Streaming Algorithms

By Koko Nanahji

Outline

Model

- Input: sequence of integers $x_{1}, x_{2}, \ldots, x_{n}$
- $x_{i} \in U$
- Goal: compute some function f_{i} on the input stream

Focus

- Main focus:
- Reduce the amount of memory used to process the input

Outline

Counting

- Input: Sequence of integers $x_{1}, x_{2}, \ldots, x_{n}$
- Problem: Find the number of elements in the input stream

Naïve Solution

- Keep a counter
- Space Complexity: $O\left(\log _{2} n\right)$ bits

Approx. Solution

- We would like to find an approximate solution \hat{n} such that
- Given $\epsilon>0$ and $\delta<1$
- Find an estimate \hat{n} such that:
- $P(|n-\hat{n}|>\epsilon n)<\delta$

Morris' Algorithm

- Algorithm:
- $X:=0$
- For each item seen:
- Increment X with probability $\frac{1}{2^{X}}$
- Output: $\widehat{n}:=2^{\mathrm{X}}-1$
- Intuitively: $X \sim \log _{2} n$

Analysis

- Let X_{n} denote the value of X after seeing the $i^{\text {th }}$ item
- We will show that:
- $E\left(2^{X_{n}}\right)=n+1$

Analysis

-Show that $E\left(2^{X_{n}}\right)=n+1$
-Proof:

- By induction on n
- Base Case: $X_{0}=0 \Rightarrow E\left(2^{X_{0}}\right)=E\left(2^{0}\right)=1$
- Induction Hypothesis: Assume the claim is true for n prove for $n+1$

Analysis

-Inductive Step:

- $E\left(2^{X_{n+1}}\right)=\sum_{\forall i} 2^{i} P\left(X_{n+1}=i\right)$
- $E\left(2^{X_{n+1}}\right)=\sum_{\forall i} 2^{i}\left(P\left(X_{n}=i-1\right) \cdot P\left(X_{n}\right.\right.$ gets incremented $\left.\mid X_{n}=i-1\right)+P\left(X_{n}=\right.$ $i) \cdot P\left(X_{n}\right.$ does not gets incremented $\left.\left.\mid X_{n}=i\right)\right)$
- $E\left(2^{X_{n+1}}\right)=\sum_{\forall i} 2^{i}\left(P\left(X_{n}=i-1\right) \cdot \frac{1}{2^{i-1}}+P\left(X_{n}=i\right) \cdot\left(1-\frac{1}{2^{i}}\right)\right)$
- $E\left(2^{X_{n+1}}\right)=\sum_{\forall i} 2^{i} P\left(X_{n}=i-1\right) \cdot \frac{1}{2^{i-1}}+\sum_{\forall i} 2^{i} P\left(X_{n}=i\right) \cdot\left(1-\frac{1}{2^{i}}\right)$
- $E\left(2^{X_{n+1}}\right)=\sum_{\forall i} 2^{i} P\left(X_{n}=i-1\right) \cdot \frac{1}{2^{i-1}}+\sum_{\forall i} 2^{i} P\left(X_{n}=i\right)-\sum_{\forall i} 2^{i} P\left(X_{n}=i\right) \cdot \frac{1}{2^{i}}$
- $E\left(2^{X_{n+1}}\right)=\sum_{\forall i} 2 P\left(X_{n}=i-1\right)+\sum_{\forall i} 2^{i} P\left(X_{n}=i\right)-\sum_{\forall i} P\left(X_{n}=i\right)$
- $E\left(2^{X_{n+1}}\right)=\sum_{\forall i} 2^{i} P\left(X_{n}=i\right)+\sum_{\forall i} P\left(X_{n}=i\right)$
- $E\left(2^{X_{n+1}}\right)=E\left(2^{X_{n}}\right)+1=(n+1)+1$

Analysis

- We can show the following:
- $E\left(2^{X_{n}}\right)=n+1$
- $E\left(2^{2 X_{n}}\right)=\frac{3}{2} n^{2}+\frac{3}{2} n+1$ (similar to previous proof)
-Therefore, we have that:
- $\operatorname{Var}\left(2^{X_{n}}\right)<\frac{1}{2} n^{2}$
- Hence: By Chebyshev's inequality
- $P(|n-\widehat{n}|>\epsilon n)<\frac{1}{2 \epsilon^{2}}$
- Note: This is not very useful when $\epsilon \geq 1$
- We will improve this algorithm soon

Space Complexity

- Since we have: $E\left(2^{X_{n}}\right)=n+1$.
- We can show: $P\left(2^{X_{n}}-1 \geq n^{c}\right) \leq \frac{1}{n^{c-1}}$
- Meaning, with high probability we have
- $2^{X_{n}}-1 \geq n^{c}$
- $2^{X_{n}} \geq n^{c}-1$
- $X_{n} \geq \log _{2}\left(n^{c}-1\right)$
- Hence, to store X_{n} we can show that we need
- $\mathrm{O}\left(\log _{2}\left(\log _{2} n\right)\right)$ bits with high probability

Morris+ Algorithm

- Improve Morris' algorithm by using the mean trick

- Run $s>1$ independent copies of Morris' algorithm and average their outputs

Morris+ Algorithm

- Let X^{j} be the output of the $j^{\text {th }}$ copy of Morris' algorithm after seeing the $i^{\text {th }}$ item
- $Y_{i}=\frac{1}{s} \sum_{j}\left(2^{X^{j}}-1\right)$
- By linearity of expectation we have $E\left(2^{Y_{n}}\right)=n+1$
- But
- $\operatorname{Var}\left(2^{Y_{n}}\right)<\frac{1}{2 s} n^{2}<\operatorname{Var}\left(2^{X_{n}^{j}}\right)=\frac{1}{2} n^{2}$
- By Chebyshev's inequality we have:
- $P(|n-\hat{n}|>\epsilon n)<\frac{1}{2 s \epsilon^{2}}$
- Then for δ error probability we set
- $s>\frac{1}{2 \epsilon^{2} \delta}$

Morris+ Space

- Space complexity: $O\left(s \cdot \log _{2}\left(\log _{2} n\right)\right)$ bits with high probability
-For δ error probability we need
- $O\left(\frac{1}{2 \epsilon^{2} \delta} \cdot \log _{2}\left(\log _{2} n\right)\right)$ bits with high probability
-We will improve this space complexity using the median trick

Morris++ Algorithm

- Improve space complexity by using the median trick
- Run t independent copies of Morris+ algorithm
- Such that $S=\frac{3}{2 \cdot \epsilon^{2}}$
- Meaning the error probability of each Morris+ is $\frac{1}{3}$
- Output the median estimate

Morris++ Algorithm

- Note:
- Since the error probability of each Morris+ is $\frac{1}{3}$
- Expected number of Morris+ instantiations that succeed is $\frac{2 t}{3}$
- Hence, for the median to be a bad estimate at least half of the Morris+ instantiations must fail
- We will show that this is not likely

Morris++ Algorithm

-Let $Z_{i}=1$ if i th Morris+ instantiation succeeds, otherwise $Z_{i}=0$

- We will bound $P\left(\sum_{i} Z_{i} \leq \frac{t}{2}\right)$
- $P\left(\sum_{i} Z_{i} \leq \frac{t}{2}\right) \leq P\left(\left|\sum_{i} Z_{i}-\frac{2 t}{3}\right| \leq \frac{t}{2}-\frac{2 t}{3}\right)$
- $P\left(\sum_{i} Z_{i} \leq \frac{t}{2}\right) \leq P\left(\left|\sum_{i} Z_{i}-E\left(\sum_{i} Z_{i}\right)\right| \leq-\frac{t}{6}\right)$
- By Hoeffding bound
- $P\left(\sum_{i} Z_{i} \leq \frac{t}{2}\right) \leq e^{\frac{-1}{18} t}$
- Hence, for $t \geq\left\lceil 18 \ln \frac{1}{\delta}\right\rceil$
- $P\left(\sum_{i} Z_{i} \leq \frac{t}{2}\right) \leq \delta$

Morris++ Space

- If we set $s \cdot t=\theta\left(\frac{1}{\epsilon^{2}} \ln \frac{1}{\delta}\right)$
- We get that we need $O\left(\frac{1}{\epsilon^{2}} \ln \left(\frac{1}{\delta}\right) \cdot \log _{2}\left(\log _{2} n\right)\right)$ bits with high probability

Outline

Heavy Hitters

- Input: sequence of integers $x_{1}, x_{2}, \ldots, x_{n}$
- $x_{i} \in\{1,2, \ldots, m\}$
- Let f_{i} be the frequency of element i in the given sequence
- Goal: Given some integer K find the elements that have $f_{i}>\frac{n}{K}$
- There is a simple two pass algorithm named Misrea - Gries Algorithm (was covered last time)

Outline

CountMin Algorithm

- Pick t hash functions such that $h_{i}:[m] \rightarrow[w]$ from a universal family of hash functions
- Create a 2D array $C[t][w]$ initially all cells set to 0
-Algorithm:
- For each item x :
- For i from 1 to t
- Increment $C[i]\left[h_{i}(x)\right]$
- Then the frequency of item x is $\min _{\forall i} C[i]\left[h_{i}(x)\right]$

CountMin Algorithm

Fun	$C[t][0]$	$C[t][1]$	$C[t][2]$
h_{0}	0	0	0
h_{1}	0	0	0
h_{2}	0	0	0

Insert 3

Insert 3

Fun	$C[t][0]$	$C[t][1]$	$C[t][2]$
h_{0}	1	0	0
h_{1}	0	1	0
h_{2}	0	0	1

Insert 5

Insert 5

Fun	$C[t][0]$	$C[t][1]$	$C[t][2]$
h_{0}	1	1	0
h_{1}	0	2	0
h_{2}	1	0	1

Insert 10

Insert 10

Fun	$C[t][0]$	$C[t][1]$	$C[t][2]$
h_{0}	1	1	1
h_{1}	0	3	0
h_{2}	2	0	1

Query 3

Query 5

CountMin Algorithm

-We will do some analysis on this algorithm

- Let f_{x} be the actual count of x
- Let \widehat{f}_{x} be the estimated count of x
- Note: $\mathrm{f}_{\mathrm{x}} \leq \widehat{f}_{x}$
- We will show that $\mathrm{P}\left(\widehat{f}_{x} \geq f_{x}+\epsilon n\right) \leq \delta$

CountMin Algorithm

- We will compute the $\mathrm{E}\left(C[j]\left[h_{j}(x)\right]\right)$
- $\mathrm{E}\left(C[j]\left[h_{j}(x)\right]\right)=\mathrm{E}\left(\sum_{\forall s \cdot h_{i}(s)=h_{j}(x)} f_{s}\right)$
- $\mathrm{E}\left(C[j]\left[h_{j}(x)\right]\right)=f_{x}+\frac{1}{w} \sum_{\forall s \neq x} f_{s}$
- $\mathrm{E}\left(C[j]\left[h_{j}(x)\right]\right)<f_{x}+\frac{n}{w}$

CountMin Algorithm

- We have
- $\mathrm{E}\left(C[j]\left[h_{j}(x)\right]\right)<f_{x}+\frac{n}{w}$
-We will bound $\mathrm{P}\left(C[j]\left[h_{j}(x)\right] \geq f_{x}+\frac{2 n}{w}\right)$
- $\mathrm{P}\left(C[j]\left[h_{j}(x)\right] \geq f_{x}+\frac{2 n}{w}\right) \leq \mathrm{P}\left(C[j]\left[h_{j}(x)\right]-f_{x} \geq \frac{2 n}{w}\right)$
- By Chebyshev's inequality:
- $\mathrm{P}\left(C[j]\left[h_{j}(x)\right] \geq f_{x}+\frac{2 n}{w}\right) \leq \frac{E\left(C[j]\left[h_{j}(x)\right]-f_{x}\right)}{\frac{2 n}{w}}$
- $\mathrm{P}\left(C[j]\left[h_{j}(x)\right] \geq f_{x}+\frac{2 n}{w}\right) \leq \frac{f_{x}+\frac{n}{w}-f_{x}}{\frac{2 n}{w}} \leq \frac{1}{2}$

CountMin Algorithm

- So far we have:
- $\mathrm{P}\left(C[j]\left[h_{j}(x)\right] \geq f_{x}+\frac{2 n}{w}\right) \leq \frac{1}{2}$
- We will bound $\mathrm{P}\left(\widehat{f}_{x} \geq f_{x}+\frac{2 n}{w}\right)$
- $\mathrm{P}\left(\widehat{f}_{x} \geq f_{x}+\frac{2 n}{w}\right)=\mathrm{P}\left(\min _{\forall j} C[j]\left[h_{j}(x)\right] \geq f_{x}+\frac{2 n}{w}\right)$
- $\mathrm{P}\left(\widehat{f}_{x} \geq f_{x}+\frac{2 n}{w}\right)=\prod_{\mathrm{j}} \mathrm{P}\left(C[j]\left[h_{j}(x)\right] \geq f_{x}+\frac{2 n}{w}\right)$
- $\mathrm{P}\left(\widehat{f}_{x} \geq f_{x}+\frac{2 n}{w}\right) \leq\left(\frac{1}{2}\right)^{t}$
- If we set $\mathrm{w}=\frac{2}{\epsilon}$ and $\mathrm{t}=\log _{2} \frac{1}{\delta}$ we will have
- $\mathrm{P}\left(\widehat{f}_{x} \geq f_{x}+\epsilon n\right) \leq \delta$

CountMin Algorithm

- Space complexity:
- $\mathrm{O}(\mathrm{w} \cdot t)=O\left(\frac{2}{\epsilon} \cdot \log _{2} \frac{1}{\delta}\right)$

Heavy Hitters with CountMin

- We extend CountMin as follows:
- For each row of intervals in figure, we store a separate count-min structure
- For each row, count-min of that row treats two elements that fall into the same interval as the same element
- Note that the value at any ancestor of a node is at least as big as the value at that node

Heavy Hitters with CountMin

- To get the K heavy-hitters:
- Explore the tree starting from the root
- Only explore the children of intervals that have frequency at least $\frac{n}{K}$

Heavy Hitters with CountMin

Analysis:

- Space complexity $O\left(\frac{2}{\epsilon} \cdot \log _{2} \frac{1}{\delta} \cdot \log _{2} n\right)$
- Time complexity to get K heavy hitters is $\mathrm{O}\left(K \cdot \log _{2} n\right)$
- For any given row, the sum over all frequencies in that row is n
- Thus, in any row, there are at most K intervals with frequency $\frac{n}{K}$
- Therefore, we only explore the children of at most K intervals in any given row

Outline

CountSketch Algorithm

- Pick t hash functions such that $h_{i}:[m] \rightarrow[w]$ from a universal family of hash functions
- Pick t hash functions such that $s_{i}:[m] \rightarrow\{-1,+1\}$ from a universal family of hash functions
- Create a 2 D array $C[t][w]$ initially all cells set to 0
-Algorithm:
- For each item x :
- For i from 1 to t
- $C[i]\left[h_{i}(x)\right]=C[i]\left[h_{i}(x)\right]+s_{i}(x)$
-Then the frequency of item x is $\widehat{f_{x}}=\underset{\forall i}{\operatorname{median}}\left\{C[i]\left[h_{i}(x)\right] \cdot s_{i}(x)\right\}$

CountSketch Algorithm

- We can show that
- When we set $t=O(\log n)$ and $\mathrm{w}=\frac{3}{\epsilon^{2}}$
- Then, with high probability
- $\left|\widehat{f}_{x}-f_{x}\right| \leq \epsilon \cdot\left(\Sigma_{j} f_{j}^{2}\right)$
- $\left(\sum_{j} f_{j}^{2}\right) \ll n$ for skewed distributions

CountSketch Algorithm

-Space complexity:

- $\mathbf{O}\left(\frac{1}{\epsilon^{2}} \cdot \log _{2} \frac{1}{\delta}\right)$

Outline

Conclusion

-Randomized approximate algorithms provide simple solutions to important problems

- Mean and median tricks help us improve the error probability and space complexity of algorithm

References

-The material presented is from the following source:

- https://www.sketchingbigdata.org/fall20/lec/notes.pdf
- I have used the following resources to understand some of the proofs better:
- http://www.cs.columbia.edu/~andoni/s17 advanced/algorithms/mainSpace/files/scribe1.pdf
- http://www.cs.columbia.edu/~andoni/s17 advanced/algorithms/mainSpace/files/scribe2.pdf
- http://www.cs.columbia.edu/~andoni/s17 advanced/algorithms/mainSpace/files/scribe5.pdf
- http://web.stanford.edu/class/cs369g/files/lectures/lec7.pdf
- http://web.stanford.edu/class/cs369g/files/lectures/lec8.pdf

