Streaming Algorithms

Outline

Model

•Input: sequence of integers x_1, x_2, \dots, x_n

• $x_i \in U$

•Goal: compute some function f_i on the input stream

Focus

•Main focus:

• Reduce the amount of memory used to process the input

Outline

Counting

•Input: Sequence of integers $x_1, x_2, ..., x_n$

• Problem: Find the number of elements in the input stream

Naïve Solution

•Keep a counter

• Space Complexity: $O(\log_2 n)$ bits

Approx. Solution

•We would like to find an approximate solution \hat{n} such that

- Given $\varepsilon > 0$ and $\delta < 1$
 - Find an estimate \hat{n} such that:
 - $P(|n \hat{n}| > \epsilon n) < \delta$

Morris' Algorithm

•Algorithm:

- $X \coloneqq 0$
- For each item seen:
 - Increment X with probability $\frac{1}{2^X}$
- Output: $\hat{n} \coloneqq 2^{X} 1$
- •Intuitively: $X \sim \log_2 n$

Analysis

•Let X_n denote the value of X after seeing the i^{th} item

• We will show that:

•
$$E(2^{X_n}) = n + 1$$

Analysis

- •Show that $E(2^{X_n}) = n + 1$
- Proof:
 - By induction on *n*
 - Base Case: $X_0 = 0 \Rightarrow E(2^{X_0}) = E(2^0) = 1$
 - Induction Hypothesis: Assume the claim is true for n prove for n + 1

•Inductive Step:

•
$$E(2^{X_{n+1}}) = \sum_{\forall i} 2^i P(X_{n+1} = i)$$

• $E(2^{X_{n+1}}) = \sum_{\forall i} 2^i (P(X_n = i - 1) \cdot P(X_n \text{ gets incremented } | X_n = i - 1) + P(X_n = i) \cdot P(X_n \text{ does not gets incremented } | X_n = i))$

•
$$E(2^{X_{n+1}}) = \sum_{\forall i} 2^i \left(P(X_n = i - 1) \cdot \frac{1}{2^{i-1}} + P(X_n = i) \cdot \left(1 - \frac{1}{2^i}\right) \right)$$

• $E(2^{X_{n+1}}) = \sum_{\forall i} 2^i P(X_n = i - 1) \cdot \frac{1}{2^{i-1}} + \sum_{\forall i} 2^i P(X_n = i) \cdot \left(1 - \frac{1}{2^i}\right)$

•
$$E(2^{X_{n+1}}) = \sum_{\forall i} 2^i P(X_n = i - 1) \cdot \frac{1}{2^{i-1}} + \sum_{\forall i} 2^i P(X_n = i) - \sum_{\forall i} 2^i P(X_n = i) \cdot \frac{1}{2^i}$$

•
$$E(2^{X_{n+1}}) = \sum_{\forall i} 2 P(X_n = i - 1) + \sum_{\forall i} 2^i P(X_n = i) - \sum_{\forall i} P(X_n = i)$$

•
$$E(2^{X_{n+1}}) = \sum_{\forall i} 2^i P(X_n = i) + \sum_{\forall i} P(X_n = i)$$

•
$$E(2^{X_{n+1}}) = E(2^{X_n}) + 1 = (n+1) + 1$$

Analysis

• We can show the following:

- $E(2^{X_n}) = n+1$
- $E(2^{2X_n}) = \frac{3}{2}n^2 + \frac{3}{2}n + 1$ (similar to previous proof)

•Therefore, we have that:

• $Var(2^{X_n}) < \frac{1}{2}n^2$

•Hence: By Chebyshev's inequality

• $P(|n - \hat{n}| > \epsilon n) < \frac{1}{2\epsilon^2}$

•Note: This is not very useful when $\epsilon \geq 1$

• We will improve this algorithm soon

Space Complexity

- •Since we have: $E(2^{X_n}) = n + 1$.
 - We can show: $P(2^{X_n} 1 \ge n^c) \le \frac{1}{n^{c-1}}$

•Meaning, with high probability we have

- $2^{X_n} 1 \ge n^c$
- $2^{X_n} \ge n^c 1$
- $X_n \ge \log_2(n^c 1)$

•Hence, to store X_n we can show that we need

• $O(\log_2(\log_2 n))$ bits with high probability

Morris+ Algorithm

•Improve Morris' algorithm by using the mean trick

• Run s > 1 independent copies of Morris' algorithm and average their outputs

Morris+ Algorithm

•Let X^{j} be the output of the j^{th} copy of Morris' algorithm after seeing the i^{th} item

- $Y_i = \frac{1}{s} \sum_j \left(2^{X^j} 1 \right)$
- By linearity of expectation we have $E(2^{Y_n}) = n + 1$
- But

•
$$Var(2^{Y_n}) < \frac{1}{2s}n^2 < Var(2^{X_n^j}) = \frac{1}{2}n^2$$

•By Chebyshev's inequality we have:

- $P(|n \hat{n}| > \epsilon n) < \frac{1}{2s\epsilon^2}$
- Then for δ error probability we set

•
$$s > \frac{1}{2\epsilon^2 \delta}$$

Morris+ Space

•Space complexity: $O(s \cdot log_2(log_2 n))$ bits with high probability

• For δ error probability we need

• $O(\frac{1}{2\epsilon^2\delta} \cdot \log_2(\log_2 n))$ bits with high probability

•We will improve this space complexity using the median trick

Morris++ Algorithm

• Improve space complexity by using the median trick

- *Run t independent copies of Morris+ algorithm*
 - Such that $s = \frac{3}{2 \cdot \epsilon^2}$
 - Meaning the error probability of each Morris+ is $\frac{1}{3}$
 - Output the median estimate

Morris++ Algorithm

•Note:

- Since the error probability of each Morris+ is $\frac{1}{3}$
 - Expected number of Morris+ instantiations that succeed is $\frac{2t}{3}$
- Hence, for the median to be a bad estimate at least half of the Morris+ instantiations must fail
- We will show that this is not likely

•Let $Z_i = 1$ if i^{th} Morris+ instantiation succeeds, otherwise $Z_i = 0$

- We will bound $P\left(\sum_{i} Z_{i} \leq \frac{t}{2}\right)$ • $P\left(\sum_{i} Z_{i} \leq \frac{t}{2}\right) \leq P\left(\left|\sum_{i} Z_{i} - \frac{2t}{3}\right| \leq \frac{t}{2} - \frac{2t}{3}\right)$ • $P\left(\sum_{i} Z_{i} \leq \frac{t}{2}\right) \leq P\left(\left|\sum_{i} Z_{i} - E(\sum_{i} Z_{i})\right| \leq -\frac{t}{6}\right)$
- By Hoeffding bound
 - $P\left(\sum_{i} Z_{i} \leq \frac{t}{2}\right) \leq e^{\frac{-1}{18}t}$ • Hence, for $t \geq \left\lceil 18 \ln \frac{1}{\delta} \right\rceil$ • $P\left(\sum_{i} Z_{i} \leq \frac{t}{2}\right) \leq \delta$

• If we set $s \cdot t = \theta\left(\frac{1}{\epsilon^2}\ln\frac{1}{\delta}\right)$ • We get that we need $O\left(\frac{1}{\epsilon^2}\ln\left(\frac{1}{\delta}\right) \cdot \log_2\left(\log_2 n\right)\right)$ bits with high probability

Outline

Heavy Hitters

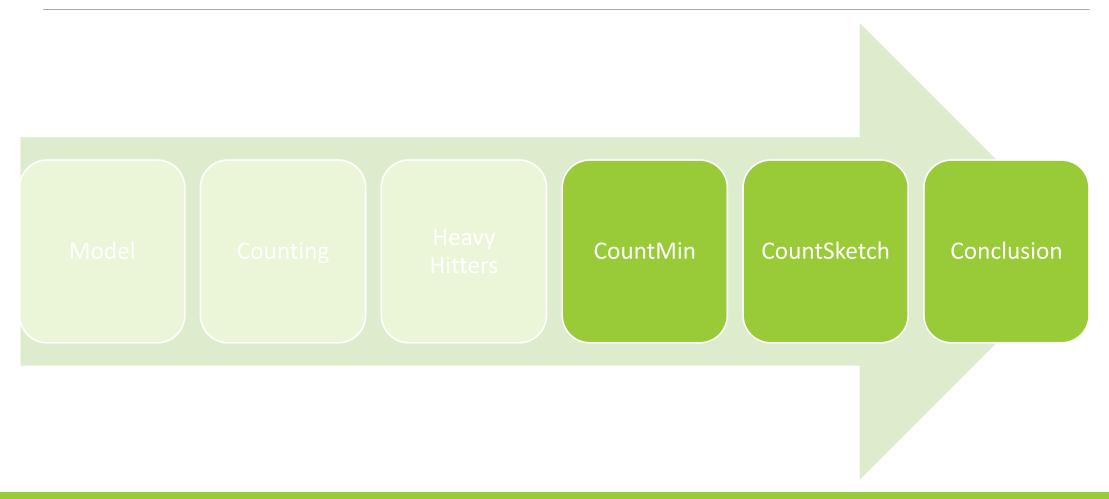
- •Input: sequence of integers $x_1, x_2, ..., x_n$
 - $x_i \in \{1, 2, \dots, m\}$

•Let f_i be the frequency of element i in the given sequence

•Goal: Given some integer K find the elements that have $f_i > \frac{n}{\kappa}$

•There is a simple two pass algorithm named Misrea – Gries Algorithm (was covered last time)

Outline



CountMin Algorithm

•Pick t hash functions such that $h_i: [m] \rightarrow [w]$ from a universal family of hash functions

•Create a 2D array C[t][w] initially all cells set to 0

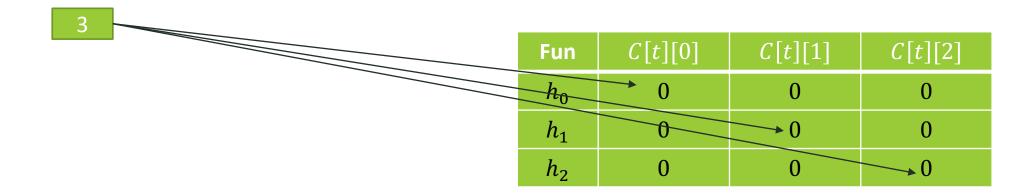
•Algorithm:

- For each item *x*:
 - For *i* from 1 to *t*
 - Increment $C[i][h_i(x)]$

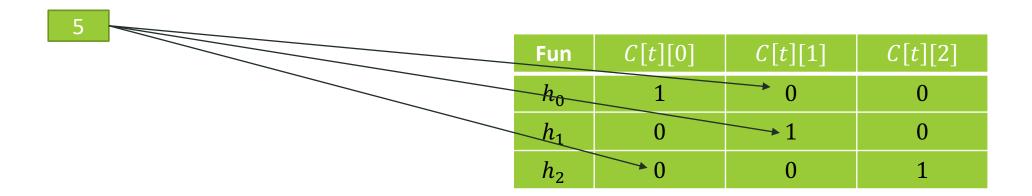
•Then the frequency of item x is $\min_{\forall i} C[i][h_i(x)]$

CountMin Algorithm

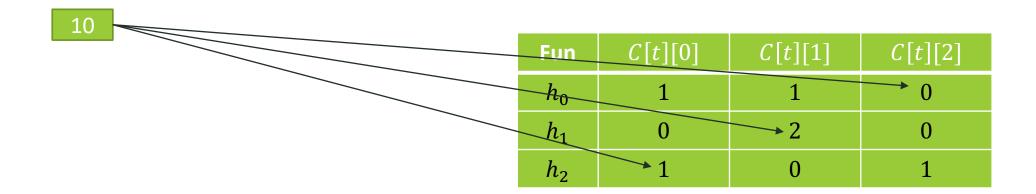
Fun	C[t][0]	C[t][1]	C[t][2]
h_0	0	0	0
h_1	0	0	0
h_2	0	0	0



Fun	C[t][0]	C[t][1]	<i>C</i> [<i>t</i>][2]
h_0	1	0	0
h_1	0	1	0
h_2	0	0	1

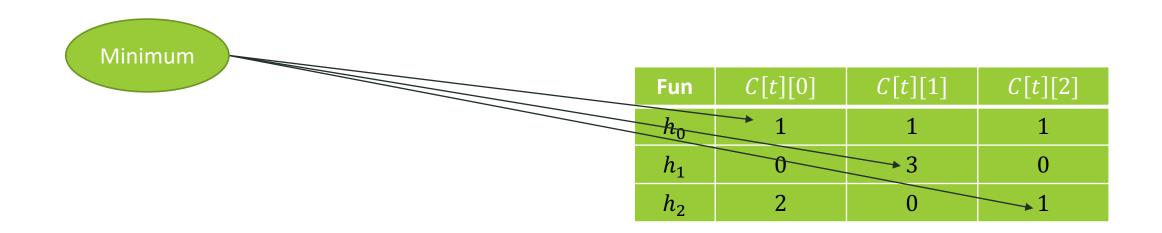


Fun	C[t][0]	C[t][1]	<i>C</i> [<i>t</i>][2]
h_0	1	1	0
h_1	0	2	0
h ₂	1	0	1

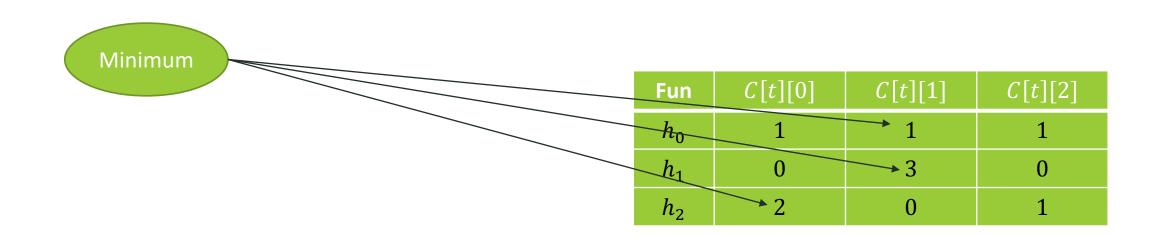


Fun	C[t][0]	<i>C</i> [<i>t</i>][1]	C[t][2]
h_0	1	1	1
h_1	0	3	0
h ₂	2	0	1

Query 3



Query 5



CountMin Algorithm

- •We will do some analysis on this algorithm
- •Let f_x be the actual count of x
- •Let \widehat{f}_x be the estimated count of x
- •Note: $f_x \leq \hat{f}_x$
- •We will show that $P(\widehat{f}_x \ge f_x + \epsilon n) \le \delta$

CountMin Algorithm

•We will compute the $E(C[j][h_j(x)])$

- $\mathrm{E}(C[j][h_j(x)]) = \mathrm{E}\left(\sum_{\forall s:h_j(s)=h_j(x)} f_s\right)$
- $\mathrm{E}(C[j][h_j(x)]) = f_x + \frac{1}{w} \sum_{\forall s \neq x} f_s$
- $\mathrm{E}(C[j][h_j(x)]) < f_x + \frac{n}{w}$

CountMin Algorithm

•We have

- $\mathrm{E}(C[j][h_j(x)]) < f_x + \frac{n}{w}$
- •We will bound $P\left(C[j][h_j(x)] \ge f_x + \frac{2n}{w}\right)$ • $P\left(C[j][h_j(x)] \ge f_x + \frac{2n}{w}\right) \le P\left(C[j][h_j(x)] - f_x \ge \frac{2n}{w}\right)$ • By Chebyshev's inequality: • $P\left(C[j][h_j(x)] \ge f_x + \frac{2n}{w}\right) \le \frac{E\left(C[j][h_j(x)] - f_x\right)}{\frac{2n}{w}}$ • $P\left(C[j][h_j(x)] \ge f_x + \frac{2n}{w}\right) \le \frac{f_x + \frac{n}{w} - f_x}{\frac{2n}{w}} \le \frac{1}{2}$

CountMin Algorithm

•So far we have:

• $P(C[j][h_j(x)] \ge f_x + \frac{2n}{w}) \le \frac{1}{2}$

•We will bound $P\left(\widehat{f}_x \ge f_x + \frac{2n}{w}\right)$

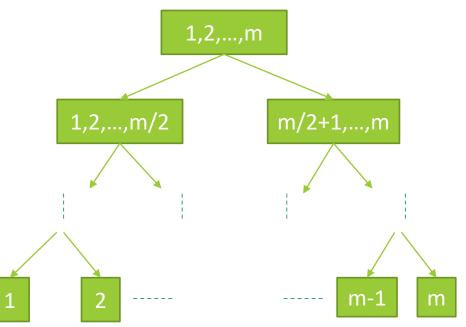
- $P\left(\widehat{f}_x \ge f_x + \frac{2n}{w}\right) = P\left(\min_{\forall j} C[j][h_j(x)] \ge f_x + \frac{2n}{w}\right)$
- $P\left(\widehat{f}_x \ge f_x + \frac{2n}{w}\right) = \prod_j P\left(C[j][h_j(x)] \ge f_x + \frac{2n}{w}\right)$
- $P\left(\widehat{f}_x \ge f_x + \frac{2n}{w}\right) \le \left(\frac{1}{2}\right)^t$
- If we set $w = \frac{2}{\epsilon}$ and $t = \log_2 \frac{1}{\delta}$ we will have
 - $P(\widehat{f}_x \ge f_x + \epsilon n) \le \delta$

CountMin Algorithm

•Space complexity:

•
$$O(\mathbf{w} \cdot t) = O\left(\frac{2}{\epsilon} \cdot \log_2 \frac{1}{\delta}\right)$$

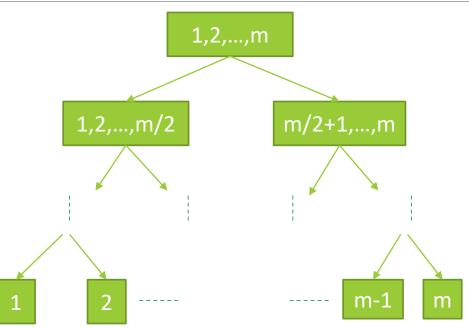
Heavy Hitters with CountMin



•We extend CountMin as follows:

- For each row of intervals in figure, we store a separate count-min structure
- For each row, count-min of that row treats two elements that fall into the same interval as the same element
- Note that the value at any ancestor of a node is at least as big as the value at that node

Heavy Hitters with CountMin



• To get the *K* heavy-hitters:

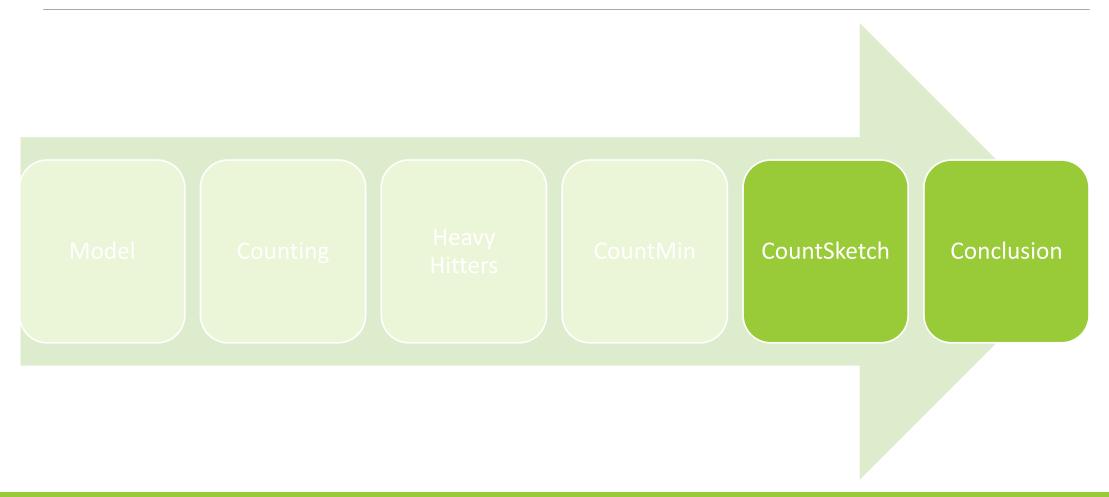
- Explore the tree starting from the root
 - Only explore the children of intervals that have frequency at least $\frac{n}{\kappa}$

Heavy Hitters with CountMin

Analysis:

- Space complexity $O\left(\frac{2}{\epsilon} \cdot \log_2 \frac{1}{\delta} \cdot \log_2 n\right)$
- Time complexity to get *K* heavy hitters is $O(K \cdot \log_2 n)$
 - $^\circ\,$ For any given row, the sum over all frequencies in that row is $n\,$
 - Thus, in any row, there are at most K intervals with frequency $\frac{n}{\kappa}$
 - Therefore, we only explore the children of at most K intervals in any given row

Outline



CountSketch Algorithm

•Pick t hash functions such that $h_i: [m] \rightarrow [w]$ from a universal family of hash functions

•Pick t hash functions such that $s_i: [m] \to \{-1, +1\}$ from a universal family of hash functions

•Create a 2D array C[t][w] initially all cells set to 0

•Algorithm:

- For each item *x*:
 - For *i* from 1 to *t*
 - $C[i][h_i(x)] = C[i][h_i(x)] + s_i(x)$

•Then the frequency of item x is $\hat{f}_x = \underset{\forall i}{median} \{C[i][h_i(x)] \cdot s_i(x)\}$

CountSketch Algorithm

•We can show that

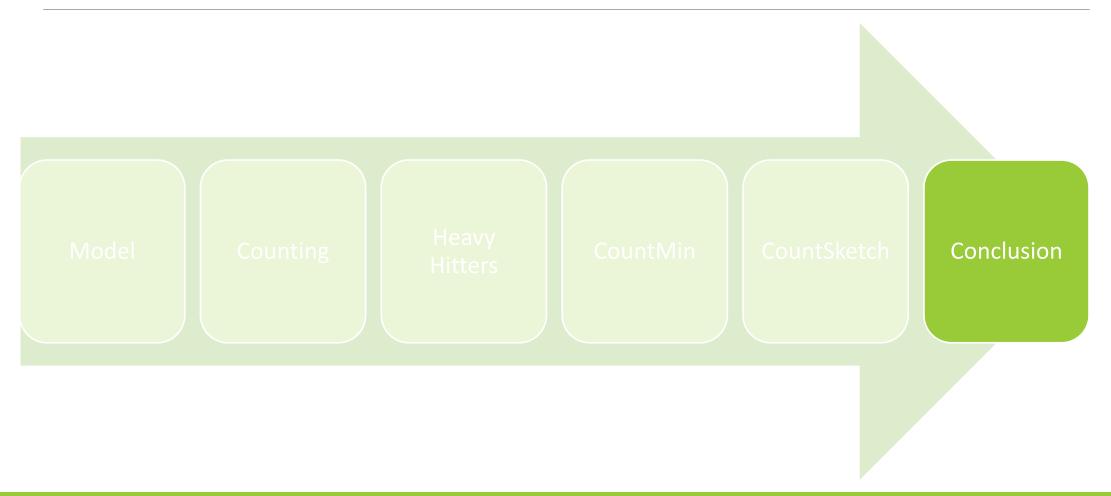
- When we set $t = O(\log n)$ and $w = \frac{3}{\epsilon^2}$
- Then, with high probability
 - $\left|\widehat{f}_{x} f_{x}\right| \leq \epsilon \cdot \left(\sum_{j} f_{j}^{2}\right)$
 - $\left(\sum_{j} {f_{j}}^{2}\right) \ll n$ for skewed distributions

CountSketch Algorithm

•Space complexity:

• $0\left(\frac{1}{\epsilon^2} \cdot \log_2 \frac{1}{\delta}\right)$

Outline



Conclusion

•Randomized approximate algorithms provide simple solutions to important problems

•Mean and median tricks help us improve the error probability and space complexity of algorithm

References

•The material presented is from the following source:

- https://www.sketchingbigdata.org/fall20/lec/notes.pdf
- •I have used the following resources to understand some of the proofs better:
 - <u>http://www.cs.columbia.edu/~andoni/s17_advanced/algorithms/mainSpace/files/scribe1.pdf</u>
 - <u>http://www.cs.columbia.edu/~andoni/s17_advanced/algorithms/mainSpace/files/scribe2.pdf</u>
 - <u>http://www.cs.columbia.edu/~andoni/s17_advanced/algorithms/mainSpace/files/scribe5.pdf</u>
 - http://web.stanford.edu/class/cs369g/files/lectures/lec7.pdf
 - <u>http://web.stanford.edu/class/cs369g/files/lectures/lec8.pdf</u>