Online Min Cost Matching Overview

Koosha Jaferian
Winter 2020
Instructor: Prof. Allan Borodin
Outline

- Reminder from previous presentation
- Models for the problem
- Related Works
- Optimal Algorithm for two models
- Conclusion and Open Problems
Outline

- Reminder from previous presentation
- Models for the problem
- Related Works
- Optimal Algorithm for two models
- Conclusion and Open Problems
Problem Definition

→ Complete bipartite graph $G = (R \cup S, E)$
→ Positive edge cost c_e for each $e \in E$
→ $R =$ requests, and $S =$ servers: $|R| \leq |S|$
→ Goal: Match all the requests to a server with the minimum cost.
→ $c_M = \sum_{e \in M} c_e$
Previous Results

- There is a polynomial-time algorithm for the offline version (Hungarian Method).
- There is no bounded competitive factor for the online version of the problem.

Online version with relaxations
- Metric Graphs $\rightarrow 2n - 1$ competitive algorithm
 - Optimal as well
- Matching on the line $\rightarrow \theta(\log(n))$ competitive algorithm
 - Open problem: Is there any $O(1)$-competitive algorithm?
- Other spaces: tree, two dimensional space, etc.
Outline

- Reminder from previous presentation
- Models for the problem
- Related Works
- Optimal Algorithm for two models
- Conclusion and Open Problems
How we construct different models?

- Adversary has control over:
 - Location of the requests? (cost of the edges)
 - Random Numbers generated in Randomized Algorithms?
 - Order of arrival for the online nodes (requests)

- Location of the requests
 - Independent?
 - Identically Distributed?
 - Known Distribution?
Adversarial Model

- Adversary has control over:
 - Location of the requests? (cost of the edges)
 - Random Numbers generated in Randomized Algorithms?
 - Order of arrival for the online nodes (requests)

- Location of the requests
 - Independent?
 - Identically Distributed?
 - Known Distribution?
Oblivious Adversary Model

- Adversary has control over:
 - Location of the requests? (cost of the edges)
 - Random Numbers generated in Randomized Algorithms?
 - Order of arrival for the online nodes (requests)

- Location of the requests
 - Independent?
 - Identically Distributed?
 - Known Distribution?
Random Arrival Model

- Adversary has control over:
 - Location of the requests? (cost of the edges) ✓
 - Random Numbers generated in Randomized Algorithms? ✓
 - Order of arrival for the online nodes (requests) ✗

- Location of the requests
 - Independent? ✗
 - Identically Distributed? ✗
 - Known Distribution? ✗
Unknown I.I.D

- Adversary has control over:
 - Location of the requests? (cost of the edges) \(\times\)
 - Random Numbers generated in Randomized Algorithms? \(\checkmark\)
 - Order of arrival for the online nodes (requests) \(\checkmark\)

- Location of the requests
 - Independent? \(\checkmark\)
 - Identically Distributed? \(\checkmark\)
 - Known Distribution? \(\times\)
Known I.I.D

- Adversary has control over:
 - Location of the requests? (cost of the edges) 🔴
 - Random Numbers generated in Randomized Algorithms? ✔
 - Order of arrival for the online nodes (requests) ✔

- Location of the requests
 - Independent? ✔
 - Identically Distributed? ✔
 - Known Distribution? ✔

IID: Independent and Identically Distributed
Hardness of these models

- Raghvendra 2016: The hardness of these five models are as follows:
 - Adversarial > Oblivious Adversary > Random Arrival > Unknown IID > Known IID
Outline

- Reminder from previous presentation
- Models for the problem
- Related Works
- Optimal Algorithm for two models
- Conclusion and Open Problems
Works Related to different models (1)

- (Mahdian, Yan 2011): Introducing the random arrival model for maximum matching
- (Karande et al. 2011): Finding a better algorithm for unknown IID for maximum matching.

<table>
<thead>
<tr>
<th>Model</th>
<th>Adversarial Input</th>
<th>Known Distribution</th>
<th>Unknown Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Bounds</td>
<td>$1 - \frac{1}{e}$ [KVV90]</td>
<td>0.67 [FMMM09]</td>
<td>1 - $\frac{1}{e}$ [KVV90]</td>
</tr>
<tr>
<td>(algorithms)</td>
<td></td>
<td>0.699 [BK10]</td>
<td>0.653 [This paper]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.702 [MOGS11]</td>
<td></td>
</tr>
<tr>
<td>Upper Bounds</td>
<td>$1 - \frac{1}{e}$ [KVV90]</td>
<td>0.998 [FMMM09]</td>
<td>5/6 [GM08]</td>
</tr>
<tr>
<td>(hardness)</td>
<td></td>
<td>0.902 [BK10]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.823 [MOGS11]</td>
<td></td>
</tr>
</tbody>
</table>

- (Bansal et al. 2007): Finding $O(\log^2(n))$ algorithm for oblivious adversary model
Works Related to different models (2)

- Kalyanasundaram and Pruhs (1993): $2n - 1$ competitive ratio for adversarial model
- No factor better than $2n - 1$

Can we design an algorithm which is optimal in multiple models?
 - (Raghvendra 2016): Designing an algorithm
 - $2n - 1$ competitive in the adversarial model
 - $2H_n - 1 + O(1)$ Competitive in the random arrival model
 - Showing that we can’t achieve better than $2H_n - 1 - O(1)$
Outline

- Reminder from previous presentation
- Models for the problem
- Related Works
 - Optimal Algorithm for two models
 - Conclusion and Open Problems
Preliminaries (1)

- Matching M^* on the graph
- Alternating Path (cycle): a simple path (cycle) whose edges alternate between those in M^* and those not in M^*
- Free vertex: a vertex which is still unmatched in the graph.
- Augmenting Path: an alternating path between two free vertices.
Preliminaries (2)

- Augment M^* along P
 - Remove the edges in P and M^* from M^*
 - Add the edges in P and not in M^* to M^*

- t-net cost for the augmenting paths

$$
\phi_t(P) = t \left(\sum_{(s,r) \in P \setminus M^*} d(s, r) \right) - \sum_{(s,r) \in P \cap M^*} d(s, r)
$$
Preliminaries (3)

- t-feasibility concept: a matching M^* and a set of dual weights for the vertices shown by $y(v)$ for each vertex

- For every edge between request r and server s, we will have:

$$y(s) + y(r) \leq t d(s, r),$$

$$y(s) + y(r) = d(s, r) \text{ for } (s, r) \in M^*.$$
Algorithm (1)

- We maintain a set of dual weights $y(v)$ for each vertex and two matchings M, M^*
 - Initialize the weights to 0 and matchings to \emptyset

Set of free servers in M^* (and M) $\rightarrow S_F$

- M^* with dual weights will remain a t-feasible matching (offline matching)
- M is the online matching

Algorithm. Given a new request r, our algorithm computes the minimum t-net-cost augmenting path P with respect to matching M^*. P starts at r and ends at some free vertex s. The algorithm updates M^* by augmenting it along P, i.e., $M^* \leftarrow M^* \oplus P$. For the online matching M, the algorithm will match the server s to r, i.e., $M \leftarrow M \cup \{(s, r)\}$.
Algorithm (2)

- Invariants of the algorithm:
 - M^* and dual weights always form a t-feasible matching
 - All dual weights for the servers are non-positive and for the free servers, they equal to zero.

- How to find minimum t-net cost augmenting path P and update the matchings M, M^* and the dual weights in $O(n^2)$ time?
More details

- Construct residual graph G_{M^*} with $S \cup R$ as vertices, and E_{M^*}
 - Directed graph with s directed to r when $(s, r) \in M^*$
 - Otherwise, r is directed to s

- Assigning costs with the directed edges in E_{M^*}

If $(a, b) \in M^*$, we set the cost of the edge to be the slack $s(a, b) = d(a, b) - y(a) - y(b)$. From t-feasibility (condition (2)) of M^*, we know the slack of every edge in the matching is $s(a, b) = 0$.

If $(a, b) \notin M^*$, we set the cost of the edge (a, b) to be the slack $s(a, b) = td(a, b) - y(a) - y(b)$. From t-feasibility (condition (1)) of M^*, we know $s(a, b) \geq 0$.
Simple observations

- Every edge in E_M has a non-negative edge cost.
- Set of nodes and edges are identical in G and G_M.
- Directed paths in G_M correspond to alternating paths in G.
- If the two end vertices in directed path are free, it corresponds to an augmenting path.

- Use the Dijkstra’s algorithm → minimum cost path from r to any free server.
- Directed path \vec{P} is the minimum cost among all the free servers.
- P corresponding to \vec{P} in G will be the minimum t-net cost augmenting path.
Dual Weight Updates

- Before augmenting M^* along P, we update all the dual weights.
- d is the cost of $\bar{P}(d_s)$
- For each node v, we will update as follows:

(a) If $d_v \geq d$, then $y(v)$ remains unchanged.
(b) If $d_v < d$, and $v \in R$, then we increase the dual weight $y(v) \leftarrow y(v) + d - d_v$
(c) If $d_v < d$, and $v \in S$, then we decrease the dual weight $y(v) \leftarrow y(v) - d + d_v$.

- Augment M^* along P with $M^* \leftarrow M^* \oplus P$
- Update Dual weight for every r' in $R \cap P$
 - $y(r') \leftarrow y(r') - (t - 1)d(s', r')$
Algorithm Analysis (Brief Idea)

- Assume that the requests are coming by an order (r_1, r_2, \ldots, r_n)
- (M_i^*, M_i) are offline and online matchings after the i'th request.
- Let $\ell(P) = \sum_{(s,r) \in P} d(s, r)$

Lemma 7. Let $t \geq 1$. Let P_1, \ldots, P_n be the augmenting paths computed by our algorithm in that order. Then, the t-net-cost of these paths relate to the cost of the online matching as follows:

(i) $\phi_t(P_i) \leq td(s_i, r_i) \leq t\ell(P_i)$.
(ii) $\sum_{i=1}^{n} \phi_t(P_i) \geq ((t - 1)/2)w(M) + ((t + 1)/2)w(M^*)$.

- Using these inequalities we will prove the competitive ratios.
Intuition behind the Harmonic Number

- Final Competitive ratio for Adversarial Model
 - $2n - 1 + O(1)$

- Final Competitive ratio for Random Arrival Model
 - $2H_n - 1 + O(1)$

- Where does $H_n = 1 + \frac{1}{2} + ... + \frac{1}{n}$ come from?

In the random arrival model, the input request sequence is a random permutation. Therefore, the i^{th} request can be any one of the remaining $n - i + 1$ requests with the same probability and we have,

$$E[\phi_i(P_i)] \leq \frac{1}{n - i + 1} \sum_{j=1}^{n-i+1} \phi_i(P_j) \leq \frac{1}{n - i + 1} tw(M_{opt}).$$

From linearity of expectation,

$$E[\sum_{i=1}^{n} \phi_i(P_i)] \leq \sum_{i=1}^{n} \frac{1}{n - i + 1} tw(M_{opt}) = tH_n w(M_{opt}).$$
Outline

- Reminder from previous presentation
- Models for the problem
- Related Works
- Optimal Algorithm for two models
- Conclusion and Open Problems
Open Problems?

- O(1) competitive algorithm for the matching on the line?
- Extending this approach to k-server problem?
- Extending this approach to the oblivious adversary model?
- Improve the performance in special metrics?
 - Tree?
 - Two dimensional space?
 - Line?
- What happens if we have more servers?
Conclusion
Outline

- Reminder from previous presentation
- Models for the problem
- Related Works
- Optimal Algorithm for two models
- Conclusion and Open Problems
Any Questions?
Thanks for Your attention!
References

- https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.2873&rep=rep1&type=pdf
- http://www.cs.ox.ac.uk/people/elias.koutsoupias/Personal/Papers/paper-kou09.pdf