Online graph coloring

Jinman Zhao
CSC2421-presentation2

First Fit

- Use the smallest numbered color that does not violate the coloring requirement.
- FF produces a maximal stable sequence partition $V(G)=S_{1} \cup \cdots \cup S_{k}$, where S_{i} is a maximal nonempty stable set in the subgraph induced by $S_{i} \cup$ $\cdots \cup S_{k}$
- $\chi_{F F}(G) \leq(2+\varepsilon) \chi(G)$ holds for almost all graphs.

Upper Bound for Online First Fit Coloring

- Theorem: If G is a split graph(the union of a clique and a stable set with arbitrary edges between them), then $\chi_{F F}(G) \leq \omega(G)+1$.

Upper Bound for Online First Fit Coloring

- Theorem: If G is a bipartite graph, \bar{G} is the complement of G, then
$\chi_{F F}(\bar{G}) \leq \frac{3}{2} \omega(\bar{G})$.
- A maximal clique sequence partition of G consists of a set F of independent edges and a stable set $X \cup Y$ of the nonsaturated vertices $(X$ and Y are, respectively in the first and second bipartition class of G).
- $|\mathrm{F}|+|X| \leq \omega(\bar{G}),|\mathrm{F}|+|Y| \leq \omega(\bar{G})$,
$|X \cup Y|=|X|+|Y| \leq \omega(\bar{G})$
- $\chi_{F F}(\bar{G})=|\mathrm{F}|+|X \cup Y| \leq \frac{3}{2} \omega(\bar{G})$,

Upper Bound for Online First Fit Coloring

- Why $\frac{3}{2} \omega(\bar{G})$ is a tight bound?
- Let $V(G)=A \cup B \cup C \cup D$, where A, B, C and D are pairwise disjoint stable sets of k vertices.
- $A \cup B, B \cup C$ and $C \cup D$ induced complete bipartite subgraph.
- $\chi_{F F}(\bar{G})=3 \mathrm{k}$ and $\omega(\bar{G})=2 \mathrm{k}$.

Upper Bound for Online First Fit Coloring

- Theorem: If G is a chordal graph, \bar{G} is the complement of G, then $\chi_{F F}(\bar{G}) \leq 2 \omega(\bar{G})-1$.
- Let $\mathrm{C}_{1}, \ldots, C_{k}$ be a first fit clique partition of $\mathrm{G} . C_{i}$ is a maximal clique in the subgraph of G induced by $C_{i} \cup \cdots \cup C_{k}$. Want to show $\omega(\bar{G}) \geq \frac{k+1}{2}$ by induction. Let $G^{\prime}=G \backslash V\left(C_{1}\right) . \mathrm{C}_{2}, \ldots, C_{k}$ be a first fit clique partition of G^{\prime}.
- Case1: If G^{\prime} has more components than G. Easily to use IH.
- Proof from the presenter: Let $G^{\prime}=G_{1} \cup \cdots G_{m}$

$$
\begin{aligned}
\omega\left(\overline{G^{\prime}}\right)=\omega\left(\overline{G_{1}}\right)+\cdots+\omega\left(\overline{G_{m}}\right) \geq \frac{k_{1}+1}{2} & +\cdots+\frac{k_{m}+1}{2} \text { where } k_{1}+\cdots+k_{m}=k-1 . \\
& =\frac{k_{1}+\cdots+k_{m}+m}{2}=\frac{\mathrm{k}-1+m}{2} \geq \frac{\mathrm{k}+1}{2} \text { as wanted. }
\end{aligned}
$$

- Case2 : Otherwise. G has a simplicial vertex whose neighborhoods induce a clique in C 1 . This vertex can be added to any maximum independent set of G^{\prime}, and $\omega(\bar{G}) \geq \omega\left(\overline{G^{\prime}}\right)+1 \geq \frac{(\mathrm{k}-1)+1}{2}+1>\frac{\mathrm{k}+1}{2}$.

No Bounded Algo For Chordal

- Theorem: For every positive integer n there exists a tree T_{n} such that $\chi_{A}(T) \geq n$ holds for every online algorithm A .
- Base case: $\mathrm{n}=1$. Let T_{1} be a single vertex tree.
- $\mathrm{n}>1$. Assume $T_{1}, \ldots, \mathrm{~T}_{n-1}$ have been defined.
- Make copies of $T_{1}, \ldots, \mathrm{~T}_{n-1}$ and in all copies we distinguish distinct vertices as roots. T_{n} is formed as the union of all these rooted copies of $T_{1}, \ldots, \mathrm{~T}_{n-1}$ plus a new vertex x joined to every root.

Deterministic Online Algo for Chordal

Theorem 1. Let $d \in \mathbb{N}$ with $d \geq 2$ be arbitrary. For every deterministic online algorithm \mathcal{A} and every $n \in \mathbb{N}$ with $n \geq 2 d^{2}$, there exists a n-vertex chordal graph G with chromatic number $\chi(G)=d$ such that \mathcal{A} uses $\Omega(d \cdot \log n)$ colors to color G.
Lemma 1. Let $d \in \mathbb{N}$ with $d \geq 2$ be arbitrary. For every deterministic online algorithm \mathcal{A} and every $k \in \mathbb{N}$, there exists a chordal graph G_{k} having chromatic number $\chi\left(G_{k}\right)=d$ and consisting of $n_{k} \leq d 2^{k}$ vertices such that \mathcal{A} is forced to use at least $c_{k} \geq(d-1) k / 4$ colors to color G_{k}.

1. ADV constructs a chordal G_{k} recursively.
2. Gk has a forest representation. In every tree T of G_{k}, each tree node represents a clique of size $\mathrm{d} / 2 \mathrm{in}$ G_{k}. So, tree node != vertex.
3. If two tree nodes u_{T} and v_{T} are connected by a tree edge in T, then any two vertices $u \in u_{T}$ and $v \in v_{T}$ are connected by an edge in G_{k}. Hence u_{T} and v_{T} form a clique of size din G_{k}.

Deterministic Online Algo for Chordal

- Notations:
- Each tree T in G_{k} has a root node. Let $r(T)$ be the set of these $d / 2$ vertices.
- Let $r\left(G_{k}\right)$ be the union of $r(T)$.
- For any subset V^{\prime} of the vertices of G_{k}, let $C_{A}\left(V^{\prime}\right)$ be the set of colors used to color V^{\prime}.
- Example:

Real G

Tree representation of G.

Deterministic Online Algo for Chordal

- For increasing k , the following invariants will be maintained.
(1) Algorithm \mathcal{A} uses at least $\frac{d}{4} \cdot k$ colors for the root vertices of G_{k}, i.e. $\left|\mathcal{C}_{\mathcal{A}}\left(r\left(G_{k}\right)\right)\right| \geq \frac{d}{4} \cdot k$.
(2) G_{k} is a union of connected components, each of which can be represented by a tree T. Each tree node is a clique of size $d / 2$. Every tree T has a distinguished root node containing a set $r(T)$ of $d / 2$ root vertices in G_{k}.
(3) G_{k} is chordal.
(4) The maximum clique size is $\omega\left(G_{k}\right)=d$.
(5) The number of vertices satisfies $n_{k} \leq \frac{d}{2} \cdot\left(2^{k+1}-1\right)$.

Deterministic Online Algo for Chordal

- Base graph G_{1} : Clique of size d. Only one tree. Pick any $d / 2$ vertices be the root node and the remaining $\mathrm{d} / 2$ vertices be the second tree node.
- $\mathrm{k}>1$:
- Invariant (1) implies $\left|C_{A}\left(r\left(G_{k-1}^{l}\right)\right)\right| \geq(k-1) d / 4$ and $\left|C_{A}\left(r\left(G_{k-1}^{\mathrm{r}}\right)\right)\right| \geq(k-1) d / 4$
- Case1: If $\left|C_{A}\left(r\left(G_{k-1}^{l}\right) \cup r\left(G_{k-1}^{r}\right)\right)\right| \geq k d / 4, G_{k}=$ $\left(G_{k-1}^{l}\right) \cup\left(G_{k-1}^{r}\right)$. No further vertices added.

Deterministic Online Algo for Chordal

- k>1, Case2: If $\left|C_{A}\left(r\left(G_{k-1}^{l}\right) \cup r\left(G_{k-1}^{r}\right)\right)\right|<\frac{d k}{4}$. Add new root node R . For every vertex of R there is an edge to every vertex in R_{i}^{l}. There is a tree edge between R and every R_{i}^{l}.
- Let $q=\left|C_{A}\left(r\left(G_{k-1}^{r}\right)\right) \backslash C_{A}\left(r\left(G_{k-1}^{l}\right)\right)\right|=\left|C_{A}\left(r\left(G_{k-1}^{r}\right) \cup r\left(G_{k-1}^{l}\right)\right)\right|-\left|C_{A}\left(r\left(G_{k-1}^{l}\right)\right)\right|<\frac{d k}{4}-\frac{d(k-1)}{4}=\frac{d}{4}$
- $C_{A}\left(r\left(G_{k-1}^{r}\right)\right)=\left[C_{A}\left(r\left(G_{k-1}^{l}\right)\right) \cap C_{A}\left(r\left(G_{k-1}^{r}\right)\right)\right] \cup\left[C_{A}\left(r\left(G_{k-1}^{r}\right)\right) \backslash C_{A}\left(r\left(G_{k-1}^{l}\right)\right)\right]$
- R is a clique of size $\frac{d}{2}$, must use at least $\frac{d}{2}-q>\frac{d}{4}$ colors not in $C_{A}\left(r\left(G_{k-1}^{l}\right)\right)$.
- $\left|C_{A}\left(r\left(G_{k}\right)\right)\right|=\left|C_{A}\left(R \cup r\left(G_{k-1}^{r}\right)\right)\right| \geq \frac{d}{4}+\frac{d(k-1)}{4}=\frac{d k}{4}$

- Can create a connected graph by adding a final vertex v_{f} that has an edge to exactly one root vertex in each of the components.
- \#vertices $\leq \frac{d}{2}\left(2^{k+1}-1\right)+1 \leq d 2^{k}$

Deterministic Online Algo for Chordal

Lemma 1. Let $d \in \mathbb{N}$ with $d \geq 2$ be arbitrary. For every deterministic online algorithm \mathcal{A} and every $k \in \mathbb{N}$, there exists a chordal graph G_{k} having chromatic number $\chi\left(G_{k}\right)=d$ and consisting of $n_{k} \leq d 2^{k}$ vertices such that \mathcal{A} is forced to use at least $c_{k} \geq(d-1) k / 4$ colors to color G_{k}.
(1) Algorithm \mathcal{A} uses at least $\frac{d}{4} \cdot k$ colors for the root vertices of G_{k}, i.e. $\left|\mathcal{C}_{\mathcal{A}}\left(r\left(G_{k}\right)\right)\right| \geq \frac{d}{4} \cdot k$.
(2) G_{k} is a union of connected components, each of which can be represented by a tree T. Each tree node is a clique of size $d / 2$. Every tree T has a distinguished root node containing a set $r(T)$ of $d / 2$ root vertices in G_{k}.
(3) G_{k} is chordal.
(4) The maximum clique size is $\omega\left(G_{k}\right)=d$.
(5) The number of vertices satisfies $n_{k} \leq \frac{d}{2} \cdot\left(2^{k+1}-1\right)$.

Deterministic Online Algo for Chordal

Theorem 1. Let $d \in \mathbb{N}$ with $d \geq 2$ be arbitrary. For every deterministic online algorithm \mathcal{A} and every $n \in \mathbb{N}$ with $n \geq 2 d^{2}$, there exists a n-vertex chordal graph G with chromatic number $\chi(G)=d$ such that \mathcal{A} uses $\Omega(d \cdot \log n)$ colors to color G.

- Given d and n , let $k=\left\lfloor\log \frac{n}{d}\right\rfloor$, by lemma, there exists a chordal G_{k} with $n_{k} \leq d 2^{k}$ vertices, chromatic number d and algo uses at least $\mathrm{c}_{\mathrm{k}} \geq \frac{(d-1) k}{4}$ colors.
- $n_{k} \leq d \frac{n}{d} \leq n$, add $n-n_{k}$ vertices, all of which have one edge to an arbitrary vertex of G_{k}.
- $d \leq \sqrt{n / 2}$ since $n \geq 2 d^{2}$. So $k \geq \log n-\log d-1 \geq \log n-\frac{1}{2} \log \frac{n}{2}-1=\log \frac{n}{2}-\frac{1}{2} \log \frac{n}{2}=\frac{1}{2} \log \frac{n}{2}$
- Since $n \geq 2 d^{2} \geq 4, \log \frac{n}{2} \geq \frac{1}{2} \log n$
- Since $d \geq 2, c_{\mathrm{k}} \geq \frac{d k}{8} \geq\left(\frac{1}{2} \log \frac{n}{2}\right) \frac{d}{8} \geq \frac{d}{16}\left(\frac{1}{2} \log n\right)=\frac{\text { dlog } \mathrm{n}}{32}$

Lower Bound for Deterministic Online Coloring

- Theorem: For every deterministic online algorithm there exists a logn-colorable graph for which the algorithm uses at least $2 \mathrm{n} / \operatorname{logn}$ colors. The performance ratio of any deterministic online coloring algorithm is at least $\frac{2 \mathrm{n}}{\log ^{2} n}$.
- Avail $\left(v_{t}\right)=$ admissible colors consists of the colors not used by its pre-neighbors
- $H u e(b)=\{\operatorname{Col}(v i): \operatorname{Bin}(v i)=b\}$
- H is a hue collection set of all nonempty hues.
- $[k]$ is the set $\{1,2, \ldots, k\}$.
- $[k]^{\left(\frac{k}{2}\right)}$ is the collection of all subsets of $[k]$ of size $k / 2$.
- Algo colors with bins and the adversary with colors.

Lower Bound for Deterministic Online Coloring

- Observation1: $\operatorname{Hue}\left(\operatorname{Bin}\left(v_{t}\right)\right) \subseteq \operatorname{Avail}\left(v_{t}\right)$
- Observation2: If m distinct bin/color pairs have been assigned after round t , then at least $m /\left(\max _{i \leq t}\left|\operatorname{Avail}\left(v_{i}\right)\right|\right)$ bins have been used.
- Observation3: If $\operatorname{Col}\left(v_{t}\right) \in \operatorname{Avail}\left(v_{t}\right)-$ $\operatorname{Hue}\left(\operatorname{Bins}\left(v_{t}\right)\right)$ then progress is made.

```
- Adversary Strategy:
- Let \(n=\frac{k}{2}\binom{k}{k / 2}\), while \(t \leq n\) :
- \(\operatorname{Avail}\left(v_{t}\right)=\operatorname{any}\left([k]^{k / 2}-H\right)\)
- \(\operatorname{Adj}^{-}\left(v_{t}\right)=\left\{v_{i}: \operatorname{Col}\left(v_{i}\right) \notin \operatorname{Avail}\left(v_{t}\right)\right.\) and \(\left.i<t\right\}\)
- \(\operatorname{Col}\left(v_{t}\right)=\operatorname{any}\left(\operatorname{Avail}\left(v_{t}\right)-\operatorname{Hue}\left(\operatorname{Bin}\left(v_{t}\right)\right)\right)\)
```

- Avail $\left(v_{t}\right)$ cannot equal to any bin hue, and by obsercation1, $\operatorname{Col}\left(v_{t}\right)$ must be defined.
- Each round make progress by observation 2.
- By observation3, at least $\mathrm{n} /(\mathrm{k} / 2)$ bins uses. The number of colors is at most k , so performance ratio is at least $2 n / k^{2}$, where $k=\log n$.

