
By Koko Nanahji

Streaming Algorithms

1

Model Counting Heavy
Hitters CountMin CountSketch Conclusion

Outline

2

Model
•Input: sequence of integers 𝑥", 𝑥$, … , 𝑥&
• 𝑥' ∈ 𝑈

•Goal: compute some function 𝑓' on the input stream

3

Focus
•Main focus:
• Reduce the amount of memory used to process the input

4

Model Counting Heavy
Hitters CountMin CountSketch Conclusion

Outline

5

Counting
•Input: Sequence of integers 𝑥", 𝑥$, … , 𝑥&
• Problem: Find the number of elements in the input stream

6

Naïve Solution
•Keep a counter
• Space Complexity: 𝑂(log$ 𝑛) bits

7

Approx. Solution
•We would like to find an approximate solution 2𝑛 such that
• Given ϵ > 0 and δ < 1
• Find an estimate 2n such that:
• 𝑃 𝑛 − 2𝑛 > 𝜖𝑛 < 𝛿

8

Morris’ Algorithm
•Algorithm:
• 𝑋 ≔ 0
• For each item seen:

• Increment 𝑋 with probability "
$@

• Output: 2𝑛 ≔ 2B − 1

•Intuitively: 𝑋 ~ log$ 𝑛

9

Analysis
•Let 𝑋& denote the value of 𝑋 after seeing the 𝑖EF item
• We will show that:
• 𝐸 2HI = 𝑛 + 1

10

Analysis
•Show that 𝐸 2HI = 𝑛 + 1

•Proof:
• By induction on 𝑛
• Base Case: 𝑋L = 0 => 𝐸 2HM = 𝐸 2L = 1
• Induction Hypothesis: Assume the claim is true for 𝑛 prove for 𝑛 + 1

11

Analysis
•Inductive Step:
• 𝐸 2HINO = ∑∀' 2' 𝑃(𝑋&R" = 𝑖)
• 𝐸 2HINO = ∑∀' 2' (𝑃 𝑋& = 𝑖 − 1 ⋅ 𝑃 𝑋& 𝑔𝑒𝑡𝑠 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑒𝑑 | 𝑋& = 𝑖 − 1 + 𝑃(
)

𝑋& =
𝑖 ⋅ 𝑃 𝑋& 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑔𝑒𝑡𝑠 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑒𝑑 | 𝑋& = 𝑖)

• 𝐸 2HINO = ∑∀' 2' 𝑃 𝑋& = 𝑖 − 1 ⋅ "
$^_O

+ 𝑃 𝑋& = 𝑖 ⋅ 1 − "
$^

• 𝐸 2HINO = ∑∀' 2' 𝑃 𝑋& = 𝑖 − 1 ⋅ "
$^_O

+ ∑∀' 2' 𝑃 𝑋& = 𝑖 ⋅ 1 − "
$^

• 𝐸 2HINO = ∑∀' 2' 𝑃 𝑋& = 𝑖 − 1 ⋅ "
$^_O

+ ∑∀' 2' 𝑃 𝑋& = 𝑖 − ∑∀' 2' 𝑃 𝑋& = 𝑖 ⋅ "
$^

• 𝐸 2HINO = ∑∀' 2 𝑃 𝑋& = 𝑖 − 1 + ∑∀' 2' 𝑃 𝑋& = 𝑖 − ∑∀' 𝑃 𝑋& = 𝑖
• 𝐸 2HINO = ∑∀' 2' 𝑃 𝑋& = 𝑖 + ∑∀' 𝑃 𝑋& = 𝑖
• 𝐸 2HINO = 𝐸 2HI + 1 = 𝑛 + 1 + 1

12

Analysis
•We can show the following:
• 𝐸 2HI = 𝑛 + 1
• 𝐸 2$HI = `

$
𝑛$ + `

$
𝑛 + 1 (similar to previous proof)

•Therefore, we have that:
• 𝑉𝑎𝑟 2HI < "

$
𝑛$

•Hence: By Chebyshev’s inequality
• 𝑃 𝑛 − 2𝑛 > 𝜖𝑛 < "

$cd

•Note: This is not very useful when 𝜖 ≥ 1
• We will improve this algorithm soon

13

Space Complexity
•Since we have: 𝐸 2HI = 𝑛 + 1.
• 𝑊𝑒 𝑐𝑎𝑛 𝑠ℎ𝑜𝑤: 𝑃 2HI − 1 ≥ 𝑛k ≤ "

&m_O

•Meaning, with high probability we have
• 2HI − 1 ≥ 𝑛k

• 2HI ≥ 𝑛k − 1
• 𝑋& ≥ log$ 𝑛k − 1

•Hence, to store 𝑋& we can show that we need
• O(log$ log$ 𝑛) bits with high probability

14

Morris+ Algorithm
•Improve Morris’ algorithm by using the mean trick
• Run 𝑠 > 1 independent copies of Morris’ algorithm and average their outputs

15

Morris+ Algorithm
•Let 𝑋o be the output of the 𝑗EF copy of Morris’ algorithm after seeing the 𝑖EF item

• 𝑌' =
"
r
∑o 2Hs − 1

• By linearity of expectation we have 𝐸 2tI = 𝑛 + 1
• But

• 𝑉𝑎𝑟 2tI < "
$r
𝑛$ < 𝑉𝑎𝑟 2HI

s
= "

$
𝑛$

•By Chebyshev’s inequality we have:
• 𝑃 𝑛 − 2𝑛 > 𝜖𝑛 < "

$rcd

• Then for 𝛿 error probability we set

• 𝑠 > "
$cdu

16

Morris+ Space
•Space complexity: 𝑂(𝑠 ⋅ 𝑙𝑜𝑔$ 𝑙𝑜𝑔$ 𝑛) bits with high probability

•For 𝛿 error probability we need
• 𝑂("

$cdu
⋅ 𝑙𝑜𝑔$ 𝑙𝑜𝑔$ 𝑛) bits with high probability

•We will improve this space complexity using the median trick

17

Morris++ Algorithm
•Improve space complexity by using the median trick
• Run 𝑡 independent copies of Morris+ algorithm

• Such that 𝑠 = `
$⋅cd

• Meaning the error probability of each Morris+ is "
`

• Output the median estimate

18

Morris++ Algorithm
•Note:
• Since the error probability of each Morris+ is "

`

• Expected number of Morris+ instantiations that succeed is $E
`

• Hence, for the median to be a bad estimate at least half of the Morris+ instantiations must fail
• We will show that this is not likely

19

Morris++ Algorithm
•Let 𝑍' = 1 if 𝑖EF Morris+ instantiation succeeds, otherwise 𝑍' = 0
• We will bound 𝑃 ∑' 𝑍' ≤

E
$

• 𝑃 ∑' 𝑍' ≤
E
$
≤ 𝑃 ∑' 𝑍' −

$E
`
≤ E

$
− $E

`

• 𝑃 ∑' 𝑍' ≤
E
$

≤ 𝑃 ∑' 𝑍' − 𝐸 ∑' 𝑍' ≤ − E
x

• By Hoeffding bound

• 𝑃 ∑' 𝑍' ≤
E
$
≤ 𝑒

_O
OyE

• Hence, for 𝑡 ≥ 18 ln "
u

• 𝑃 ∑' 𝑍' ≤
E
$
≤ 𝛿

20

Morris++ Space
•If we set 𝑠 ⋅ 𝑡 = 𝜃 "

cd
ln "

u

• We get that we need 𝑂 "
cd
ln "

u
⋅ log$ (log$𝑛) bits with high probability

21

Model Counting Heavy
Hitters CountMin CountSketch Conclusion

Outline

22

Heavy Hitters
•Input: sequence of integers 𝑥", 𝑥$, … , 𝑥&
• 𝑥' ∈ 1,2, … ,𝑚

•Let 𝑓' be the frequency of element 𝑖 in the given sequence

•Goal: Given some integer 𝐾 find the elements that have 𝑓' >
&
}

•There is a simple two pass algorithm named Misrea – Gries Algorithm (was covered last time)

23

Model Counting Heavy
Hitters CountMin CountSketch Conclusion

Outline

24

CountMin Algorithm
•Pick 𝑡 hash functions such that ℎ': 𝑚 → 𝑤 from a universal family of hash functions

•Create a 2D array 𝐶 𝑡 𝑤 initially all cells set to 0

•Algorithm:
• For each item 𝑥:
• For 𝑖 from 1 to 𝑡
• Increment 𝐶 𝑖 ℎ'(𝑥)

•Then the frequency of item 𝑥 is min
∀ '

𝐶 𝑖 ℎ'(𝑥)

25

CountMin Algorithm

26

Fun 𝐶 𝑡 [0] 𝐶 𝑡 [1] 𝐶 𝑡 [2]
ℎL 0 0 0
ℎ" 0 0 0
ℎ$ 0 0 0

Insert 3

27

3
Fun 𝐶 𝑡 [0] 𝐶 𝑡 [1] 𝐶 𝑡 [2]
ℎL 0 0 0
ℎ" 0 0 0
ℎ$ 0 0 0

Insert 3

28

Fun 𝐶 𝑡 [0] 𝐶 𝑡 [1] 𝐶 𝑡 [2]
ℎL 1 0 0
ℎ" 0 1 0
ℎ$ 0 0 1

Insert 5

29

Fun 𝐶 𝑡 [0] 𝐶 𝑡 [1] 𝐶 𝑡 [2]
ℎL 1 0 0
ℎ" 0 1 0
ℎ$ 0 0 1

5

Insert 5

30

Fun 𝐶 𝑡 [0] 𝐶 𝑡 [1] 𝐶 𝑡 [2]
ℎL 1 1 0
ℎ" 0 2 0
ℎ$ 1 0 1

Insert 10

31

Fun 𝐶 𝑡 [0] 𝐶 𝑡 [1] 𝐶 𝑡 [2]
ℎL 1 1 0
ℎ" 0 2 0
ℎ$ 1 0 1

10

Insert 10

32

Fun 𝐶 𝑡 [0] 𝐶 𝑡 [1] 𝐶 𝑡 [2]
ℎL 1 1 1
ℎ" 0 3 0
ℎ$ 2 0 1

Query 3

33

Fun 𝐶 𝑡 [0] 𝐶 𝑡 [1] 𝐶 𝑡 [2]
ℎL 1 1 1
ℎ" 0 3 0
ℎ$ 2 0 1

Minimum

Query 5

34

Fun 𝐶 𝑡 [0] 𝐶 𝑡 [1] 𝐶 𝑡 [2]
ℎL 1 1 1
ℎ" 0 3 0
ℎ$ 2 0 1

Minimum

CountMin Algorithm
•We will do some analysis on this algorithm

•Let 𝑓�be the actual count of 𝑥

•Let �𝑓� be the estimated count of 𝑥

•Note: f� ≤ �𝑓�

•We will show that P �𝑓� ≥ 𝑓� + 𝜖𝑛 ≤ 𝛿

35

CountMin Algorithm
•We will compute the E 𝐶 𝑗 [ℎo 𝑥]
• E 𝐶 𝑗 [ℎo 𝑥] = E ∑∀r:Fs r �Fs � 𝑓r

• E 𝐶 𝑗 [ℎo 𝑥] = 𝑓� +
"
�
∑∀r�� 𝑓r

• E 𝐶 𝑗 [ℎo 𝑥] < 𝑓� +
&
�

36

CountMin Algorithm
•We have
• E 𝐶 𝑗 [ℎo 𝑥] < 𝑓� +

&
�

•We will bound P 𝐶 𝑗 [ℎo 𝑥] ≥ 𝑓� +
$&
�

• P 𝐶 𝑗 [ℎo 𝑥] ≥ 𝑓� +
$&
�

≤ P 𝐶 𝑗 [ℎo 𝑥] − 𝑓� ≥
$&
�

• By Chebyshev’s inequality:

• P 𝐶 𝑗 [ℎo 𝑥] ≥ 𝑓� +
$&
�

≤ � � o [Fs �]���
dI
�

• P 𝐶 𝑗 [ℎo 𝑥] ≥ 𝑓� +
$&
�

≤
��R

I
����
dI
�

≤ "
$

37

CountMin Algorithm
•So far we have:

• P 𝐶 𝑗 [ℎo 𝑥] ≥ 𝑓� +
$&
�

≤ "
$

•We will bound P �𝑓� ≥ 𝑓� +
$&
�

• P �𝑓� ≥ 𝑓� +
$&
�

= P min
∀�

𝐶 𝑗 [ℎo 𝑥] ≥ 𝑓� +
$&
�

• P �𝑓� ≥ 𝑓� +
$&
�

= ∏� P 𝐶 𝑗 [ℎo 𝑥] ≥ 𝑓� +
$&
�

• P �𝑓� ≥ 𝑓� +
$&
�

≤ "
$

E

• If we set w= $
c

and t = log$
"
u

we will have

• P �𝑓� ≥ 𝑓� + 𝜖𝑛 ≤ 𝛿

38

CountMin Algorithm
•Space complexity:

• O(w ⋅ 𝑡) = 𝑂 $
c
⋅ log$

"
u

39

Heavy Hitters with CountMin

•We extend CountMin as follows:
• For each row of intervals in figure, we store a separate count-min structure
• For each row, count-min of that row treats two elements that fall into the same interval as the same

element
• Note that the value at any ancestor of a node is at least as big as the value at that node

40

1,2,…,m

1,2,…,m/2 m/2+1,…,m

1 2 m-1 m

Heavy Hitters with CountMin

•To get the 𝐾 heavy-hitters:
• Explore the tree starting from the root
• Only explore the children of intervals that have frequency at least &

}

41

1,2,…,m

1,2,…,m/2 m/2+1,…,m

1 2 m-1 m

Heavy Hitters with CountMin
Analysis:

◦ Space complexity O $
c
⋅ log$

"
u
⋅ log$ 𝑛

◦ Time complexity to get 𝐾 heavy hitters is O 𝐾 ⋅ log$ 𝑛
◦ For any given row, the sum over all frequencies in that row is 𝑛
◦ Thus, in any row, there are at most 𝐾 intervals with frequency &

}
◦ Therefore, we only explore the children of at most 𝐾 intervals in any given row

42

Model Counting Heavy
Hitters CountMin CountSketch Conclusion

Outline

43

CountSketch Algorithm
•Pick 𝑡 hash functions such that ℎ': 𝑚 → 𝑤 from a universal family of hash functions

•Pick 𝑡 hash functions such that 𝑠': 𝑚 → {−1,+1} from a universal family of hash functions

•Create a 2D array 𝐶 𝑡 𝑤 initially all cells set to 0

•Algorithm:
• For each item 𝑥:
• For 𝑖 from 1 to 𝑡
• 𝐶 𝑖 ℎ'(𝑥) = 𝐶 𝑖 ℎ'(𝑥) +𝑠'(𝑥)

•Then the frequency of item 𝑥 is �𝑓� = m𝑒𝑑𝑖𝑎𝑛
∀ '

𝐶 𝑖 ℎ' 𝑥 ⋅ 𝑠'(𝑥)

44

CountSketch Algorithm
•We can show that
• When we set 𝑡 = 𝑂(log 𝑛) and w = `

cd

• Then, with high probability
• �𝑓� − 𝑓� ≤ 𝜖 ⋅ ∑o 𝑓o$

• ∑o 𝑓o
$ ≪ 𝑛 for skewed distributions

45

CountSketch Algorithm
•Space complexity:

• O "
cd
⋅ log$

"
u

46

Model Counting Heavy
Hitters CountMin CountSketch Conclusion

Outline

47

Conclusion
•Randomized approximate algorithms provide simple solutions to important problems

•Mean and median tricks help us improve the error probability and space complexity of algorithm

48

References
•The material presented is from the following source:
• https://www.sketchingbigdata.org/fall20/lec/notes.pdf

•I have used the following resources to understand some of the proofs better:
• http://www.cs.columbia.edu/~andoni/s17_advanced/algorithms/mainSpace/files/scribe1.pdf
• http://www.cs.columbia.edu/~andoni/s17_advanced/algorithms/mainSpace/files/scribe2.pdf
• http://www.cs.columbia.edu/~andoni/s17_advanced/algorithms/mainSpace/files/scribe5.pdf
• http://web.stanford.edu/class/cs369g/files/lectures/lec7.pdf
• http://web.stanford.edu/class/cs369g/files/lectures/lec8.pdf

49

https://www.sketchingbigdata.org/fall20/lec/notes.pdf
http://www.cs.columbia.edu/~andoni/s17_advanced/algorithms/mainSpace/files/scribe1.pdf
http://www.cs.columbia.edu/~andoni/s17_advanced/algorithms/mainSpace/files/scribe2.pdf
http://www.cs.columbia.edu/~andoni/s17_advanced/algorithms/mainSpace/files/scribe5.pdf
http://web.stanford.edu/class/cs369g/files/lectures/lec7.pdf
http://web.stanford.edu/class/cs369g/files/lectures/lec8.pdf

