# Streaming Algorithms

#### By Koko Nanahji



#### Motivation

Compute statistics about a given stream

• For example: number of distinct IP addresses





#### Model

•Input: sequence of integers  $x_1, x_2, \dots, x_n$ 

•  $x_i \in U$ 

•Goal: compute some function  $f_i$  on the input stream

#### Common Models

•Time Series Model:

- *U* consists of pairs (k, v) where  $k \in \{1, ..., m\}$  and  $v \in \mathbb{R}$
- $f_i$  keeps an array A of size m and does the following:
  - For all (k, v) do A[k] += v
- •There are variants of this model which restrict the values of v
  - Turnstile Model:  $v \in \mathbb{R}$
  - Strict Turnstile Model:  $A[k] \ge 0$  for all k at all times during the execution of the algorithm
  - Cash Register Model: v > 0

#### Common Parameter

•Window:

- Approximate the objective function for some fixed window of the stream instead of the whole stream
- Add weights to each value received
  - Weights decay over time



#### Focus

• Main focus:

• Reduce the amount of memory used to process the input



#### Simple Example

Input: sequence of distinct integers x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>
x<sub>i</sub> ∈ {1,2, ..., n + 1}

•Goal: Find the missing value

#### Simple Example

•Naïve solution:

- Keep an array A of n + 1 bits all set to zero
- If  $x_i = j$  then A[j] = 1
- Result: report the index of the array that is set to zero

• Requires: n + 1 bits for the array

# Simple Example – $O(\log n)$ Solution

•Use variable *agg* 

- Keep a running aggregate of the values received in agg
- Report:  $\left(\frac{(n+1)(n+2)}{2} agg\right)$

• agg requires  $\log(n + 1)$  bits



#### Another Example

- •Input: sequence of integers  $x_1, x_2, ..., x_n$ 
  - $x_i \in \{1, 2, ..., m\}$

•Let  $f_i$  be the frequency of element i in the given sequence

•Goal: Given some integer k find the elements that have  $f_i > \frac{n}{k}$ 

•No deterministic algorithm that has one pass over the sequence

There is a simple two pass algorithm

# Misrea – Gries Algorithm (High Level)

• During the first pass:

• Identify a small set of candidates for k-frequent elements.

• During the second pass:

• Maintain an explicit count of the number of times each candidate appears

#### Misrea – Gries Algorithm

•Observation: There can be at most k - 1 elements that have  $f_i > \frac{n}{k}$ 

- •Algorithm:
  - *M* is map of size k 1
  - First Pass when receiving *x<sub>i</sub>*:
    - If  $x_i$  is in *M*. keys then
      - increment  $M[x_i]$
    - Else if |M. keys| < k 1 then
      - $M[x_i] = 1$
    - Else
      - for all  $k \in M$ . keys M[k] = 1
      - Remove all entries k from M if M[k] = 0
  - Second pass:
    - For each  $e \in \{1, 2, ..., m\}$  if  $e \in M$ . keys then approx. frequency of e is M[e]
      - Else approx. frequency of *e* is 0

#### Misrea – Gries Algorithm

•Results:

- Total space used  $O(k(\log m + \log n))$
- For each element the frequency outputted is in  $[f_i \frac{n}{k}, f_i]$



## Exact Deterministic Algorithms

- In streaming algorithms:
  - Exact deterministic solutions are extremely rare
  - It can be proven for most problems:
    - Both approximation and randomness are required for non-trivial problems
      - E.g. Frequent items problem: Count Min algorithm



### Approximate Randomized Algorithms

• Formal definition:

- Universe of items U and a family of functions F
- For a given  $f_i: U^n \to \mathbb{R}$  where  $f_i \in F$
- A stream of inputs  $x_1, x_2, \dots, x_n$
- Goal: Design algorithm that uses little memory and approximates  $f_i(x_1, x_2, ..., x_n)$
- A randomized algorithm  $R_i$  is said to  $(\epsilon, \delta)$  approximate  $f_i$  if for all  $x_1, x_2, \dots, x_n$  we have  $\Pr\left(\left|\frac{R_i(x_1, x_2, \dots, x_n)}{f_i(x_1, x_2, \dots, x_n)} 1\right| > \epsilon\right) \le \delta$

•Here we are interested in the space used and the approximation guarantee.



# Approx. Number of Distinct Elements

- •Input: sequence of integers  $x_1, x_2, ..., x_n$ 
  - $x_i \in \{1, 2, \dots, m\}$
- •Let  $f_i$  be the number of distinct elements in  $x_1, x_2, ..., x_n$
- If we are restricted to either deterministic algorithms, or exact algorithms
  - It is impossible to solve this problem in sublinear space

# Approx. Number of Distinct Elements

- For any integer *x* we define
  - $zeros(x) \coloneqq max\{i: 2^i \text{ divides } x\}$
  - i.e. number of zeros x's binary representation ends with

# Approx. Number of Distinct Elements

- Algorithm
  - Pick a hash function *H* from a universal family
  - Have a local variable z initially 0
  - Upon receiving  $x_i$  do the following:
    - If  $zeros(h(x_i)) > z$  then  $z = zeros(h(x_i))$
  - After processing all *n* elements
    - Output  $2^{z+\frac{1}{2}}$
  - Run k copies of this algorithm in parallel, using independent random hash functions, and outputting the median of the k answers
- These would result in "good" approximation to the actual function



#### Conclusion

•Streaming algorithms are very useful in practice

•There isn't much we can do if we want determinist and exact streaming algorithms

•Randomized approximate algorithms help us find practical algorithms