By Koko Nanahji

Outline

: H :
Hiif;/r}; -

Model

°Input: sequence of integers X1, X2, ey Xn
¢ X el

*Goal: compute some function f; on the input stream

Focus

*Main focus:
* Reduce the amount of memory used to process the input

Outline

Heavy

. CountMin CountSketch Conclusion
Hitters

Counting

Counting

*Input: Sequence of integers x4, X5, ..., X,
* Problem: Find the number of elements in the input stream

Nailve Solution

*Keep a counter
* Space Complexity: O(log, n) bits

Approx. Solution

*We would like to find an approximate solution 7 such that
* Givene>0andd <1

* Find an estimate 11 such that:
* P(In—1]>en) <$é

Morris” Algorithm

*Algorithm:
c X:=0
* For each item seen:
* Increment X with probabilityzix

* Output: A == 2% —1

*Intuitively: X ~log, n

Analysis

Let X,, denote the value of X after seeing the i" item
* We will show that:

«c EQR*)=n+1

Analysis

*Show that E(2*n) =n + 1

*Proof:
* By inductiononn
- Base Case: X, = 0=>E(2%)=E(2°) =1
* Induction Hypothesis: Assume the claim is true for n prove forn + 1

Analysis

*Inductive Step:
© E(2%+1) = 34 28 P(Xp4q = 0)
« EQ2¥n+1) =Y 28 (P(X, =i —1) - P(X,, gets incremented | X,=i—1) + P(X,, =
i) - P(X,, does not gets incremented | X,, = i))
- . 1 . 1
- E(2%nt1) = ¥, 2 (P(Xn =i—1) 55 +PX,=1)- (1 - ;))
, , 1 : . 1
CEQ@F) =320 PGy =i 1) s+ 5y 20 P, =) - (1—)
, , 1 - : - N 1
« EQRn+1) =% 2'P(X, =i—1)- prari dvi2! PX, =1) — Xy 2P P(X, =1) "
CEQRM) =Y 2 P(Xy =i = D)+ 5y 28 P(Xy = 1) — Xy P(X, = 1)
« EQR¥n1) =Y 28 P(X, = 0) + Xy P(X, = 1)
« EQR¥n+1) =ER*)+1=(mn+1)+1

Analysis

*We can show the following:
c EQ2*fn) =n+1

- E(22%n) =312 + 2 4+ 1 (similar to previous proof)
2 2

*Therefore, we have that:
« Var(2%n) < %nz

*Hence: By Chebyshev’s inequality
A\ 1
* P(|n — 7| > en) <3z

*Note: This is not very useful whene > 1
* We will improve this algorithm soon

Space Complexity

*Since we have: E(2%n) = n + 1.

« We can show: P(2%n — 1 >nf) <

*Meaning, with high probability we have
° 2XTL — 1 2 nc
° 2XTL 2 nc — 1
* X, =log,(nc—1)

*Hence, to store X,, we can show that we need
* O(log,(log, n)) bits with high probability

Morris+ Algorithm

*Improve Morris’ algorithm by using the mean trick
* Run s > 1 independent copies of Morris’ algorithm and average their outputs

Morris+ Algorithm

“Let X/ be the output of the jt" copy of Morris’ algorithm after seeing the it" item
ey, =1y (ox) _
Yy = 5211(2 1)
* By linearity of expectation we have E(2'") =n + 1
* But

. Y, 1.2 xJy _1 2
Var(2 ")<25n <Var(2 n)—zn

*By Chebyshev’s inequality we have:
N 1
c P(ln—1i| > en) < e
* Then for § error probability we set
1
26268

° s>

Morris+ Space

*Space complexity: O(s - log,(log, n)) bits with high probability

*For & error probability we need
0

(26126 -log, (log, n)) bits with high probability

*We will improve this space complexity using the median trick

Morris++ Algorithm

*Improve space complexity by using the median trick
* Run t independent copies of Morris+ algorithm

* Such that s = zi

€2

* Meaning the error probability of each Morris+ is §

* Output the median estimate

Morris++ Algorithm

*Note:

* Since the error probability of each Morris+ is %

- - .2t
* Expected number of Morris+ instantiations that succeed is <

* Hence, for the median to be a bad estimate at least half of the Morris+ instantiations must fail
* We will show that this is not likely

Morris++ Algorithm

°Let Z; = 1if i" Morris+ instantiation succeeds, otherwise Z; = 0
* We will bound P (3,2, < 5)

PRzt sp(nizi-E <=5

3 2 3
¢ t
cP(%iz23) <P(I%Zi—EQ2)l < —3)
* By Hoeffding bound

-1

P(iz,23) < e
* Hence, fort > [181n%]

cP(Nzi<t) <6

Morris++ Space

‘ifwesets-t = H(Elzln%)

* We get that we need O (eizln (%) -log, (logzn)) bits with high probability

Outline

Heavy
Hitters

CountMin CountSketch Conclusion

Heavy Hitters

*Input: sequence of integers x4, Xo, ..., X,
«x; €{1,2,...,m}

*Let f; be the frequency of element i in the given sequence

*Goal: Given some integer K find the elements that have f; > %

*There is a simple two pass algorithm named Misrea — Gries Algorithm (was covered last time)

Outline

CountMin CountSketch Conclusion

CountMin Algorithm

*Pick t hash functions such that h;: [m] — [w] from a universal family of hash functions

Create a 2D array C[t][w] initially all cells set to 0

*Algorithm:
* For each item x:

* Forifrom1ltot
* Increment C[i][h;(x)]

*Then the frequency of item x is rr\}i,n Cli][h; (x)]
l

CountMin Algorithm

Insert 3

Insert 3

Insert 5

Insert 5

Insert 10

Insert 10

Query 3

Query 5

CountMin Algorithm

*We will do some analysis on this algorithm
*Let f,be the actual count of x
*Let f, be the estimated count of x

*Note: f; < f

“We will show that P(f, = f, + en) < §

CountMin Algorithm

*We will compute the E(C[i] [hj(x)])
- E(Cj1[h;(x)]) =E (ZvS:h,-(s)=hj(x)fS)
« E(CU1R;(0)]) = fx +%2V5¢x fs
CE(COR (D) < fo+ 2

CountMin Algorithm

*We have
* E(CUIR)]) < fi + =

*We will boundP(C[i][h (] = f + 271)
P (€U GO = £ +32) < P (€A 01 = f =)

w

* By Chebyshev’s inequality:
. 2 E(C[jl[h;(x)]—fx
P(CLy ()] = f, +22) < HEUIT)

P(CI (0l = £ +2) < B o1

CountMin Algorithm

*So far we have:
“P(CUl] 2 £ +2) <3

. - 2
*We will bound P (f; = f, +27)

2n

. p(fx > £+ W) = P(rr\lfijn Cljlh;j(x)] = f; + 2;”)
. P(f;c > f, _|_ZWn) = HjP(C[i][hj(x)] = fx +2Wn)
P(hzf+E) <)

° If we set w= %and t = log, % we will have

“ P(f=fi+en)<$

CountMin Algorithm

*Space complexity:
2 1
c O(w-t) =0 (% log;)

Heavy Hitters with CountMin

*We extend CountMin as follows:
* For each row of intervals in figure, we store a separate count-min structure

* For each row, count-min of that row treats two elements that fall into the same interval as the same
element

* Note that the value at any ancestor of a node is at least as big as the value at that node

Heavy Hitters with CountMin

*To get the K heavy-hitters:
* Explore the tree starting from the root

* Only explore the children of intervals that have frequency at Ieast%

Heavy Hitters with CountMin

Analysis:

> Space complexity O (E -log, % -log, n)
> Time complexity to get K heavy hitters is O(K - log, n)
° For any given row, the sum over all frequencies in that row is n

> Thus, in any row, there are at most K intervals with frequency%

> Therefore, we only explore the children of at most K intervals in any given row

Outline

CountSketch Conclusion

CountSketch Algorithm

*Pick t hash functions such that h;: [m] — [w] from a universal family of hash functions

*Pick t hash functions such that s;: [m] —» {—1, +1} from a universal family of hash functions
*Create a 2D array C[t][w] initially all cells set to 0

*Algorithm:
* For each item x:
* Forifrom1ltot

* Cli]lhi ()] = Clillh; ()] +s:(x)

*Then the frequency of item x is f, = me\gi_ian {Cli][h;(x)] - s;(x)}
l

CountSketch Algorithm

*We can show that

- When we set t = O(logn) and w =
* Then, with high probability
: |f;c _fxl = E'(ijjz)

o (Z]-sz) & n for skewed distributions

€2

CountSketch Algorithm

*Space complexity:
1 1
© 05 logz5)

Outline

Conclusion

Conclusion

*Randomized approximate algorithms provide simple solutions to important problems

*Mean and median tricks help us improve the error probability and space complexity of algorithm

References

*The material presented is from the following source:
* https://www.sketchingbigdata.org/fall20/lec/notes.pdf

°| have used the following resources to understand some of the proofs better:
* http://www.cs.columbia.edu/~andoni/s17 advanced/algorithms/mainSpace/files/scribel.pdf

http://www.cs.columbia.edu/~andoni/s17 advanced/algorithms/mainSpace/files/scribe2.pdf

http://www.cs.columbia.edu/~andoni/s17 advanced/algorithms/mainSpace/files/scribe5.pdf
http://web.stanford.edu/class/cs369g/files/lectures/lec?.pdf
http://web.stanford.edu/class/cs369g/files/lectures/lec8.pdf

https://www.sketchingbigdata.org/fall20/lec/notes.pdf
http://www.cs.columbia.edu/~andoni/s17_advanced/algorithms/mainSpace/files/scribe1.pdf
http://www.cs.columbia.edu/~andoni/s17_advanced/algorithms/mainSpace/files/scribe2.pdf
http://www.cs.columbia.edu/~andoni/s17_advanced/algorithms/mainSpace/files/scribe5.pdf
http://web.stanford.edu/class/cs369g/files/lectures/lec7.pdf
http://web.stanford.edu/class/cs369g/files/lectures/lec8.pdf

