Online graph coloring

Jinman Zhao

CSC2421-presentation2

First Fit

- Use the smallest numbered color that does not violate the coloring requirement.
- FF produces a maximal stable sequence partition $V(G) = S_1 \cup \cdots \cup S_k$, where S_i is a maximal nonempty stable set in the subgraph induced by $S_i \cup \cdots \cup S_k$
- $\chi_{FF}(G) \leq (2 + \varepsilon) \chi(G)$ holds for almost all graphs.

• Theorem: If G is a split graph (the union of a clique and a stable set with arbitrary edges between them), then $\chi_{FF}(G) \leq \omega(G) + 1$.

- **Theorem**: If G is a bipartite graph, \overline{G} is the complement of G, then $\chi_{FF}(\overline{G}) \leq \frac{3}{2}\omega(\overline{G})$.
 - A maximal clique sequence partition of G consists of a set F of independent edges and a stable set $X \cup Y$ of the nonsaturated vertices(X and Y are, respectively in the first and second bipartition class of G).
 - $|\mathbf{F}| + |X| \le \omega(\bar{G}), |\mathbf{F}| + |Y| \le \omega(\bar{G}),$ $|X \cup Y| = |X| + |Y| \le \omega(\bar{G})$
 - $\chi_{FF}(\overline{G}) = |\mathbf{F}| + |X \cup Y| \le \frac{3}{2}\omega(\overline{G}),$

- Why $\frac{3}{2}\omega(\bar{G})$ is a tight bound?
 - Let $V(G) = A \cup B \cup C \cup D$, where A, B, C and D are pairwise disjoint stable sets of k vertices.
 - $A \cup B, B \cup C$ and $C \cup D$ induced complete bipartite subgraph.
 - $\chi_{FF}(\overline{G}) = 3k \text{ and } \omega(\overline{G}) = 2k.$

- **Theorem**: If G is a chordal graph, \overline{G} is the complement of G, then $\chi_{FF}(\overline{G}) \leq 2\omega(\overline{G}) 1$.
 - Let $C_1, ..., C_k$ be a first fit clique partition of G. C_i is a maximal clique in the subgraph of G induced by $C_i \cup \cdots \cup C_k$. Want to show $\omega(\bar{G}) \ge \frac{k+1}{2}$ by induction. Let $G' = G \setminus V(C_1)$. $C_2, ..., C_k$ be a first fit clique partition of G'.
 - Case1: If G' has more components than G. Easily to use IH.
 - Proof from the presenter: Let $G' = G_1 \cup \cdots G_m$
 - $\omega(\overline{G'}) = \omega(\overline{G_1}) + \dots + \omega(\overline{G_m}) \ge \frac{k_1+1}{2} + \dots + \frac{k_m+1}{2}$ where $k_1 + \dots + k_m = k 1$. $= \frac{k_1 + \dots + k_m + m}{2} = \frac{k-1+m}{2} \ge \frac{k+1}{2}$ as wanted.
 - Case2 : Otherwise. G has a simplicial vertex whose neighborhoods induce a clique in C1. This vertex can be added to any maximum independent set of G', and $\omega(\overline{G}) \ge \omega(\overline{G'}) + 1 \ge \frac{(k-1)+1}{2} + 1 > \frac{k+1}{2}$.

No Bounded Algo For Chordal

- Theorem: For every positive integer n there exists a tree T_n such that $\chi_A(T) \ge n$ holds for every online algorithm A.
 - Base case: n=1. Let T_1 be a single vertex tree.
 - n>1. Assume T_1, \dots, T_{n-1} have been defined.
 - Make copies of $T_1, ..., T_{n-1}$ and in all copies we distinguish distinct vertices as roots. T_n is formed as the union of all these rooted copies of $T_1, ..., T_{n-1}$ plus a new vertex x joined to every root.

Theorem 1. Let $d \in \mathbb{N}$ with $d \geq 2$ be arbitrary. For every deterministic online algorithm \mathcal{A} and every $n \in \mathbb{N}$ with $n \geq 2d^2$, there exists a n-vertex chordal graph G with chromatic number $\chi(G) = d$ such that \mathcal{A} uses $\Omega(d \cdot \log n)$ colors to color G.

Lemma 1. Let $d \in \mathbb{N}$ with $d \geq 2$ be arbitrary. For every deterministic online algorithm \mathcal{A} and every $k \in \mathbb{N}$, there exists a chordal graph G_k having chromatic number $\chi(G_k) = d$ and consisting of $n_k \leq d2^k$ vertices such that \mathcal{A} is forced to use at least $c_k \geq (d-1)k/4$ colors to color G_k .

- 1. ADV constructs a chordal G_k recursively.
- 2. Gk has a forest representation. In every tree T of G_k , each tree node represents a clique of size d/2 in G_k . So, tree node != vertex.
- 3. If two tree nodes u_T and v_T are connected by a tree edge in T, then any two vertices $u \in u_T$ and $v \in v_T$ are connected by an edge in G_k . Hence u_T and v_T form a clique of size d in G_k .

- Notations:
 - Each tree T in G_k has a root node. Let r(T) be the set of these d/2 vertices.
 - Let $r(G_k)$ be the union of r(T).
 - For any subset V' of the vertices of G_k , let $C_A(V')$ be the set of colors used to color V'.
- Example:

Tree representation of G.

- For increasing k, the following invariants will be maintained.
 - (1) Algorithm \mathcal{A} uses at least $\frac{d}{4} \cdot k$ colors for the root vertices of G_k , i.e. $|\mathcal{C}_{\mathcal{A}}(r(G_k))| \geq \frac{d}{4} \cdot k$.
 - (2) G_k is a union of connected components, each of which can be represented by a tree T. Each tree node is a clique of size d/2. Every tree T has a distinguished root node containing a set r(T) of d/2 root vertices in G_k.
 - (3) G_k is chordal.
 - (4) The maximum clique size is $\omega(G_k) = d$.
 - (5) The number of vertices satisfies $n_k \leq \frac{d}{2} \cdot (2^{k+1} 1)$.

- Base graph G_1 : Clique of size d. Only one tree. Pick any d/2 vertices be the root node and the remaining d/2 vertices be the second tree node.
- k>1:
 - Invariant (1) implies $\left|C_A\left(r\left(G_{k-1}^l\right)\right)\right| \ge (k-1)d/4$ and $\left|C_A\left(r\left(G_{k-1}^r\right)\right)\right| \ge (k-1)d/4$
 - Case1: If $\left| C_A \left(r(G_{k-1}^l) \cup r(G_{k-1}^r) \right) \right| \ge kd/4$, $G_k = (G_{k-1}^l) \cup (G_{k-1}^r)$. No further vertices added.

• k>1, Case2: If $\left|C_A\left(r\left(G_{k-1}^l\right) \cup r\left(G_{k-1}^r\right)\right)\right| < \frac{dk}{4}$. Add new root node R. For every vertex of R there is an edge to every vertex in R_i^l . There is a tree edge between R and every R_i^l .

- Let $q = \left| C_A \left(r(G_{k-1}^r) \right) \setminus C_A \left(r(G_{k-1}^l) \right) \right| = \left| C_A \left(r(G_{k-1}^r) \cup r(G_{k-1}^l) \right) \right| \left| C_A \left(r(G_{k-1}^l) \right) \right| < \frac{dk}{4} \frac{d(k-1)}{4} = \frac{d}{4}$
- $C_A(r(G_{k-1}^r)) = \left[C_A(r(G_{k-1}^l)) \cap C_A(r(G_{k-1}^r))\right] \cup \left[C_A(r(G_{k-1}^r)) \setminus C_A(r(G_{k-1}^l))\right]$
- R is a clique of size $\frac{d}{2}$, must use at least $\frac{d}{2} q > \frac{d}{4}$ colors not in $C_A(r(G_{k-1}^l))$.
- $|C_A(r(G_k))| = |C_A(R \cup r(G_{k-1}^r))| \ge \frac{d}{4} + \frac{d(k-1)}{4} = \frac{dk}{4}$
- Can create a connected graph by adding a final vertex v_f that has an edge to exactly one root vertex in each of the components.
 - #vertices $\leq \frac{d}{2} (2^{k+1} 1) + 1 \leq d2^k$

Lemma 1. Let $d \in \mathbb{N}$ with $d \geq 2$ be arbitrary. For every deterministic online algorithm \mathcal{A} and every $k \in \mathbb{N}$, there exists a chordal graph G_k having chromatic number $\chi(G_k) = d$ and consisting of $n_k \leq d2^k$ vertices such that \mathcal{A} is forced to use at least $c_k \geq (d-1)k/4$ colors to color G_k .

- (1) Algorithm \mathcal{A} uses at least $\frac{d}{4} \cdot k$ colors for the root vertices of G_k , i.e. $|\mathcal{C}_{\mathcal{A}}(r(G_k))| \geq \frac{d}{4} \cdot k$.
- (2) G_k is a union of connected components, each of which can be represented by a tree T. Each tree node is a clique of size d/2. Every tree T has a distinguished root node containing a set r(T) of d/2 root vertices in G_k .
- (3) G_k is chordal.
- (4) The maximum clique size is $\omega(G_k) = d$.
- (5) The number of vertices satisfies $n_k \leq \frac{d}{2} \cdot (2^{k+1} 1)$.

Theorem 1. Let $d \in \mathbb{N}$ with $d \geq 2$ be arbitrary. For every deterministic online algorithm \mathcal{A} and every $n \in \mathbb{N}$ with $n \geq 2d^2$, there exists a n-vertex chordal graph G with chromatic number $\chi(G) = d$ such that \mathcal{A} uses $\Omega(d \cdot \log n)$ colors to color G.

• Given d and n, let $k = \lfloor \log \frac{n}{d} \rfloor$, by lemma, there exists a chordal G_k with $n_k \le d2^k$ vertices, chromatic number d and algo uses at least $c_k \ge \frac{(d-1)k}{4}$ colors.

• $n_k \leq d \frac{n}{d} \leq n$, add $n - n_k$ vertices, all of which have one edge to an arbitrary vertex of G_k .

- $d \le \sqrt{n/2}$ since $n \ge 2d^2$. So $k \ge \log n \log d 1 \ge \log n \frac{1}{2}\log \frac{n}{2} 1 = \log \frac{n}{2} \frac{1}{2}\log \frac{n}{2} = \frac{1}{2}\log \frac{n}{2}$
- Since $n \ge 2d^2 \ge 4$, $\log \frac{n}{2} \ge \frac{1}{2} \log n$

• Since
$$d \ge 2$$
, $c_k \ge \frac{dk}{8} \ge \left(\frac{1}{2}\log\frac{n}{2}\right)\frac{d}{8} \ge \frac{d}{16}\left(\frac{1}{2}\log n\right) = \frac{d\log n}{32}$

Lower Bound for Deterministic Online Coloring

- Theorem: For every deterministic online algorithm there exists a logn-colorable graph for which the algorithm uses at least $2n/\log n$ colors. The performance ratio of any deterministic online coloring algorithm is at least $\frac{2n}{\log^2 n}$.
 - $Avail(v_t)$ =admissible colors consists of the colors not used by its pre-neighbors
 - $Hue(b) = \{Col(vi): Bin(vi) = b\}$
 - *H* is a hue collection set of all nonempty hues.
 - [k] is the set {1,2, ..., k}.
 - $[k]^{(\frac{k}{2})}$ is the collection of all subsets of [k] of size k/2.
 - Algo colors with bins and the adversary with colors.

Lower Bound for Deterministic Online Coloring

- Observation1: $Hue(Bin(v_t)) \subseteq Avail(v_t)$
- Observation2: If m distinct bin/color pairs have been assigned after round t, then at least m/(max |Avail(v_i)|) bins have been used.
- Observation3: If Col(v_t) ∈ Avail(v_t) Hue(Bins(v_t)) then progress is made.

• Adversary Strategy:

- Let $n = \frac{k}{2} \binom{k}{k/2}$, while $t \le n$:
- $Avail(v_t) = any([k]^{k/2} H)$
- $Adj^{-}(v_t) = \{v_i: Col(v_i) \notin Avail(v_t) \text{ and } i < t\}$
- $Col(v_t) = any(Avail(v_t) Hue(Bin(v_t)))$
- Avail (v_t) cannot equal to any bin hue, and by observation 1, $Col(v_t)$ must be defined.
- Each round make progress by observation 2.
- By observation3, at least n/(k/2) bins uses. The number of colors is at most k, so performance ratio is at least $2n/k^2$, where $k = \log n$.