Streaming Algorithms

By Koko Nanahji
Model

• Input: sequence of integers $x_1, x_2, ..., x_n$
 • $x_i \in U$

• Goal: compute some function f_i on the input stream
Focus

• Main focus:
 • Reduce the amount of memory used to process the input
Outline

Model
Counting
Heavy Hitters
CountMin
CountSketch
Conclusion
Counting

• Input: Sequence of integers $x_1, x_2, ..., x_n$
 • Problem: Find the number of elements in the input stream
Naïve Solution

- Keep a counter
 - Space Complexity: $O(\log_2 n)$ bits
Approx. Solution

• We would like to find an approximate solution \hat{n} such that
 • Given $\epsilon > 0$ and $\delta < 1$
 • Find an estimate \hat{n} such that:
 • $P(|n - \hat{n}| > \epsilon n) < \delta$
Morris’ Algorithm

- Algorithm:
 - $X := 0$
 - For each item seen:
 - Increment X with probability $\frac{1}{2^X}$
 - Output: $\hat{n} := 2^X - 1$

- Intuitively: $X \sim \log_2 n$
Analysis

- Let X_n denote the value of X after seeing the i^{th} item
 - We will show that:
 - $E(2^{X_n}) = n + 1$
Analysis

• Show that $E(2^{X_n}) = n + 1$

• Proof:
 • By induction on n
 • Base Case: $X_0 = 0$ => $E(2^{X_0}) = E(2^0) = 1$
 • Induction Hypothesis: Assume the claim is true for n prove for $n + 1$
Analysis

• Inductive Step:
 • \(E(2^{X_{n+1}}) = \sum_{\forall i} 2^i P(X_{n+1} = i) \)
 • \(E(2^{X_{n+1}}) = \sum_{\forall i} 2^i (P(X_n = i - 1) \cdot P(X_n \text{ gets incremented} \mid X_n = i) + P(X_n = i) \cdot P(X_n \text{ does not get incremented} \mid X_n = i)) \)
 • \(E(2^{X_{n+1}}) = \sum_{\forall i} 2^i \left(P(X_n = i - 1) \cdot \frac{1}{2^{i-1}} + P(X_n = i) \cdot \left(1 - \frac{1}{2^i}\right)\right) \)
 • \(E(2^{X_{n+1}}) = \sum_{\forall i} 2^i P(X_n = i - 1) \cdot \frac{1}{2^{i-1}} + \sum_{\forall i} 2^i P(X_n = i) \cdot \left(1 - \frac{1}{2^i}\right) \)
 • \(E(2^{X_{n+1}}) = \sum_{\forall i} 2^i P(X_n = i - 1) \cdot \frac{1}{2^{i-1}} + \sum_{\forall i} 2^i P(X_n = i) - \sum_{\forall i} 2^i P(X_n = i) \cdot \frac{1}{2^i} \)
 • \(E(2^{X_{n+1}}) = \sum_{\forall i} 2 P(X_n = i - 1) + \sum_{\forall i} 2^i P(X_n = i) - \sum_{\forall i} P(X_n = i) \)
 • \(E(2^{X_{n+1}}) = \sum_{\forall i} 2^i P(X_n = i) + \sum_{\forall i} P(X_n = i) \)
 • \(E(2^{X_{n+1}}) = E(2^{X_n}) + 1 = (n + 1) + 1 \)
Analysis

• We can show the following:
 • $E(2^{X_n}) = n + 1$
 • $E(2^{2X_n}) = \frac{3}{2}n^2 + \frac{3}{2}n + 1$ (similar to previous proof)

• Therefore, we have that:
 • $Var(2^{X_n}) < \frac{1}{2}n^2$

• Hence: By Chebyshev’s inequality
 • $P(|n - \hat{n}| > \epsilon n) < \frac{1}{2\epsilon^2}$

• Note: This is not very useful when $\epsilon \geq 1$
 • We will improve this algorithm soon
Space Complexity

• Since we have: \(E(2^{X_n}) = n + 1 \).
 • We can show: \(P(2^{X_n} - 1 \geq n^c) \leq \frac{1}{n^{c-1}} \)

• Meaning, with high probability we have
 • \(2^{X_n} - 1 \geq n^c \)
 • \(2^{X_n} \geq n^c - 1 \)
 • \(X_n \geq \log_2(n^c - 1) \)

• Hence, to store \(X_n \) we can show that we need
 • \(O(\log_2(\log_2 n)) \) bits with high probability
Morris+ Algorithm

• Improve Morris’ algorithm by using the mean trick
 • Run $s > 1$ independent copies of Morris’ algorithm and average their outputs
Morris+ Algorithm

• Let X^j be the output of the j^{th} copy of Morris’ algorithm after seeing the i^{th} item

 • $Y_i = \frac{1}{s} \sum_j \left(2^{X^j} - 1 \right)$

 • By linearity of expectation we have $E(2^{Y_n}) = n + 1$

 • But

 • $Var(2^{Y_n}) < \frac{1}{2s} n^2 < Var\left(2^{X^j_n}\right) = \frac{1}{2} n^2$

• By Chebyshev’s inequality we have:

 • $P(|n - \hat{n}| > \epsilon n) < \frac{1}{2s \epsilon^2}$

 • Then for δ error probability we set

 • $s > \frac{1}{2\epsilon^2 \delta}$
Morris+ Space

• Space complexity: $O(s \cdot \log_2(\log_2 n))$ bits with high probability

• For δ error probability we need
 • $O(\frac{1}{2e^2\delta} \cdot \log_2(\log_2 n))$ bits with high probability

• We will improve this space complexity using the median trick
Morris++ Algorithm

• Improve space complexity by using the median trick
 • Run t independent copies of Morris+ algorithm
 • Such that $s = \frac{3}{2 \cdot \epsilon^2}$
 • Meaning the error probability of each Morris+ is $\frac{1}{3}$
 • Output the median estimate
Morris++ Algorithm

• Note:
 • Since the error probability of each Morris+ is $\frac{1}{3}$
 • Expected number of Morris+ instantiations that succeed is $\frac{2t}{3}$
 • Hence, for the median to be a bad estimate at least half of the Morris+ instantiations must fail
 • We will show that this is not likely
Morris++ Algorithm

• Let $Z_i = 1$ if i^{th} Morris+ instantiation succeeds, otherwise $Z_i = 0$

• We will bound $P \left(\sum_i Z_i \leq \frac{t}{2} \right)$

 - $P \left(\sum_i Z_i \leq \frac{t}{2} \right) \leq P \left(\left| \sum_i Z_i - \frac{2t}{3} \right| \leq \frac{t}{2} - \frac{2t}{3} \right)$

 - $P \left(\sum_i Z_i \leq \frac{t}{2} \right) \leq P \left(|\sum_i Z_i - E(\sum_i Z_i)| \leq -\frac{t}{6} \right)$

• By Hoeffding bound

 - $P \left(\sum_i Z_i \leq \frac{t}{2} \right) \leq e^{-\frac{1}{18t}}$

• Hence, for $t \geq \left[18 \ln \frac{1}{\delta} \right]$

 - $P \left(\sum_i Z_i \leq \frac{t}{2} \right) \leq \delta$
Morris++ Space

- If we set $s \cdot t = \theta \left(\frac{1}{\epsilon^2} \ln \frac{1}{\delta} \right)$

- We get that we need $O \left(\frac{1}{\epsilon^2} \ln \left(\frac{1}{\delta} \right) \cdot \log_2 \left(\log_2 n \right) \right)$ bits with high probability
Outline

Model Counting Heavy Hitters CountMin CountSketch Conclusion
Heavy Hitters

• Input: sequence of integers $x_1, x_2, ..., x_n$
 • $x_i \in \{1,2, ..., m\}$

• Let f_i be the frequency of element i in the given sequence

• Goal: Given some integer K find the elements that have $f_i > \frac{n}{K}$

• There is a simple two pass algorithm named Misra–Gries Algorithm (was covered last time)
CountMin Algorithm

• Pick t hash functions such that $h_i : [m] \rightarrow [w]$ from a universal family of hash functions

• Create a 2D array $C[t][w]$ initially all cells set to 0

• Algorithm:
 • For each item x:
 • For i from 1 to t
 • Increment $C[i][h_i(x)]$

• Then the frequency of item x is $\min_{\forall i} C[i][h_i(x)]$
CountMin Algorithm

<table>
<thead>
<tr>
<th>Fun</th>
<th>$C[t][0]$</th>
<th>$C[t][1]$</th>
<th>$C[t][2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>h_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>h_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Insert 3

<table>
<thead>
<tr>
<th>Fun</th>
<th>$C[t][0]$</th>
<th>$C[t][1]$</th>
<th>$C[t][2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>h_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>h_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fun</td>
<td>$C[t][0]$</td>
<td>$C[t][1]$</td>
<td>$C[t][2]$</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>h_0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>h_1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>h_2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Insert 5

<table>
<thead>
<tr>
<th>Fun</th>
<th>$C[t][0]$</th>
<th>$C[t][1]$</th>
<th>$C[t][2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>h_1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>h_2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Insert 5

<table>
<thead>
<tr>
<th>Fun</th>
<th>$C[t][0]$</th>
<th>$C[t][1]$</th>
<th>$C[t][2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>h_1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>h_2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Insert 10

<table>
<thead>
<tr>
<th>Fun</th>
<th>$C[t][0]$</th>
<th>$C[t][1]$</th>
<th>$C[t][2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>h_1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>h_2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Insert 10

<table>
<thead>
<tr>
<th>Fun</th>
<th>$C[t][0]$</th>
<th>$C[t][1]$</th>
<th>$C[t][2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>h_1</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>h_2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Query 3

Minimum

<table>
<thead>
<tr>
<th>Fun</th>
<th>$C[t][0]$</th>
<th>$C[t][1]$</th>
<th>$C[t][2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>h_1</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>h_2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Query 5

Minimum

<table>
<thead>
<tr>
<th>Fun</th>
<th>$C[t][0]$</th>
<th>$C[t][1]$</th>
<th>$C[t][2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>h_1</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>h_2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
CountMin Algorithm

• We will do some analysis on this algorithm

• Let f_x be the actual count of x

• Let \hat{f}_x be the estimated count of x

• Note: $f_x \leq \hat{f}_x$

• We will show that $P(\hat{f}_x \geq f_x + \epsilon n) \leq \delta$
CountMin Algorithm

• We will compute the $E(C[j][h_j(x)])$

 $E(C[j][h_j(x)]) = E\left(\sum_{\forall s:h_j(s)=h_j(x)} f_s\right)$

• $E(C[j][h_j(x)]) = f_x + \frac{1}{w}\sum_{\forall s\neq x} f_s$

• $E(C[j][h_j(x)]) < f_x + \frac{n}{w}$
CountMin Algorithm

• We have
 • \(E(C[j][h_j(x)]) < f_x + \frac{n}{w} \)

• We will bound \(P(C[j][h_j(x)] \geq f_x + \frac{2n}{w}) \)
 • \(P(C[j][h_j(x)] \geq f_x + \frac{2n}{w}) \leq P(C[j][h_j(x)] - f_x \geq \frac{2n}{w}) \)
 • By Chebyshev’s inequality:
 • \(P(C[j][h_j(x)] \geq f_x + \frac{2n}{w}) \leq \frac{E(C[j][h_j(x)]-f_x)}{\frac{2n}{w}} \)
 • \(P(C[j][h_j(x)] \geq f_x + \frac{2n}{w}) \leq \frac{f_x+\frac{n}{w}-f_x}{\frac{2n}{w}} \leq \frac{1}{2} \)
CountMin Algorithm

• So far we have:
 - \(P\left(C[j][h_j(x)] \geq f_x + \frac{2n}{w} \right) \leq \frac{1}{2} \)

• We will bound \(P\left(\hat{f}_x \geq f_x + \frac{2n}{w} \right) \)
 - \(P\left(\hat{f}_x \geq f_x + \frac{2n}{w} \right) = P\left(\min_{\forall j} C[j][h_j(x)] \geq f_x + \frac{2n}{w} \right) \)
 - \(P\left(\hat{f}_x \geq f_x + \frac{2n}{w} \right) = \prod_j P\left(C[j][h_j(x)] \geq f_x + \frac{2n}{w} \right) \)
 - \(P\left(\hat{f}_x \geq f_x + \frac{2n}{w} \right) \leq \left(\frac{1}{2} \right)^t \)

• If we set \(w = \frac{2}{\epsilon} \) and \(t = \log_2 \frac{1}{\delta} \) we will have
 - \(P\left(\hat{f}_x \geq f_x + \epsilon n \right) \leq \delta \)
CountMin Algorithm

• Space complexity:
 • $O(w \cdot t) = O\left(\frac{2}{\epsilon} \cdot \log_2 \frac{1}{\delta}\right)$
Heavy Hitters with CountMin

- We extend CountMin as follows:
 - For each row of intervals in figure, we store a separate count-min structure
 - For each row, count-min of that row treats two elements that fall into the same interval as the same element
 - Note that the value at any ancestor of a node is at least as big as the value at that node
Heavy Hitters with CountMin

To get the K heavy-hitters:

- Explore the tree starting from the root
 - Only explore the children of intervals that have frequency at least $\frac{n}{K}$
Heavy Hitters with CountMin

Analysis:

- Space complexity \(O\left(\frac{2}{\epsilon} \cdot \log_2 \frac{1}{\delta} \cdot \log_2 n\right) \)
- Time complexity to get \(K \) heavy hitters is \(O(K \cdot \log_2 n) \)
 - For any given row, the sum over all frequencies in that row is \(n \)
 - Thus, in any row, there are at most \(K \) intervals with frequency \(\frac{n}{K} \)
 - Therefore, we only explore the children of at most \(K \) intervals in any given row
CountSketch Algorithm

• Pick t hash functions such that $h_i : [m] \rightarrow [w]$ from a universal family of hash functions
• Pick t hash functions such that $s_i : [m] \rightarrow \{-1, +1\}$ from a universal family of hash functions
• Create a 2D array $C[t][w]$ initially all cells set to 0
• Algorithm:
 • For each item x:
 • For i from 1 to t
 • $C[i][h_i(x)] = C[i][h_i(x)] + s_i(x)$
 • Then the frequency of item x is $\hat{f}_x = \text{median} \{C[i][h_i(x)] \cdot s_i(x)\}$
CountSketch Algorithm

• We can show that
 • When we set $t = O(\log n)$ and $w = \frac{3}{\epsilon^2}$
 • Then, with high probability
 • $|\hat{f}_x - f_x| \leq \epsilon \cdot (\sum_j f_j^2)$
 • $(\sum_j f_j^2) \ll n$ for skewed distributions
CountSketch Algorithm

• Space complexity:
 • $O\left(\frac{1}{\varepsilon^2} \cdot \log_2 \frac{1}{\delta}\right)$
Outline

- Model
- Counting
- Heavy Hitters
- CountMin
- CountSketch
- Conclusion
Conclusion

• Randomized approximate algorithms provide simple solutions to important problems

• Mean and median tricks help us improve the error probability and space complexity of algorithm
References

• The material presented is from the following source:
 • https://www.sketchingbigdata.org/fall20/lec/notes.pdf

• I have used the following resources to understand some of the proofs better:
 • http://web.stanford.edu/class/cs369g/files/lectures/lec7.pdf
 • http://web.stanford.edu/class/cs369g/files/lectures/lec8.pdf