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Weighted Caching

In Weighted Caching, we are given a cache of size , i.e., the cache can hold up to  
pages.


 pages  are requested. 


A requested page  should be loaded into the cache. If the cache already contains  
pages, another page  should be evicted from the cache, and we incur a positive cost 

.


Our goal is minimize the sum of eviction cost.

k k

n r1, …, rn

ri k
rj

w(rj)
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Competitiveness

For an algorithm , let  be the cost given a cache size of  and a sequence of 
requests .


Assume that  is the optimal offline algorithm, and  is an online algorithm.


For fixed ,  the algorithm  is -competitive if for any sequence of requests 
,   

𝒜 𝒜(k, σ) k
σ = (r1, …, rn)

OPT 𝒜

k ≥ h 𝒜 c(h, k)
σ 𝒜(k, σ) ≤ c(h, k) ⋅ OPT(h, σ) + o(OPT(h, σ))
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Summary of Results

• Deterministic


• [Chrobak, 1991], “Balance”, -competitive


• [Young, 1994], “GreedyDual”,  - competitive, this talk


• Randomized


• [Blum, 1996], -competitive, 


• [Irani, 2002], -competitive,  or  (a constant)


• [Fiat, 2003], -competitive,  (a constant)


• [Bansal, 2007], -competitive

k
k

k − h + 1

O(log2 k) n = k + 1

O(log k) ri = 1 ri = M

O(log k) n = k + c

O(log
k

k − h + 1
)
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Duality in Linear Programming

Primal Programming  
 

 

 
 

P

a1,1x1 + … + a1,nxn ≥ b1

⋮ ≥ ⋮
am,1x1 + … + am,nxn ≥ bm

x1, …, xn ≥ 0
min c1x1 + … + cnxn

Dual Programming  
 

 

 
 

D

a1,1y1 + … + am,1ym ≤ c1

⋮ ≤ ⋮
a1,ny1 + … + am,nyn ≤ cn

y1, …, ym ≥ 0
max b1y1 + … + bnym

The primal variable  corresponds to a dual constraint 


A primal contraint  corresponds to a dual variable 

xi ∑
j

aj,iyj ≥ ci

∑
i

aj,ixi ≤ bj yj
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Weak & Strong Duality

Let  be a finite feasible solution to the primal programming ,  
be a finite feasible solution to the dual programming .


Weak Duality states that , 

i.e., the objective of   the objective of .


Strong Duality states that   

i.e., The objective of   the objective of , if  and  are optimal.

(x1, …, xn) P (y1, …, ym)
D

∑
i

cixi ≥ ∑
j

bjyj

P ≥ D

∑
i

cixi = ∑
j

bjyj

P ≥ D (x1, …, xn) (y1, …, ym)
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Complementary Slackness

Let  be an optimal solution to the primal programming ,  be an 
optimal solution to the dual programming .


Primal Slackness:  or , i.e., either the -th primal constraint is tight or 

the corresponding dual variable is zero.


Dual Slackness:  or , i.e., either the -th dual constraint is tight or the 

corresponding primal variable is zero.

(x1, …, xn) P (y1, …, ym)
D

∑
i

aj,ixi = bj yj = 0 j

∑
j

aj,iyj = ci xi = 0 i
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Linear Programming in Online Tasks

How can Linear Programming help?


When new input arrives


New constraints (and new vars) are added in LP


Update the feasible solution


Restriction: cannot withdraw decision


Impose additional monotonicity constraint


Only increase (or decrease) variables

12



Primal-Dual Approach

Maintain a primal feasible solution  and a dual feasible solution 


When new input arrives


Increase variables in  until some dual constraints are tight


Set corresponding primal variable to non-zero


For competitive ratio


Bound with dual objective ≤ optimal dual objective = optimal primal objective

x y

y
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Ski Rental

At a ski resort, renting costs $  per day, and buying costs $ 


2-competitive online algorithm


Rent for  days and buy on the -th day


Let’s see how the Primal-Dual approach produces the same algorithm.

1 B

(B − 1) B
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Ski Rental

Formulate into an Integer Programming


 indicates whether to buy (  = to buy,  = not to buy)


 indicates whether to rent on the -th day ( )


Constraints:  for 


Objective: 


Relax the Integer Programming to a Linear Programming


Change  to 


No need for the constraint 

x0 ∈ {0,1} 1 0

xi ∈ {0,1} i i ≥ 1

x0 + xi ≥ 1 1 ≤ i ≤ n

min Bx0 + x1 + … + xn

xi ∈ {0,1} xi ≥ 0

xi ≤ 1

Linear Programming Formulation

16



Ski Rental

Primal Programming  
 

 

 
 

P

x0 + x1 ≥ 1
⋮ ≥ ⋮

x0 + xn ≥ 1
x0, …, xn ≥ 0

min Bx0 + x1 + … + xn

Duality

Dual Programming  
 

 

 
 

D

y1 + … + yn ≤ B
y1 ≤ 1
⋮ ≤ ⋮
yn ≤ 1

y1, …, yn ≥ 0
max y1 + … + yn
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Ski Rental

On the -th day, a new primal constraint  is 
added.


We increase the dual variable .


If , the process stops reaching . We set the 
corresponding primal variable  to , i.e., rent.


If , the process stops reaching . We 
set  to , i.e., buy.


n x0 + xn ≥ 1

yn

n < B yn = 1
xn 1

n = B y1 + … + yn = B
x0 1

Feasible Solution Update

Dual Programming  
 

 

 
 

D

y1 + … + yn ≤ B
y1 ≤ 1
⋮ ≤ ⋮
yn ≤ 1

y1, …, yn ≥ 0
max y1 + … + yn

Primal Programming  
 

 

 
 

P

x0 + x1 ≥ 1
⋮ ≥ ⋮

x0 + xn ≥ 1
x0, …, xn ≥ 0

min Bx0 + x1 + … + xn
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Weighted Caching

Assume that the cache is occupied by  pages requested by  and .


 ( ) if to load  into the cache, we have to evict the page requested by . Or  otherwise.


Constraints


 :  can be evicted for at most  times


 for :  can be evicted for at most once


 for :  should be loaded


Objective:  where 

k r0 w(r0) = 0

xi,j = 1 0 ≤ i < j ≤ n rj ri xi,j = 0

out(0) =
n

∑
j=1

x0,j ≤ k r0 k

out(i) =
n

∑
j=i+1

xi,j ≤ 1 i ≥ 1 ri

in( j) =
j−1

∑
i=0

xi,j = 1 j ≥ 1 rj

min ∑
0≤i<j≤n

δ(ri, rj)xi,j δ(ri, rj) = {
0 if ri = rj

w(ri) if ri ≠ rj

Linear Programming Formulation
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Weighted Caching

Cache size 





A feasible solution (may not optimal)





Other 


Eviction cost



NOTE: As , 

k = 2

σ = (1,2,3,2,1)

x0,1 = x0,2 = x1,5 = x2,3 = x3,4 = 1

xi,j = 0

w(r0) + w(r0) + 0 + w(r2) + w(w3) = w(2) + w(3)

r1 = r5 σ(r1, r5) = 0

An example

No. Request Cache
1 1 {r0, r1} Evict r0

2 2 {r1, r2} Evict r0

3 3 {r1, r3} Evict r2

4 2 {r1, r4} Evict r3

5 1 {r4, r5} Evict r1

An edge  is drawn iff 

Different colors - different pages

i → j xi,j = 1
21



Weighted Caching

Primal Programming  
 

  

 

Pk

−out(0) = −∑n
j=1 x0,j ≥ −k

−out(i) = −∑n
j=i+1 x1,j ≥ −1 (1 ≤ i ≤ n)

in( j) = ∑j−1
i=0 xi,j = 1 (1 ≤ j ≤ n)
xi,j ≥ 0 (0 ≤ i < j ≤ n)

min ∑0≤i<j≤n δ(ri, rj)xi,j

Duality

Dual Programming  
 

 

 
 

Dk

bj − ai ≤ δ(ri, rj) (0 ≤ i < j ≤ n)
a0, …, an ≥ 0

max −ka0 − ∑n
i=1 ai + ∑n

j=1 bj

We add a subscript  in  and  because we want to deal with different cache sizes for online and optimal offline 
algorithms .


 ( ) is the dual variable for the primal constraint 

 ( ) is the dual variable for the primal constraint 

k Pk Dk

ai 0 ≤ i ≤ n out(i)
bj 1 ≤ j ≤ n in( j)
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Weighted Caching

Primal Programming  
 

 

 
 

P

−∑n
j=1 x0,j ≥ −k

−∑n
j=i+1 x1,j ≥ −1

∑j−1
i=0 xi,j = 1
xi,j ≥ 0

min ∑0≤i<j≤n δ(ri, rj)xi,j

Update Feasible Solution

Dual Programming  
 

 

 
 

D

bj − ai ≤ δ(ri, rj)
a0, …, an ≥ 0

max −ka0 − ∑n
i=1 ai + ∑n

j=1 bj

Let  be the multiset of indices of requests in the cache. Initially,  
contains  copies of .


 and  are initially .


When the request  arrives,


if the page is already in the cache ( ), we set  
and .


Otherwise, increase dual variables  
by  until some dual constraints are tight. 


S S
k 0

ai bj 0

n

∃i ∈ S, ri = rn xi,n = 1
S ← S∖{i} ∪ {n}

{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n}
Δ ≥ 0
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Weighted Caching

Primal Programming  
 

 

 
 

P

−∑n
j=1 x0,j ≥ −k

−∑n
j=i+1 x1,j ≥ −1

∑j−1
i=0 xi,j = 1
xi,j ≥ 0

min ∑0≤i<j≤n δ(ri, rj)xi,j

Update Feasible Solution

Dual Programming  
 

 

 
 

D

bj − ai ≤ δ(ri, rj)
a0, …, an ≥ 0

max −ka0 − ∑n
i=1 ai + ∑n

j=1 bj

Increase dual variables  by 
 until some dual constraints are tight


Observation


• . Proof:  won’t change until  is 
evicted ( ).


• .

{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n}
Δ ≥ 0

i ∈ S ⟹ ai = 0 ai ri
i ∉ S

b1 ≥ … ≥ bn
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Weighted Caching

Primal Programming  
 

 

 
 

P

−∑n
j=1 x0,j ≥ −k

−∑n
j=i+1 x1,j ≥ −1

∑j−1
i=0 xi,j = 1
xi,j ≥ 0

min ∑0≤i<j≤n δ(ri, rj)xi,j

Update Feasible Solution

Dual Programming  
 

 

 
 

D

bj − ai ≤ δ(ri, rj)
a0, …, an ≥ 0

max −ka0 − ∑n
i=1 ai + ∑n

j=1 bj

Increase dual variables  by  
until some dual constraints are tight. 


What’s “some dual constraints”?


To evict a page, we want a constraint   where 
 to become tight.


Because , the constraint becomes .


Because , the constraint becomes .


Because , we can focus on the constraint 
.

{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n} Δ ≥ 0

bj − ai ≤ δ(ri, rj)
i ∈ S

i ∈ S ⟹ ai = 0 bj ≤ δ(ri, rj)

ri ≠ rn bj ≤ w(ri)

bi+1 ≥ bi+2 ≥ …
bi+1 ≤ w(ri) Observation


• 

• .

i ∈ S ⟹ ai = 0
b1 ≥ … ≥ bn
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Weighted Caching
Update Feasible Solution

Increase dual variables  by 
 until some dual constraints are tight. 


Focus on the constraint 


Let  be the request which loads page .


Example: 


.


{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n}
Δ ≥ 0

bi+1 ≤ w(ri)

i− ri

4− = 4,1− = 5− = 1

26



Weighted Caching

Primal Programming  
 

 

 
 

P

−∑n
j=1 x0,j ≥ −k

−∑n
j=i+1 x1,j ≥ −1

∑j−1
i=0 xi,j = 1
xi,j ≥ 0

min ∑0≤i<j≤n δ(ri, rj)xi,j

Update Feasible Solution

Dual Programming  
 

 

 
 

D

bj − ai ≤ δ(ri, rj)
a0, …, an ≥ 0

max −ka0 − ∑n
i=1 ai + ∑n

j=1 bj

Increase dual variables  by 
 until some dual constraints are tight. 


Focus on the constraint 


Let  be the request which loads page .


We increase dual variables until 
, set  and 

.

{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n}
Δ ≥ 0

bi+1 ≤ w(ri)

i− ri

∃i ∈ S, bi−+1 = w(ri−) = w(ri) xi,n = 1
S ← S∖{i} ∪ {n}

27



Weighted Caching

Primal Programming  
 

 

 
 

P

−∑n
j=1 x0,j ≥ −k

−∑n
j=i+1 x1,j ≥ −1

∑j−1
i=0 xi,j = 1
xi,j ≥ 0

min ∑0≤i<j≤n δ(ri, rj)xi,j

Update Feasible Solution

Dual Programming  
 

 

 
 

D

bj − ai ≤ δ(ri, rj)
a0, …, an ≥ 0

max −ka0 − ∑n
i=1 ai + ∑n

j=1 bj

Increase dual variables  by 
 until some dual constraints are tight. 


Increase dual variables until
.


Why the solution is still feasible?


For , .


For ,  as 
.

{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n}
Δ ≥ 0

∃i ∈ S, bi−+1 = w(ri−) = w(ri)

i ∉ S (bj + Δ) − (ai + Δ) = bj − ai ≤ δ(ri, rj)

i ∈ S bj − ai ≤ bi−+1 − ai = w(ri) − 0 = δ(ri, rj)
j ≥ i + 1 ≥ i− + 1 ⟹ bj ≤ bi−+1 Observation


• 

• .

i ∈ S ⟹ ai = 0
b1 ≥ … ≥ bn
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Weighted Caching

Primal Programming  
 

 

 
 

P

−∑n
j=1 x0,j ≥ −k

−∑n
j=i+1 x1,j ≥ −1

∑j−1
i=0 xi,j = 1
xi,j ≥ 0

min ∑0≤i<j≤n δ(ri, rj)xi,j

Algorithm Recap

Dual Programming  
 

 

 
 

D

bj − ai ≤ δ(ri, rj)
a0, …, an ≥ 0

max −ka0 − ∑n
i=1 ai + ∑n

j=1 bj

Maintain


• Primal solution , dual solution 


• A set (  copies) initially


When a request  arrives,


• Either .


• Or we increase dual variables 
 until .


• Set  and .

xi,j a0, …, an, b1, …, bn

S = {0,…,0} k

rn

∃i ∈ S, ri = rn

{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n} ∃i ∈ S, bi−+1 = w(ri)

xi,n = 1 S ← S∖{i} ∪ {n}
Observation


• 

• .

i ∈ S ⟹ ai = 0
b1 ≥ … ≥ bn
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Weighted Caching

Primal Programming  
 

 

 
 

Pk

−∑n
j=1 x0,j ≥ −k

−∑n
j=i+1 x1,j ≥ −1

∑j−1
i=0 xi,j = 1
xi,j ≥ 0

min ∑0≤i<j≤n δ(ri, rj)xi,j

Competitiveness

Dual Programming  
 

 

 
 

Dk

bj − ai ≤ δ(ri, rj)
a0, …, an ≥ 0

max −ka0 − ∑n
i=1 ai + ∑n

j=1 bj

Let 


Claim: Given a cache size  and requests , our algorithm  has 




 is feasible in   is feasible in  (because  does not 
occur in constraints)





where  is the optimal offline algorithm


Plus , we have . 

∥a, b∥t = −ta0 −
n

∑
i=1

ai +
n

∑
j=1

bj

k σ 𝒜
𝒜(k, σ) ≤

k
k − h + 1

∥a, b∥h − ∑
j∈S

bj−+1

(a, b) Dk ⟹ (a, b) Dh k

∥a, b∥h ≤ optimum of Dh = optimum of Ph = OPT(h, σ)

OPT

bj ≥ 0 𝒜(k, σ) ≤
k

k − h + 1
OPT(h, σ)

Observation

• 

• .

i ∈ S ⟹ ai = 0
b1 ≥ … ≥ bn
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Weighted Caching
Proof of the claim

Let 


Claim: 

∥a, b∥t = −ta0 −
n

∑
i=1

ai +
n

∑
j=1

bj

𝒜(k, σ) ≤
k

k − h + 1
∥a, b∥h − ∑

j∈S

bj−+1

Algorithm Recap


When a request  arrives,


• Either .


• Or we increase dual variables 
 until 

.


• Set  and .

rn

∃i ∈ S, ri = rn

{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n}
∃i ∈ S, bi−+1 = w(ri)

xi,n = 1 S ← S∖{i} ∪ {n}

Let  be our eviction cost, and 

. We want to prove 

.


Initially, .


If ,  is unchanged.  
Also,   

C
𝒰 =

k
k − h + 1

∥a, b∥h − ∑
j∈S

bj−+1

C ≤ 𝒰

C = 𝒰 = 0

∃i ∈ S, ri = rn C
n− = i− ⟹ ∑

j∈S∖{i}∪{n}

bj−+1 = ∑
j∈S

bj−+1
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Weighted Caching
Proof of the claim

Let 


Claim: 

∥a, b∥t = −ta0 −
n

∑
i=1

ai +
n

∑
j=1

bj

𝒜(k, σ) ≤
k

k − h + 1
∥a, b∥h − ∑

j∈S

bj−+1

Algorithm Recap


When a request  arrives,


• Either .


• Or we increase dual variables 
 until 

.


• Set  and .

rn

∃i ∈ S, ri = rn

{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n}
∃i ∈ S, bi−+1 = w(ri)

xi,n = 1 S ← S∖{i} ∪ {n}

Otherwise,  is increased by .


Claim’:  does not change if we increase dual variables 
by .


Proof


If , it’s easy to verify that  and .


If , …

C w(ri)

𝒰
Δ

0 ∈ S Δ = 0 i = 0

0 ∉ S
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Weighted Caching
Proof of the claim

Let 


Claim: 

∥a, b∥t = −ta0 −
n

∑
i=1

ai +
n

∑
j=1

bj

𝒜(k, σ) ≤
k

k − h + 1
∥a, b∥h − ∑

j∈S

bj−+1

Algorithm Recap


When a request  arrives,


• Either .


• Or we increase dual variables 
 until 

.


• Set  and .

rn

∃i ∈ S, ri = rn

{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n}
∃i ∈ S, bi−+1 = w(ri)

xi,n = 1 S ← S∖{i} ∪ {n}

Otherwise,  is increased by .


If 


The first term


 


The second term




Thus,  remains unchanged increasing dual variables.

C w(ri)

0 ∉ S

∥a′￼, b′￼∥h

= −h(a0 + Δ) − ∑
i∉S

(ai + Δ) − ∑
i∈S

ai + ∑
j

(bj + Δ)

= ∥a, b∥h + (k − h + 1) ⋅ Δ

∑
j∈S

(bj−+1 + Δ) = ∑
j∈S

bj−+1 + |S | ⋅ Δ = ∑
j∈S

bj−+1 + k ⋅ Δ

𝒰
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Weighted Caching
Proof of the claim

Let 


Claim: 

∥a, b∥t = −ta0 −
n

∑
i=1

ai +
n

∑
j=1

bj

𝒜(k, σ) ≤
k

k − h + 1
∥a, b∥h − ∑

j∈S

bj−+1

Algorithm Recap


When a request  arrives,


• Either .


• Or we increase dual variables 
 until 

.


• Set  and .

rn

∃i ∈ S, ri = rn

{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n}
∃i ∈ S, bi−+1 = w(ri)

xi,n = 1 S ← S∖{i} ∪ {n}

Otherwise,  is increased by .


Claim’:  does not change if we increase dual variables by .


And we have .





Thus,  is also increased by . The claim is proved.

C w(ri)

𝒰 Δ

n− = n ⟹ bn−+1 = 0

∑
j∈S∖{i}∪{n}

bj−+1

= ∑
j∈S

bj−+1 − bi−+1 + bn−+1

= ∑
j∈S

bj−+1 − w(ri) + 0

𝒰 w(ri)
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We have seen two online tasks solved via a Primal-Dual Approach - a toy example 
“Ski Rental” and Weight Caching. 


Steps to design an online algorithms using Primal-Dual


1. Formulate with Linear Programming and its dual


2. Monotonically change dual variables tightening dual constraints, and update 
the corresponding primal variables


3. Bound the primal objective by dual objective, and use Duality Theorem to 
complete the competitiveness proof


Thanks for Listening! 

Conclusion
Primal-Dual Approach

36
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