Weighted Caching a Primal-Dual Approach

Xiaoxu Guo

- Introduction
 - Problem Definition
 - Summary of Results
- Background
 - Duality in Linear Programming
 - An Example: "Ski Rental" via Primal-Dual
- A Primal-Dual Approach to Weighted Caching
- Conclusion

Outline

- Introduction
 - Problem Definition
 - Summary of Results
- Background
 - Duality in Linear Programming
 - An Example: "Ski Rental" via Primal-Dual
- A Primal-Dual Approach to Weighted Caching
- Conclusion

Outline

Weighted Caching

- pages.
- *n* pages r_1, \ldots, r_n are requested.
- $W(r_i).$
- Our goal is minimize the sum of eviction cost.

In Weighted Caching, we are given a cache of size k, i.e., the cache can hold up to k

A requested page r_i should be *loaded* into the cache. If the cache already contains k pages, another page r_i should be *evicted* from the cache, and we incur a positive cost

Competitiveness

requests $\sigma = (r_1, \ldots, r_n)$.

 $\sigma, \mathscr{A}(k, \sigma) \leq c(h, k) \cdot \operatorname{OPT}(h, \sigma) + o(\operatorname{OPT}(h, \sigma))$

For an algorithm \mathcal{A} , let $\mathcal{A}(k, \sigma)$ be the cost given a cache size of k and a sequence of

Assume that OPT is the **optimal offline** algorithm, and \mathcal{A} is an **online** algorithm. For fixed $k \ge h$, the algorithm \mathscr{A} is c(h, k)-competitive if for any sequence of requests

- Introduction
 - Problem Definition
 - Summary of Results
- Background
 - Duality in Linear Programming
 - An Example: "Ski Rental" via Primal-Dual
- A Primal-Dual Approach to Weighted Caching
- Conclusion

Outline

Summary of Results

- Deterministic
 - [Chrobak, 1991], "Balance", k-competitive
 - [Young, 1994], "GreedyDual", $\frac{k}{k-h+1}$ competitive, **this talk**
- Randomized
 - [Blum, 1996], $O(\log^2 k)$ -competitive, n = k + 1
 - [Irani, 2002], $O(\log k)$ -competitive, $r_i = 1$ or $r_i = M$ (a constant)
 - [Fiat, 2003], $O(\log k)$ -competitive, n = k + c (a constant)
 - [Bansal, 2007], $O(\log \frac{k}{k-h+1})$ -competitive

- Introduction
 - Problem Definition
 - Summary of Results
- Background
 - Duality in Linear Programming
 - An Example: "Ski Rental" via Primal-Dual
- A Primal-Dual Approach to Weighted Caching
- Conclusion

Outline

Duality in Linear Programming

Primal Programming P

A primal contraint $\sum_{i} a_{j,i} x_i \le b_j$ corresponds to a dual variable y_j 9

Dual Programming D

$$a_{1,1}y_1 + \dots + a_{m,1}y_m \leq c_1$$

$$\vdots \leq \vdots$$

$$a_{1,n}y_1 + \dots + a_{m,n}y_n \leq c_n$$

$$y_1, \dots, y_m \geq 0$$

$$\max \quad b_1y_1 + \dots + b_ny_m$$

The primal variable x_i corresponds to a dual constraint $\sum a_{i,i}y_i \ge c_i$

Weak & Strong Duality

be a finite feasible solution to the dual programming D. Weak Duality states that $\sum c_i x_i \ge \sum b_j y_j$, i.e., the objective of $P \ge$ the objective of D. **Strong Duality** states that $\sum c_i x_i = \sum b_j y_j$

- Let (x_1, \ldots, x_n) be a finite feasible solution to the primal programming P, (y_1, \ldots, y_m)

i.e., The objective of $P \ge$ the objective of D, if (x_1, \ldots, x_n) and (y_1, \ldots, y_m) are **optimal**.

Complementary Slackness

optimal solution to the dual programming D. the corresponding dual variable is zero. **Dual Slackness**: $\sum a_{i,i}y_i = c_i$ or $x_i = 0$, i.e., either *the i-th dual constraint is tight* or *the* corresponding primal variable is zero.

- Let (x_1, \ldots, x_n) be an **optimal** solution to the primal programming P, (y_1, \ldots, y_m) be an
- **Primal Slackness**: $\sum_{i=1}^{n} a_{i,i} x_i = b_i$ or $y_i = 0$, i.e., either *the j-th primal constraint is tight* or

Linear Programming in Online Tasks

How can Linear Programming help? When new input arrives New constraints (and new vars) are added in LP Update the feasible solution Restriction: cannot withdraw decision Impose additional **monotonicity** constraint Only increase (or decrease) variables

Primal-Dual Approach

- Maintain a primal feasible solution \mathbf{x} and a dual feasible solution \mathbf{y} When new input arrives
 - Increase variables in y until some dual constraints are tight
 - Set corresponding primal variable to non-zero
- For competitive ratio

Bound with dual objective ≤ optimal dual objective = optimal primal objective

- Introduction
 - Problem Definition
 - Summary of Results
- Background
 - Duality in Linear Programming
 - An Example: "Ski Rental" via Primal-Dual
- A Primal-Dual Approach to Weighted Caching
- Conclusion

Outline

At a ski resort, renting costs \$1 per day, and buying costs B2-competitive online algorithm Rent for (B - 1) days and buy on the *B*-th day Let's see how the Primal-Dual approach produces the same algorithm.

Ski Rental

Ski Rental **Linear Programming Formulation**

Formulate into an Integer Programming $x_0 \in \{0,1\}$ indicates whether to buy (1 = to buy, 0 = not to buy) $x_i \in \{0,1\}$ indicates whether to rent on the *i*-th day ($i \ge 1$) Constraints: $x_0 + x_i \ge 1$ for $1 \le i \le n$ Objective: $\min Bx_0 + x_1 + \ldots + x_n$ Relax the Integer Programming to a Linear Programming Change $x_i \in \{0,1\}$ to $x_i \ge 0$ No need for the constraint $x_i \leq 1$

Primal Programming P

Ski Rental Duality

Dual Programming D

Ski Rental **Feasible Solution Update**

On the *n*-th day, a new primal constraint $x_0 + x_n \ge 1$ is added.

We increase the dual variable y_n .

If n < B, the process stops reaching $y_n = 1$. We set the corresponding primal variable x_n to 1, i.e., rent.

If n = B, the process stops reaching $y_1 + ...$ set x_0 to 1, i.e., buy.

$$\dots + y_n = B$$
. We

Primal Programming P

$$x_{0} + x_{1} \geq 1$$

$$\vdots \geq \vdots$$

$$x_{0} + x_{n} \geq 1$$

$$x_{0}, \dots, x_{n} \geq 0$$
min $Bx_{0} + x_{1} + \dots + x_{n}$

$$y_1 + \dots + y_n \leq B$$

$$y_1 \leq 1$$

$$\vdots \leq \vdots$$

$$y_n \leq 1$$

$$y_1, \dots, y_n \leq 0$$

$$\max y_1 + \dots + y_n$$

Outline

- Introduction
 - Problem Definition
 - Summary of Results
- Background
 - Duality in Linear Programming
 - An Example: "Ski Rental" via Primal-Dual
- A Primal-Dual Approach to Weighted Caching
- Conclusion

Dual ed Caching

Weighted Caching **Linear Programming Formulation**

Assume that the cache is occupied by *k* pages requested by r_0 and $w(r_0) = 0$. $x_{i,j} = 1$ ($0 \le i < j \le n$) if to load r_j into the cache, we have to evict the page requested by r_i . Or $x_{i,j} = 0$ otherwise. Constraints

out(0) = $\sum_{j=1}^{n} x_{0,j} \le k : r_0$ can be evicted for at most k times out(*i*) = $\sum x_{i,j} \le 1$ for $i \ge 1$: r_i can be evicted for at most once j=i+1 $in(j) = \sum_{i,j=1}^{j-1} x_{i,j} = 1 \text{ for } j \ge 1: r_j \text{ should be loaded}$ i=0Objective: min $\sum \delta(r_i, r_j) x_{i,j}$ where $\delta(r_i, r_j) = \begin{cases} 0 & \text{if } r_i = r_j \\ w(r_i) & \text{if } r_i \neq r_j \end{cases}$

 $0 \le i < j \le n$

Weighted Caching **An example**

Cache size k = 2 $\sigma = (1, 2, 3, 2, 1)$ A feasible solution (may not optimal) $x_{0.1} = x_{0.2} = x_{1.5} = x_{2.3} = x_{3.4} = 1$ Other $x_{i,i} = 0$ Eviction cost $w(r_0) + w(r_0) + 0 + w(r_2) + w(w_3) = w(2) + w(3)$ NOTE: As $r_1 = r_5$, $\sigma(r_1, r_5) = 0$

No.	Request	Cache	
1	1	${r_0, r_1}$	Evict ro
2	2	$\{r_1, r_2\}$	Evict ro
3	3	$\{r_1, r_3\}$	Evict r ₂
4	2	$\{r_1, r_4\}$	Evict r ₃
5	1	{r ₄ , r ₅ }	Evict r ₁

An edge $i \rightarrow j$ is drawn iff $x_{i,i} = 1$ Different colors - different pages

Weighted Caching Duality

Primal Programming P_k

 $\begin{aligned} -\text{out}(0) &= -\sum_{j=1}^{n} x_{0,j} &\geq -k \\ -\text{out}(i) &= -\sum_{j=i+1}^{n} x_{1,j} &\geq -1 \quad (1 \le i \le n) \\ \text{in}(j) &= \sum_{i=0}^{j-1} x_{i,j} &= 1 \quad (1 \le j \le n) \\ & x_{i,j} &\geq 0 \quad (0 \le i < j \le n) \end{aligned}$ min $\sum_{0 \le i \le n} \delta(r_i, r_j) x_{i,j}$

We add a subscript k in P_k and D_k because we want to deal with different cache sizes for online and optimal offline algorithms.

 a_i ($0 \le i \le n$) is the dual variable for the primal constraint out(i) b_i ($1 \le j \le n$) is the dual variable for the primal constraint in(j)

Dual Programming D_k

$$\begin{aligned} b_j - a_i &\leq \delta(r_i, r_j) \quad (0 \leq i < j \leq n) \\ a_0, \dots, a_n &\geq 0 \\ \max & -ka_0 - \sum_{i=1}^n a_i + \sum_{j=1}^n b_j \end{aligned}$$

- Let S be the **multiset** of indices of requests in the cache. Initially, S contains k copies of 0.
- a_i and b_i are initially 0.
- When the request *n* arrives,
 - if the page is already in the cache ($\exists i \in S, r_i = r_n$), we set $x_{i,n} = 1$ and $S \leftarrow S \setminus \{i\} \cup \{n\}$.
 - Otherwise, increase dual variables $\{a_i : i \notin S\} \cup \{b_i : 1 \leq i \leq n\}$ by $\Delta \geq 0$ until some dual constraints are tight.

Primal Programming P $-\sum_{j=1}^{n} x_{0,j} \ge -k$ $-\sum_{j=i+1}^{n} x_{1,j} \ge -1$ $\sum_{i=0}^{j-1} x_{i,j} = 1$ $x_{i,i} \geq 0$ min $\sum_{0 \le i < j \le n} \delta(r_i, r_j) x_{i,j}$ Dual Programming D $b_j - a_i$ $\leq \delta(r_i, r_j)$ a_0, \ldots, a_n \geq 0 max $-ka_0 - \sum_{i=1}^n a_i + \sum_{i=1}^n b_i$

Increase dual variables $\{a_i : i \notin S\} \cup \{b_i\}$ $\Delta \geq 0$ until some dual constraints are tig Observation

- $i \in S \implies a_i = 0$. Proof: a_i won't change until r_i is evicted ($i \notin S$).
- $b_1 \geq \ldots \geq b_n$.

$$a_i: 1 \le i \le n$$
 by ght

Primal Programming P $-\sum_{j=1}^{n} x_{0,j} \ge -k \\ -\sum_{j=i+1}^{n} x_{1,j} \ge -1$ $\sum_{i=0}^{j-1} x_{i,j} = 1$ $x_{i,j} \geq 0$ min $\sum_{0 \le i < j \le n} \delta(r_i, r_j) x_{i,j}$

Dual Programming D

 $b_j - a_i \leq \delta(r_i, r_j)$ $a_0, \dots, a_n \ge 0$ max $-ka_0 - \sum_{i=1}^n a_i + \sum_{j=1}^n b_j$

Increase dual variables $\{a_i : i \notin S\} \cup \{b_i : 1 \leq i \notin S\}$ until some dual constraints are tight.

What's "some dual constraints"?

To evict a page, we want a constraint $b_i - a_i$ $i \in S$ to become tight.

Because $i \in S \implies a_i = 0$, the constraint be

Because $r_i \neq r_n$, the constraint becomes $b_i \leq$

Because $b_{i+1} \ge b_{i+2} \ge \dots$, we can focus on the constraint $b_{i+1} \leq w(r_i).$

$$i \leq n$$
 by $\Delta \geq 0$

$$\leq \delta(r_i, r_j) \text{ where}$$
ecomes $b_j \leq \delta(r_i, r_j)$.

Primal Programming P $-\sum_{j=1}^{n} x_{0,j} \ge -k \\ -\sum_{j=i+1}^{n} x_{1,j} \ge -1$ $\sum_{i=0}^{j-1} x_{i,j} = 1$ $x_{i,i} \geq 0$ min $\sum_{0 \le i < j \le n} \delta(r_i, r_j) x_{i,j}$ Dual Programming D $b_i - a_i$ $\leq \delta(r_i, r_j)$

$$a_0, \dots, a_n \ge 0$$

max $-ka_0 - \sum_{i=1}^n a_i + \sum_{j=1}^n b_j$

Observation

•
$$i \in S \implies a_i = 0$$

•
$$b_1 \ge \ldots \ge b_n$$
.

Increase dual variables $\{a_i : i \notin S\} \cup \{b_i : 1 \leq i \leq n\}$ by $\Delta \geq 0$ until some dual constraints are tight. Focus on the constraint $b_{i+1} \leq w(r_i)$ Let i^- be the request which loads page r_i . Example:

 $4^{-} = 4, 1^{-} = 5^{-} = 1.$

Increase dual variables $\{a_i : i \notin S\} \cup \{b_i\}$ $\Delta \geq 0$ until **some dual constraints** are Focus on the constraint $b_{i+1} \leq w(r_i)$ Let i^- be the request which loads page r_i . We increase dual variables until $\exists i \in S, b_{i^{-}+1} = w(r_{i^{-}}) = w(r_i), \text{ set } x_{i,n} = 1 \text{ and}$ $S \leftarrow S \setminus \{i\} \cup \{n\}.$

$$P_i: 1 \le i \le n$$
 by P
tight.

Primal Programming P $-\sum_{j=1}^{n} x_{0,j} \ge -k$ $-\sum_{j=i+1}^{n} x_{1,j} \ge -1$ $\sum_{i=0}^{j-1} x_{i,j} = 1$ $x_{i,i} \geq 0$ min $\sum_{0 \le i < j \le n} \delta(r_i, r_j) x_{i,j}$

Dual Programming D

 $b_j - a_i \leq \delta(r_i, r_j)$ $a_0, \dots, a_n \ge 0$ max $-ka_0 - \sum_{i=1}^n a_i + \sum_{j=1}^n b_j$

Increase dual variables $\{a_i : i \notin S\} \cup \{b_i\}$ $\Delta \geq 0$ until **some dual constraints** are ti Increase dual variables until $\exists i \in S, b_{i-+1} = w(r_{i-}) = w(r_i).$ Why the solution is still feasible? For $i \notin S$, $(b_i + \Delta) - (a_i + \Delta) = b_i - a_i \leq \delta(r_i, r_i)$. For $i \in S$, $b_i - a_i \le b_{i-1} - a_i = w(r_i) - 0 = \delta(r_i, r_j)$ as $j \ge i+1 \ge i^-+1 \implies b_i \le b_{i^-+1}$.

$$: 1 \le i \le n$$
 by ight.

Primal Programming P $-\sum_{j=1}^{n} x_{0,j} \ge -k$ $-\sum_{j=i+1}^{n} x_{1,j} \ge -1$ $\sum_{i=0}^{j-1} x_{i,j} = 1$ $x_{i,j} \geq 0$ min $\sum_{0 \le i < j \le n} \delta(r_i, r_j) x_{i,j}$

Dual Programming D

 $\leq \delta(r_i, r_j)$ $b_i - a_i$ a_0, \ldots, a_n \geq 0 max $-ka_0 - \sum_{i=1}^n a_i + \sum_{j=1}^n b_j$

Observation

•
$$i \in S \implies a_i = 0$$

• $b_1 \geq \ldots \geq b_n$.

Weighted Caching **Algorithm Recap**

Maintain

- Primal solution $x_{i,i}$, dual solution a_0, \ldots, a_n
- A set $S = \{0, \dots, 0\}$ (k copies) initially

When a request r_n arrives,

- Either $\exists i \in S, r_i = r_n$.
- Or we increase dual variables $\{a_i : i \notin S\} \cup \{b_i : 1 \le i \le n\}$ until $\exists i \in S, b_{i-1} = w(r_i).$
- Set $x_{i,n} = 1$ and $S \leftarrow S \setminus \{i\} \cup \{n\}$.

Primal Programming P

Dual Programming D

 $b_j - a_i$ $\leq \delta(r_i, r_j)$ $a_0, \ldots, a_n \geq$ 0 max $-ka_0 - \sum_{i=1}^n a_i + \sum_{i=1}^n b_i$

Observation

•
$$i \in S \implies a_i = 0$$

• $b_1 \ge \ldots \ge b_n$.

Weighted Caching **Competitiveness**

Let
$$\|\mathbf{a}, \mathbf{b}\|_{t} = -ta_{0} - \sum_{i=1}^{n} a_{i} + \sum_{j=1}^{n} b_{j}$$

Claim: Given a cache size k and requests σ , our algorithm \mathscr{A} has $\mathscr{A}(k,\sigma) \leq \frac{k}{k-h+1} \|\mathbf{a},\mathbf{b}\|_{h} - \sum_{j \in S} b_{j^{-}+1}$

 (\mathbf{a}, \mathbf{b}) is feasible in $D_k \implies (\mathbf{a}, \mathbf{b})$ is feasible in D_h (because k does not occur in constraints)

 $\|\mathbf{a}, \mathbf{b}\|_h \leq \text{optimum of } D_h = \text{optimum of } P_h = \text{OPT}(h, \sigma)$ where OPT is the **optimal offline** algorithm Plus $b_j \ge 0$, we have $\mathscr{A}(k, \sigma) \le \frac{k}{k-h+1}$ OPT (h, σ) .

Primal Programming P_k $-\sum_{j=1}^{n} x_{0,j} \ge -k$ $-\sum_{j=i+1}^{n} x_{1,j} \ge -1$ $\sum_{i=0}^{j-1} x_{i,j} = 1$ $x_{i,j} \ge 0$ min $\sum_{0 \le i < j \le n} \delta(r_i, r_j) x_{i,j}$

Dual Programming D_k

 $b_j - a_i \leq \delta(r_i, r_j)$ $a_0, \dots, a_n \ge 0$ max $-ka_0 - \sum_{i=1}^n a_i + \sum_{i=1}^n b_i$

Observation

- $i \in S \implies a_i = 0$
- $b_1 \ge \ldots \ge b_n$.

Let *C* be our eviction cost, and

$$\mathcal{U} = \frac{k}{k-h+1} \|\mathbf{a}, \mathbf{b}\|_h - \sum_{j \in S} b_{j^-+1}.$$
 We we
 $C \leq \mathcal{U}.$
Initially, $C = \mathcal{U} = 0.$
If $\exists i \in S, r_i = r_n, C$ is unchanged.
Also, $n^- = i^- \Longrightarrow \sum_{j \in S \setminus \{i\} \cup \{n\}} b_{j^-+1} = \sum_{j \in S \setminus \{n\}} b_{j$

Algorithm Recap

When a request r_n arrives,

- Either $\exists i \in S, r_i = r_n$.
- Or we increase dual variables $\{a_i : i \notin S\} \cup \{b_i : 1 \le i \le n\}$ until $\exists i \in S, b_{i^-+1} = w(r_i).$

• Set
$$x_{i,n} = 1$$
 and $S \leftarrow S \setminus \{i\} \cup \{n\}$.

Let
$$\|\mathbf{a}, \mathbf{b}\|_{t} = -ta_{0} - \sum_{i=1}^{n} a_{i} + \sum_{j=1}^{n} b_{j}$$

Claim: $\mathscr{A}(k, \sigma) \leq \frac{k}{k-h+1} \|\mathbf{a}, \mathbf{b}\|_{h} - \sum_{j \in S} b_{j-1}$

want to prove

- Otherwise, *C* is increased by $w(r_i)$.
- **Claim'**: \mathcal{U} does not change if we increase dual variables by Δ .

Proof

If $0 \in S$, it's easy to verify that $\Delta = 0$ and If $0 \notin S$, ...

Algorithm Recap

When a request r_n arrives,

- Either $\exists i \in S, r_i = r_n$.
 - Or we increase dual variables $\{a_i : i \notin S\} \cup \{b_i : 1 \le i \le n\}$ until $\exists i \in S, b_{i^-+1} = w(r_i).$

Set
$$x_{i,n} = 1$$
 and $S \leftarrow S \setminus \{i\} \cup \{n\}$.

$$d i = 0.$$

Let
$$\|\mathbf{a}, \mathbf{b}\|_{t} = -ta_{0} - \sum_{i=1}^{n} a_{i} + \sum_{j=1}^{n} b_{j}$$

Claim: $\mathscr{A}(k, \sigma) \leq \frac{k}{k-h+1} \|\mathbf{a}, \mathbf{b}\|_{h} - \sum_{j \in S} b_{j-1}$

Otherwise, *C* is increased by $w(r_i)$.

If $0 \notin S$

The first term $\|\mathbf{a}', \mathbf{b}'\|_{h}$ $= -h(a_{0} + \Delta) - \sum_{i \notin S} (a_{i} + \Delta) - \sum_{i \in S} a_{i} + \sum_{j} (b_{j} + \Delta)$ $= \|\mathbf{a}, \mathbf{b}\|_{h} + (k - h + 1) \cdot \Delta$ The second term $\sum_{j \in S} (b_{j-+1} + \Delta) = \left(\sum_{j \in S} b_{j-+1}\right) + |S| \cdot \Delta = \left(\sum_{j \in S} b_{j-+1}\right) + k \cdot \Delta$

Thus, $\mathcal U$ remains unchanged increasing dual variables.

Algorithm Recap

When a request r_n arrives,

- Either $\exists i \in S, r_i = r_n$.
- Or we increase dual variables $\{a_i : i \notin S\} \cup \{b_i : 1 \le i \le n\}$ until $\exists i \in S, b_{i^-+1} = w(r_i).$

• Set
$$x_{i,n} = 1$$
 and $S \leftarrow S \setminus \{i\} \cup \{n\}$.

Let
$$\|\mathbf{a}, \mathbf{b}\|_{t} = -ta_{0} - \sum_{i=1}^{n} a_{i} + \sum_{j=1}^{n} b_{j}$$

Claim: $\mathscr{A}(k, \sigma) \leq \frac{k}{k-h+1} \|\mathbf{a}, \mathbf{b}\|_{h} - \sum_{j \in S} b_{j-1}$

Otherwise, *C* is increased by $w(r_i)$.

Claim': \mathcal{U} does not change if we increase dual variables by Δ .

And we have $n^- = n \implies b_{n^-+1} = 0$. $\sum_{j \in S \setminus \{i\} \cup \{n\}} b_{j^-+1}$ $= \left(\sum_{j \in S} b_{j^-+1}\right) - b_{i^-+1} + b_{n^-+1}$ $= \left(\sum_{j \in S} b_{j^-+1}\right) - w(r_i) + 0$

Thus, \mathcal{U} is also increased by $w(r_i)$. The claim is proved.

Algorithm Recap

When a request r_n arrives,

- Either $\exists i \in S, r_i = r_n$.
- Or we increase dual variables $\{a_i : i \notin S\} \cup \{b_i : 1 \le i \le n\}$ until $\exists i \in S, b_{i^-+1} = w(r_i).$
- Set $x_{i,n} = 1$ and $S \leftarrow S \setminus \{i\} \cup \{n\}$.

Let
$$\|\mathbf{a}, \mathbf{b}\|_{t} = -ta_{0} - \sum_{i=1}^{n} a_{i} + \sum_{j=1}^{n} b_{j}$$

Claim: $\mathscr{A}(k, \sigma) \leq \frac{k}{k-h+1} \|\mathbf{a}, \mathbf{b}\|_{h} - \sum_{j \in S} b_{j-1}$

- Introduction
 - Problem Definition
 - Summary of Results
- Background
 - Duality in Linear Programming
 - An Example: "Ski Rental" via Primal-Dual
- A Primal-Dual Approach to Weighted Caching
- Conclusion

Outline

Conclusion **Primal-Dual Approach**

We have seen two online tasks solved via a Primal-Dual Approach - a toy example "Ski Rental" and Weight Caching.

Steps to design an online algorithms using Primal-Dual

- Formulate with Linear Programming and its dual 1.
- Monotonically change dual variables tightening dual constraints, and update 2. the corresponding primal variables
- Bound the primal objective by dual objective, and use Duality Theorem to 3. complete the competitiveness proof

Thanks for Listening!

Reference

- Buchbinder, Niv, and Joseph Naor. The design of competitive online algorithms via a primal-dual approach. Now Publishers Inc, 2009.
- Borodin, Pankratov. Online and Other Myopic Algorithms, Working Draft, 2021.