Streaming Algorithms

By Koko Nanahji
Motivation

• Compute statistics about a given stream
 • For example: number of distinct IP addresses
Model

• Input: sequence of integers $x_1, x_2, ..., x_n$
 • $x_i \in U$

• Goal: compute some function f_i on the input stream
Common Models

• Time Series Model:
 • U consists of pairs (k, v) where $k \in \{1, \ldots, m\}$ and $v \in \mathbb{R}$
 • f_i keeps an array A of size m and does the following:
 • For all (k, v) do $A[k] += v$

• There are variants of this model which restrict the values of v
 • Turnstile Model: $v \in \mathbb{R}$
 • Strict Turnstile Model: $A[k] \geq 0$ for all k at all times during the execution of the algorithm
 • Cash Register Model: $v > 0$
Common Parameter

• Window:
 • Approximate the objective function for some fixed window of the stream instead of the whole stream
 • Add weights to each value received
 • Weights decay over time
Focus

• Main focus:
 • Reduce the amount of memory used to process the input
Simple Example

• Input: sequence of distinct integers $x_1, x_2, ..., x_n$
 • $x_i \in \{1, 2, ..., n + 1\}$

• Goal: Find the missing value
Simple Example

• Naïve solution:
 • Keep an array A of $n + 1$ bits all set to zero
 • If $x_i = j$ then $A[j] = 1$
 • Result: report the index of the array that is set to zero

• Requires: $n + 1$ bits for the array
Simple Example – $O(\log n)$ Solution

- Use variable agg
 - Keep a running aggregate of the values received in agg
 - Report: $C = \frac{(n+1)(n+2)}{2} - agg$

- agg requires $\log(n + 1)$ bits
Another Example

• Input: sequence of integers $x_1, x_2, ..., x_n$
 • $x_i \in \{1,2, ..., m\}$

• Let f_i be the frequency of element i in the given sequence

• Goal: Given some integer k find the elements that have $f_i > \frac{n}{k}$

• No deterministic algorithm that has one pass over the sequence

• There is a simple two pass algorithm
Misrea – Gries Algorithm (High Level)

• During the first pass:
 • Identify a small set of candidates for k-frequent elements.

• During the second pass:
 • Maintain an explicit count of the number of times each candidate appears
Misrea – Gries Algorithm

• Observation: There can be at most $k - 1$ elements that have $f_i > \frac{n}{k}$

• Algorithm:
 • M is map of size $k - 1$
 • First Pass when receiving x_i:
 • If x_i is in $M.\text{keys}$ then
 • increment $M[x_i]$
 • Else if $|M.\text{keys}| < k - 1$ then
 • $M[x_i] = 1$
 • Else
 • for all $k \in M.\text{keys}$ $M[k] := 1$
 • Remove all entries k from M if $M[k] = 0$
 • Second pass:
 • For each $e \in \{1, 2, \ldots, m\}$ if $e \in M.\text{keys}$ then approx. frequency of e is $M[e]$
 • Else approx. frequency of e is 0
Misrea – Gries Algorithm

• Results:
 • Total space used $O(k(\log m + \log n))$
 • For each element the frequency outputted is in $[f_i - \frac{n}{k}, f_i]$
Exact Deterministic Algorithms

- In streaming algorithms:
 - Exact deterministic solutions are extremely rare
 - It can be proven for most problems:
 - Both approximation and randomness are required for non-trivial problems
 - E.g. Frequent items problem: Count Min algorithm
Outline

- Motivation
- Model
- Focus
- Simple Example
- Another Example
- Overview of Exact Deterministic Algorithms
- Approximate Randomized Algorithms
- Approximate Randomized Algorithm Example
- Conclusion
Approximate Randomized Algorithms

• Formal definition:
 • Universe of items U and a family of functions F
 • For a given $f_i: U^n \to \mathbb{R}$ where $f_i \in F$
 • A stream of inputs $x_1, x_2, ..., x_n$
 • Goal: Design algorithm that uses little memory and approximates $f_i(x_1, x_2, ..., x_n)$
 • A randomized algorithm R_i is said to (ϵ, δ) approximate f_i if for all $x_1, x_2, ..., x_n$ we have
 \[\Pr \left(\left| \frac{R_i(x_1, x_2, ..., x_n)}{f_i(x_1, x_2, ..., x_n)} - 1 \right| > \epsilon \right) \leq \delta \]

• Here we are interested in the space used and the approximation guarantee.
Approx. Number of Distinct Elements

• Input: sequence of integers x_1, x_2, \ldots, x_n
 • $x_i \in \{1, 2, \ldots, m\}$

• Let f_i be the number of distinct elements in x_1, x_2, \ldots, x_n

• If we are restricted to either deterministic algorithms, or exact algorithms
 • It is impossible to solve this problem in sublinear space
Approx. Number of Distinct Elements

- For any integer x we define
 - $\text{zeros}(x) := \max\{i: 2^i \text{ divides } x\}$
 - i.e. number of zeros x’s binary representation ends with
Approx. Number of Distinct Elements

- Algorithm
 - Pick a hash function H from a universal family
 - Have a local variable z initially 0
 - Upon receiving x_i do the following:
 - If $\text{zeros}(h(x_i)) > z$ then $z = \text{zeros}(h(x_i))$
 - After processing all n elements
 - Output $2^{z+\frac{1}{2}}$
 - Run k copies of this algorithm in parallel, using independent random hash functions, and outputting the median of the k answers
 - These would result in “good” approximation to the actual function
Conclusion

• Streaming algorithms are very useful in practice
• There isn’t much we can do if we want deterministic and exact streaming algorithms
• Randomized approximate algorithms help us find practical algorithms