By Koko Nanahji

Outline

Overview of : Approximate
Another Exact AP EAEIS Randomized
Motivation Model Focus DO Randomized : Conclusion
Example Deterministic : Algorithm
: Algorithms
Algorithms Example

Motivation

Compute statistics about a given stream
For example: number of distinct IP addresses

Outline

Overview of : Approximate
Approximate .
Another Exact : Randomized :
Model Focus DO Randomized : Conclusion
Example Deterministic : Algorithm
: Algorithms
Algorithms Example

Model

°Input: sequence of integers X1, X2, ey Xn
¢ X el

*Goal: compute some function f; on the input stream

Common Models

*Time Series Model:
* U consists of pairs (k,v) wherek € {1,...,m}and v € R

* f; keeps an array A of size m and does the following:
* Forall (k,v) do A[k] +=v

*There are variants of this model which restrict the values of v
* Turnstile Model: v € R

* Strict Turnstile Model: A[k] = 0 for all k at all times during the execution of the algorithm
* Cash Register Model: v > 0

Common Parameter

*Window:
* Approximate the objective function for some fixed window of the stream instead of the whole stream

* Add weights to each value received

* Weights decay over time

Outline

Overview of Approximate

Another Exact ARUELC Randomized

Randomized Conclusion

Example Deterministic Algorithm
Algorithms

Algorith
gorithims Example

Focus

* Main focus:
* Reduce the amount of memory used to process the input

Outline

Overview of Approximate

Another Exact ARUELC Randomized

Randomized Conclusion

Example Deterministic Algorithm
Algorithms

Algorith
gorithims Example

Simple Example

*Input: sequence of distinct integers x¢, x5, ..., Xp,
- x; €{1,2,...,n+ 1}

*Goal: Find the missing value

Simple Example

*Naive solution:
* Keep an array 4 of n + 1 bits all set to zero

* Ifx; =jthen Afj] =1
* Result: report the index of the array that is set to zero

*Requires: n + 1 bits for the array

Simple Example — O(logn) Solution

*Use variable agg
* Keep a running aggregate of the values received in agg

((n+1)2(n+2) B agg)

* Report:

*agg requires log(n + 1) bits

Outline

Overview of Approximate

Another Exact ARUELC Randomized

Randomized Conclusion

Example Deterministic Algorithm
Algorithms

Algorith
gorithims Example

Another Example

*Input: sequence of integers x4, Xo, ..., X,
«x; €{1,2,...,m}

*Let f; be the frequency of element i in the given sequence
*Goal: Given some integer k find the elements that have f; > %

*No deterministic algorithm that has one pass over the sequence

*There is a simple two pass algorithm

Misrea — Gries Algorithm (High Level)

*During the first pass:
* Identify a small set of candidates for k-frequent elements.

*During the second pass:
* Maintain an explicit count of the number of times each candidate appears

Misrea — Gries Algorithm

*Observation: There can be at most k — 1 elements that have f; > ;—l

*Algorithm:
* Mismapofsizek —1
* First Pass when receiving x;:
* If x; isin M. keys then
* increment M[x;]
* Elseif |M.keys| < k — 1 then
c Mlx;] =1
* Else
« forallk € M. keys M[k] —=1
» Remove all entries k from M if M[k] = 0
* Second pass:
* Foreache € {1,2,...,m} if e € M. keys then approx. frequency of e is M|e]
* Else approx. frequency of e is 0

Misrea — Gries Algorithm

°Results:

* Total space used O(k(logm + log n))

* For each element the frequency outputted is in [f; — %,fi]

Outline

Overview of Approximate

Exact ARUELC Randomized

Randomized Conclusion

Deterministic Algorithm
Algorithms

Algorith
gorithims Example

Exact Deterministic Algorithms

* In streaming algorithms:
* Exact deterministic solutions are extremely rare

* It can be proven for most problems:
* Both approximation and randomness are required for non-trivial problems

* E.g. Frequent items problem: Count Min algorithm

Outline

Approximate
Randomized
Algorithm
Example

Approximate
Randomized
Algorithms

Conclusion

Approximate Randomized Algorithms

*Formal definition:
* Universe of items U and a family of functions F
Foragiven f;: U™ - R where f; € F
A stream of inputs x¢, x5, ..., X,
Goal: Design algorithm that uses little memory and approximates f; (xq, x5, ..., X,)
A randomized algorithm R; is said to (€, §) approximate f; if for all x4, x5, ..., x,, we have
Pr(|Ri(x1,x2,...,xn) B 1| > E) <65

fi(x1,x2,...,xn)

*Here we are interested in the space used and the approximation guarantee.

Outline

Approximate
Randomized
Algorithm
Example

Conclusion

Approx. Number of Distinct Elements

*Input: sequence of integers x4, Xo, ..., X,
«x; €{1,2,...,m}

*Let f; be the number of distinct elements in x4, x5, ..., X,,

*If we are restricted to either deterministic algorithms, or exact algorithms
* Itis impossible to solve this problem in sublinear space

Approx. Number of Distinct Elements

* For any integer x we define

« zeros(x) = max{i: 2! divides x}

* i.e. number of zeros x’s binary representation ends with

Approx. Number of Distinct Elements

* Algorithm

* Pick a hash function H from a universal family

Have a local variable z initially 0

* Upon receiving x; do the following:

- If zeros(h(x;)) > z then z = zeros(h(x;))
After processing all n elements

1
- Output 2772

Run k copies of this algorithm in parallel, using independent random hash functions, and outputting
the median of the k answers

* These would result in “good” approximation to the actual function

Outline

Conclusion

*Streaming algorithms are very useful in practice

*There isn’t much we can do if we want determinist and exact streaming algorithms

*Randomized approximate algorithms help us find practical algorithms

