |

− 1

| P(Ck) |
= 1 + rw
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Cellular Network Channel Assignment Problem

Theorem

For unit weight jobs the competitive ratio is maxC∈D
|N(C)|
|P(C)| .
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Cellular Network Channel Assignment Problem

Theorem

This is a tight bound on the performance.

1 Create (| N(Ck) | −1) ·OPT jobs with weight 1 and type
x ∈ X (Ck)

2 Cluster algorithm will assign at-least (|N(Ck )|−1)·OPT
|P(Ck )| − 1

weight to each p ∈ P(Ck)

3 Create A job of weight OPT and type x ∈ X (Ck)

4 Some processor in Ck has load at-least
(|N(Ck )|−1)·OPT

|P(Ck )| − 1 + OPT

5 Optimal off-line solution schedules OPT weight on each
p ∈ N(Ck)
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Cellular Network Channel Assignment Problem

Create an associated Bipartite graph as follows:

G =(X ∪ P,E )

P =The set of Base Stations

X ={xA | A is a base station}
∪ {xAB | A and B are two intersecting base stations}
∪ {xABC | A,B,C are three intersecting base stations}

E ={(xA,A) | xA ∈ X}
∪ {(xAB , y) | xAB ∈ X , y ∈ {A,B}}
∪ {(xABC , y) | xABC ∈ X , y ∈ {A,B,C}}
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Cellular Network Channel Assignment Problem
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Hexagonal Grid Topology

Lemma

There exists a decomposition D into clusters such that, for any
C ∈ D, | P(C ) = 1 | and | N(C ) |= 4

For Cell D. The cluster containing D is
({xD , xAD , xBD , xCD , xABD , xBCD}, {D})



55/57

Channel Assignment Problem in Cellular Networks

Scheduling

Problem Description

Competitive Ratio for Cellular Networks

Theorem

The clustering algorithm is 4-competitive for unitary and arbitrary
weights for the problem of channel assignment in cellular networks.
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Greedy Lower Bound

Theorem

The greedy algorithm is at least 5-competitive, even in the case of
unit weights
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Theorem

Any online algorithm for the channel assignment problem in
cellular networks is at-least 3 competitive, even for unit weights.
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