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Model
•Input: sequence of integers 𝑥", 𝑥$, … , 𝑥&
• 𝑥' ∈ 𝑈

•Goal: compute some function 𝑓' on the input stream
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Focus
•Main focus: 
• Reduce the amount of memory used to process the input
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Counting
•Input: Sequence of integers 𝑥", 𝑥$, … , 𝑥&
• Problem: Find the number of elements in the input stream
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Naïve Solution
•Keep a counter
• Space Complexity: 𝑂(log$ 𝑛) bits
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Approx. Solution
•We would like to find an approximate solution 2𝑛 such that
• Given ϵ > 0 and δ < 1
• Find an estimate 2n such that:
• 𝑃 𝑛 − 2𝑛 > 𝜖𝑛 < 𝛿
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Morris’ Algorithm
•Algorithm:
• 𝑋 ≔ 0
• For each item seen:

• Increment 𝑋 with probability "
$@

• Output: 2𝑛 ≔ 2B − 1

•Intuitively: 𝑋 ~ log$ 𝑛
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Analysis
•Let 𝑋& denote the value of 𝑋 after seeing the 𝑖EF item
• We will show that:
• 𝐸 2HI = 𝑛 + 1
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Analysis
•Show that 𝐸 2HI = 𝑛 + 1

•Proof:
• By induction on 𝑛
• Base Case: 𝑋L = 0 => 𝐸 2HM = 𝐸 2L = 1
• Induction Hypothesis: Assume the claim is true for 𝑛 prove for 𝑛 + 1
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Analysis
•Inductive Step:
• 𝐸 2HINO = ∑∀' 2' 𝑃(𝑋&R" = 𝑖)
• 𝐸 2HINO = ∑∀' 2' ( 𝑃 𝑋& = 𝑖 − 1 ⋅ 𝑃 𝑋& 𝑔𝑒𝑡𝑠 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑒𝑑 | 𝑋& = 𝑖 − 1 + 𝑃(
)

𝑋& =
𝑖 ⋅ 𝑃 𝑋& 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑔𝑒𝑡𝑠 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑒𝑑 | 𝑋& = 𝑖 )

• 𝐸 2HINO = ∑∀' 2' 𝑃 𝑋& = 𝑖 − 1 ⋅ "
$^_O

+ 𝑃 𝑋& = 𝑖 ⋅ 1 − "
$^

• 𝐸 2HINO = ∑∀' 2' 𝑃 𝑋& = 𝑖 − 1 ⋅ "
$^_O

+ ∑∀' 2' 𝑃 𝑋& = 𝑖 ⋅ 1 − "
$^

• 𝐸 2HINO = ∑∀' 2' 𝑃 𝑋& = 𝑖 − 1 ⋅ "
$^_O

+ ∑∀' 2' 𝑃 𝑋& = 𝑖 − ∑∀' 2' 𝑃 𝑋& = 𝑖 ⋅ "
$^

• 𝐸 2HINO = ∑∀' 2 𝑃 𝑋& = 𝑖 − 1 + ∑∀' 2' 𝑃 𝑋& = 𝑖 − ∑∀' 𝑃 𝑋& = 𝑖
• 𝐸 2HINO = ∑∀' 2' 𝑃 𝑋& = 𝑖 + ∑∀' 𝑃 𝑋& = 𝑖
• 𝐸 2HINO = 𝐸 2HI + 1 = 𝑛 + 1 + 1
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Analysis
•We can show the following:
• 𝐸 2HI = 𝑛 + 1
• 𝐸 2$HI = `

$
𝑛$ + `

$
𝑛 + 1 (similar to previous proof)

•Therefore,  we have that:
• 𝑉𝑎𝑟 2HI < "

$
𝑛$

•Hence: By Chebyshev’s inequality 
• 𝑃 𝑛 − 2𝑛 > 𝜖𝑛 < "

$cd

•Note: This is not very useful when 𝜖 ≥ 1
• We will improve this algorithm soon
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Space Complexity
•Since we have: 𝐸 2HI = 𝑛 + 1.
• 𝑊𝑒 𝑐𝑎𝑛 𝑠ℎ𝑜𝑤: 𝑃 2HI − 1 ≥ 𝑛k ≤ "

&m_O

•Meaning, with high probability we have 
• 2HI − 1 ≥ 𝑛k

• 2HI ≥ 𝑛k − 1
• 𝑋& ≥ log$ 𝑛k − 1

•Hence, to store 𝑋& we can show that we need 
• O(log$ log$ 𝑛 ) bits with high probability
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Morris+ Algorithm
•Improve Morris’ algorithm by using the mean trick
• Run 𝑠 > 1 independent copies of Morris’ algorithm and average their outputs
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Morris+ Algorithm
•Let 𝑋o be the output of the 𝑗EF copy of Morris’ algorithm after seeing the 𝑖EF item

• 𝑌' =
"
r
∑o 2Hs − 1

• By linearity of expectation we have 𝐸 2tI = 𝑛 + 1
• But 

• 𝑉𝑎𝑟 2tI < "
$r
𝑛$ < 𝑉𝑎𝑟 2HI

s
= "

$
𝑛$

•By Chebyshev’s inequality we have:
• 𝑃 𝑛 − 2𝑛 > 𝜖𝑛 < "

$rcd

• Then for 𝛿 error probability we set 

• 𝑠 > "
$cdu
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Morris+ Space
•Space complexity: 𝑂(𝑠 ⋅ 𝑙𝑜𝑔$ 𝑙𝑜𝑔$ 𝑛 ) bits with high probability

•For 𝛿 error probability we need 
• 𝑂( "

$cdu
⋅ 𝑙𝑜𝑔$ 𝑙𝑜𝑔$ 𝑛 ) bits with high probability

•We will improve this space complexity using the median trick
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Morris++ Algorithm
•Improve space complexity by using the median trick
• Run 𝑡 independent copies of Morris+ algorithm 

• Such that 𝑠 = `
$⋅cd

• Meaning the error probability of each Morris+ is "
`

• Output the median estimate 
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Morris++ Algorithm
•Note:
• Since the error probability of each Morris+ is "

`

• Expected number of Morris+ instantiations that succeed is $E
`

• Hence, for the median to be a bad estimate at least half of the Morris+ instantiations must fail
• We will show that this is not likely
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Morris++ Algorithm
•Let 𝑍' = 1 if 𝑖EF Morris+ instantiation succeeds, otherwise 𝑍' = 0
• We will bound 𝑃 ∑' 𝑍' ≤

E
$

• 𝑃 ∑' 𝑍' ≤
E
$
≤ 𝑃 ∑' 𝑍' −

$E
`
≤ E

$
− $E

`

• 𝑃 ∑' 𝑍' ≤
E
$

≤ 𝑃 ∑' 𝑍' − 𝐸 ∑' 𝑍' ≤ − E
x

• By Hoeffding bound

• 𝑃 ∑' 𝑍' ≤
E
$
≤ 𝑒

_O
OyE

• Hence, for 𝑡 ≥ 18 ln "
u

• 𝑃 ∑' 𝑍' ≤
E
$
≤ 𝛿
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Morris++ Space
•If we set 𝑠 ⋅ 𝑡 = 𝜃 "

cd
ln "

u

• We get that we need 𝑂 "
cd
ln "

u
⋅ log$ (log$𝑛) bits with high probability

21



Model Counting Heavy 
Hitters CountMin CountSketch Conclusion

Outline

22



Heavy Hitters
•Input: sequence of integers 𝑥", 𝑥$, … , 𝑥&
• 𝑥' ∈ 1,2, … ,𝑚

•Let 𝑓' be the frequency of element 𝑖 in the given sequence

•Goal: Given some integer 𝐾 find the elements that have 𝑓' >
&
}

•There is a simple two pass algorithm named Misrea – Gries Algorithm (was covered last time)
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CountMin Algorithm
•Pick 𝑡 hash functions such that ℎ': 𝑚 → 𝑤 from a universal family of hash functions

•Create a 2D array 𝐶 𝑡 𝑤 initially all cells set to 0

•Algorithm:
• For each item 𝑥:
• For 𝑖 from 1 to 𝑡
• Increment 𝐶 𝑖 ℎ'(𝑥)

•Then the frequency of item 𝑥 is min
∀ '

𝐶 𝑖 ℎ'(𝑥)
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CountMin Algorithm

26

Fun 𝐶 𝑡 [0] 𝐶 𝑡 [1] 𝐶 𝑡 [2]
ℎL 0 0 0
ℎ" 0 0 0
ℎ$ 0 0 0



Insert 3

27

3
Fun 𝐶 𝑡 [0] 𝐶 𝑡 [1] 𝐶 𝑡 [2]
ℎL 0 0 0
ℎ" 0 0 0
ℎ$ 0 0 0



Insert 3
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Fun 𝐶 𝑡 [0] 𝐶 𝑡 [1] 𝐶 𝑡 [2]
ℎL 1 0 0
ℎ" 0 1 0
ℎ$ 0 0 1



Insert 5
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Fun 𝐶 𝑡 [0] 𝐶 𝑡 [1] 𝐶 𝑡 [2]
ℎL 1 0 0
ℎ" 0 1 0
ℎ$ 0 0 1

5



Insert 5

30

Fun 𝐶 𝑡 [0] 𝐶 𝑡 [1] 𝐶 𝑡 [2]
ℎL 1 1 0
ℎ" 0 2 0
ℎ$ 1 0 1



Insert 10
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Fun 𝐶 𝑡 [0] 𝐶 𝑡 [1] 𝐶 𝑡 [2]
ℎL 1 1 0
ℎ" 0 2 0
ℎ$ 1 0 1
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Insert 10

32

Fun 𝐶 𝑡 [0] 𝐶 𝑡 [1] 𝐶 𝑡 [2]
ℎL 1 1 1
ℎ" 0 3 0
ℎ$ 2 0 1



Query 3
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Fun 𝐶 𝑡 [0] 𝐶 𝑡 [1] 𝐶 𝑡 [2]
ℎL 1 1 1
ℎ" 0 3 0
ℎ$ 2 0 1

Minimum



Query 5
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Fun 𝐶 𝑡 [0] 𝐶 𝑡 [1] 𝐶 𝑡 [2]
ℎL 1 1 1
ℎ" 0 3 0
ℎ$ 2 0 1

Minimum



CountMin Algorithm 
•We will do some analysis on this algorithm

•Let 𝑓�be the actual count of 𝑥

•Let �𝑓� be the estimated count of 𝑥

•Note: f� ≤ �𝑓�

•We will show that P �𝑓� ≥ 𝑓� + 𝜖𝑛 ≤ 𝛿
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CountMin Algorithm
•We will compute the E 𝐶 𝑗 [ℎo 𝑥 ]
• E 𝐶 𝑗 [ℎo 𝑥 ] = E ∑∀r:Fs r �Fs � 𝑓r

• E 𝐶 𝑗 [ℎo 𝑥 ] = 𝑓� +
"
�
∑∀r�� 𝑓r

• E 𝐶 𝑗 [ℎo 𝑥 ] < 𝑓� +
&
�
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CountMin Algorithm
•We have 
• E 𝐶 𝑗 [ℎo 𝑥 ] < 𝑓� +

&
�

•We will bound P 𝐶 𝑗 [ℎo 𝑥 ] ≥ 𝑓� +
$&
�

• P 𝐶 𝑗 [ℎo 𝑥 ] ≥ 𝑓� +
$&
�

≤ P 𝐶 𝑗 [ℎo 𝑥 ] − 𝑓� ≥
$&
�

• By Chebyshev’s inequality:

• P 𝐶 𝑗 [ℎo 𝑥 ] ≥ 𝑓� +
$&
�

≤ � � o [Fs � ]���
dI
�

• P 𝐶 𝑗 [ℎo 𝑥 ] ≥ 𝑓� +
$&
�

≤
��R

I
����
dI
�

≤ "
$
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CountMin Algorithm
•So far we have: 

• P 𝐶 𝑗 [ℎo 𝑥 ] ≥ 𝑓� +
$&
�

≤ "
$

•We will bound P �𝑓� ≥ 𝑓� +
$&
�

• P �𝑓� ≥ 𝑓� +
$&
�

= P min
∀�

𝐶 𝑗 [ℎo 𝑥 ] ≥ 𝑓� +
$&
�

• P �𝑓� ≥ 𝑓� +
$&
�

= ∏� P 𝐶 𝑗 [ℎo 𝑥 ] ≥ 𝑓� +
$&
�

• P �𝑓� ≥ 𝑓� +
$&
�

≤ "
$

E

• If we set w= $
c

and t = log$
"
u

we will have

• P �𝑓� ≥ 𝑓� + 𝜖𝑛 ≤ 𝛿
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CountMin Algorithm
•Space complexity:

• O(w ⋅ 𝑡) = 𝑂 $
c
⋅ log$

"
u
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Heavy Hitters with CountMin

•We extend CountMin as follows:
• For each row of intervals in figure, we store a separate count-min structure
• For each row, count-min of that row treats two elements that fall into the same interval as the same 

element
• Note that the value at any ancestor of a node is at least as big as the value at that node

40
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Heavy Hitters with CountMin

•To get the 𝐾 heavy-hitters:
• Explore the tree starting from the root
• Only explore the children of intervals that have frequency at least &

}
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Heavy Hitters with CountMin
Analysis:

◦ Space complexity O $
c
⋅ log$

"
u
⋅ log$ 𝑛

◦ Time complexity to get 𝐾 heavy hitters is O 𝐾 ⋅ log$ 𝑛
◦ For any given row, the sum over all frequencies in that row is 𝑛
◦ Thus, in any row, there are at most 𝐾 intervals with frequency &

}
◦ Therefore, we only explore the children of at most 𝐾 intervals in any given row
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CountSketch Algorithm
•Pick 𝑡 hash functions such that ℎ': 𝑚 → 𝑤 from a universal family of hash functions

•Pick 𝑡 hash functions such that 𝑠': 𝑚 → {−1,+1} from a universal family of hash functions

•Create a 2D array 𝐶 𝑡 𝑤 initially all cells set to 0

•Algorithm:
• For each item 𝑥:
• For 𝑖 from 1 to 𝑡
• 𝐶 𝑖 ℎ'(𝑥) = 𝐶 𝑖 ℎ'(𝑥) +𝑠'(𝑥)

•Then the frequency of item 𝑥 is �𝑓� = m𝑒𝑑𝑖𝑎𝑛
∀ '

𝐶 𝑖 ℎ' 𝑥 ⋅ 𝑠'(𝑥)
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CountSketch Algorithm
•We can show that 
• When we set 𝑡 = 𝑂(log 𝑛) and w = `

cd

• Then, with high probability
• �𝑓� − 𝑓� ≤ 𝜖 ⋅ ∑o 𝑓o$

• ∑o 𝑓o
$ ≪ 𝑛 for skewed distributions
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CountSketch Algorithm
•Space complexity:

• O "
cd
⋅ log$

"
u
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Conclusion
•Randomized approximate algorithms provide simple solutions to important problems

•Mean and median tricks help us improve the error probability and space complexity of algorithm
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