
Xiaoxu Guo

Weighted Caching
a Primal-Dual Approach

1

Outline

• Introduction

• Problem Definition

• Summary of Results

• Background

• Duality in Linear Programming

• An Example: “Ski Rental” via Primal-Dual

• A Primal-Dual Approach to Weighted Caching

• Conclusion
2

Outline

• Introduction

• Problem Definition

• Summary of Results

• Background

• Duality in Linear Programming

• An Example: “Ski Rental” via Primal-Dual

• A Primal-Dual Approach to Weighted Caching

• Conclusion
3

Weighted Caching

In Weighted Caching, we are given a cache of size , i.e., the cache can hold up to
pages.

 pages are requested.

A requested page should be loaded into the cache. If the cache already contains
pages, another page should be evicted from the cache, and we incur a positive cost

.

Our goal is minimize the sum of eviction cost.

k k

n r1, …, rn

ri k
rj

w(rj)

4

Competitiveness

For an algorithm , let be the cost given a cache size of and a sequence of
requests .

Assume that is the optimal offline algorithm, and is an online algorithm.

For fixed , the algorithm is -competitive if for any sequence of requests
,

𝒜 𝒜(k, σ) k
σ = (r1, …, rn)

OPT 𝒜

k ≥ h 𝒜 c(h, k)
σ 𝒜(k, σ) ≤ c(h, k) ⋅ OPT(h, σ) + o(OPT(h, σ))

5

Outline

• Introduction

• Problem Definition

• Summary of Results

• Background

• Duality in Linear Programming

• An Example: “Ski Rental” via Primal-Dual

• A Primal-Dual Approach to Weighted Caching

• Conclusion
6

Summary of Results

• Deterministic

• [Chrobak, 1991], “Balance”, -competitive

• [Young, 1994], “GreedyDual”, - competitive, this talk

• Randomized

• [Blum, 1996], -competitive,

• [Irani, 2002], -competitive, or (a constant)

• [Fiat, 2003], -competitive, (a constant)

• [Bansal, 2007], -competitive

k
k

k − h + 1

O(log2 k) n = k + 1

O(log k) ri = 1 ri = M

O(log k) n = k + c

O(log
k

k − h + 1
)

7

Outline

• Introduction

• Problem Definition

• Summary of Results

• Background

• Duality in Linear Programming

• An Example: “Ski Rental” via Primal-Dual

• A Primal-Dual Approach to Weighted Caching

• Conclusion
8

Duality in Linear Programming

Primal Programming

P

a1,1x1 + … + a1,nxn ≥ b1

⋮ ≥ ⋮
am,1x1 + … + am,nxn ≥ bm

x1, …, xn ≥ 0
min c1x1 + … + cnxn

Dual Programming

D

a1,1y1 + … + am,1ym ≤ c1

⋮ ≤ ⋮
a1,ny1 + … + am,nyn ≤ cn

y1, …, ym ≥ 0
max b1y1 + … + bnym

The primal variable corresponds to a dual constraint

A primal contraint corresponds to a dual variable

xi ∑
j

aj,iyj ≥ ci

∑
i

aj,ixi ≤ bj yj

9

Weak & Strong Duality

Let be a finite feasible solution to the primal programming ,
be a finite feasible solution to the dual programming .

Weak Duality states that ,

i.e., the objective of the objective of .

Strong Duality states that

i.e., The objective of the objective of , if and are optimal.

(x1, …, xn) P (y1, …, ym)
D

∑
i

cixi ≥ ∑
j

bjyj

P ≥ D

∑
i

cixi = ∑
j

bjyj

P ≥ D (x1, …, xn) (y1, …, ym)

10

Complementary Slackness

Let be an optimal solution to the primal programming , be an
optimal solution to the dual programming .

Primal Slackness: or , i.e., either the -th primal constraint is tight or

the corresponding dual variable is zero.

Dual Slackness: or , i.e., either the -th dual constraint is tight or the

corresponding primal variable is zero.

(x1, …, xn) P (y1, …, ym)
D

∑
i

aj,ixi = bj yj = 0 j

∑
j

aj,iyj = ci xi = 0 i

11

Linear Programming in Online Tasks

How can Linear Programming help?

When new input arrives

New constraints (and new vars) are added in LP

Update the feasible solution

Restriction: cannot withdraw decision

Impose additional monotonicity constraint

Only increase (or decrease) variables

12

Primal-Dual Approach

Maintain a primal feasible solution and a dual feasible solution

When new input arrives

Increase variables in until some dual constraints are tight

Set corresponding primal variable to non-zero

For competitive ratio

Bound with dual objective ≤ optimal dual objective = optimal primal objective

x y

y

13

Outline

• Introduction

• Problem Definition

• Summary of Results

• Background

• Duality in Linear Programming

• An Example: “Ski Rental” via Primal-Dual

• A Primal-Dual Approach to Weighted Caching

• Conclusion
14

Ski Rental

At a ski resort, renting costs $ per day, and buying costs $

2-competitive online algorithm

Rent for days and buy on the -th day

Let’s see how the Primal-Dual approach produces the same algorithm.

1 B

(B − 1) B

15

Ski Rental

Formulate into an Integer Programming

 indicates whether to buy (= to buy, = not to buy)

 indicates whether to rent on the -th day ()

Constraints: for

Objective:

Relax the Integer Programming to a Linear Programming

Change to

No need for the constraint

x0 ∈ {0,1} 1 0

xi ∈ {0,1} i i ≥ 1

x0 + xi ≥ 1 1 ≤ i ≤ n

min Bx0 + x1 + … + xn

xi ∈ {0,1} xi ≥ 0

xi ≤ 1

Linear Programming Formulation

16

Ski Rental

Primal Programming

P

x0 + x1 ≥ 1
⋮ ≥ ⋮

x0 + xn ≥ 1
x0, …, xn ≥ 0

min Bx0 + x1 + … + xn

Duality

Dual Programming

D

y1 + … + yn ≤ B
y1 ≤ 1
⋮ ≤ ⋮
yn ≤ 1

y1, …, yn ≥ 0
max y1 + … + yn

17

Ski Rental

On the -th day, a new primal constraint is
added.

We increase the dual variable .

If , the process stops reaching . We set the
corresponding primal variable to , i.e., rent.

If , the process stops reaching . We
set to , i.e., buy.

n x0 + xn ≥ 1

yn

n < B yn = 1
xn 1

n = B y1 + … + yn = B
x0 1

Feasible Solution Update

Dual Programming

D

y1 + … + yn ≤ B
y1 ≤ 1
⋮ ≤ ⋮
yn ≤ 1

y1, …, yn ≥ 0
max y1 + … + yn

Primal Programming

P

x0 + x1 ≥ 1
⋮ ≥ ⋮

x0 + xn ≥ 1
x0, …, xn ≥ 0

min Bx0 + x1 + … + xn

18

Outline

• Introduction

• Problem Definition

• Summary of Results

• Background

• Duality in Linear Programming

• An Example: “Ski Rental” via Primal-Dual

• A Primal-Dual Approach to Weighted Caching

• Conclusion
19

Weighted Caching

Assume that the cache is occupied by pages requested by and .

 () if to load into the cache, we have to evict the page requested by . Or otherwise.

Constraints

 : can be evicted for at most times

 for : can be evicted for at most once

 for : should be loaded

Objective: where

k r0 w(r0) = 0

xi,j = 1 0 ≤ i < j ≤ n rj ri xi,j = 0

out(0) =
n

∑
j=1

x0,j ≤ k r0 k

out(i) =
n

∑
j=i+1

xi,j ≤ 1 i ≥ 1 ri

in(j) =
j−1

∑
i=0

xi,j = 1 j ≥ 1 rj

min ∑
0≤i<j≤n

δ(ri, rj)xi,j δ(ri, rj) = {
0 if ri = rj

w(ri) if ri ≠ rj

Linear Programming Formulation

20

Weighted Caching

Cache size

A feasible solution (may not optimal)

Other

Eviction cost

NOTE: As ,

k = 2

σ = (1,2,3,2,1)

x0,1 = x0,2 = x1,5 = x2,3 = x3,4 = 1

xi,j = 0

w(r0) + w(r0) + 0 + w(r2) + w(w3) = w(2) + w(3)

r1 = r5 σ(r1, r5) = 0

An example

No. Request Cache
1 1 {r0, r1} Evict r0

2 2 {r1, r2} Evict r0

3 3 {r1, r3} Evict r2

4 2 {r1, r4} Evict r3

5 1 {r4, r5} Evict r1

An edge is drawn iff
Different colors - different pages

i → j xi,j = 1
21

Weighted Caching

Primal Programming

Pk

−out(0) = −∑n
j=1 x0,j ≥ −k

−out(i) = −∑n
j=i+1 x1,j ≥ −1 (1 ≤ i ≤ n)

in(j) = ∑j−1
i=0 xi,j = 1 (1 ≤ j ≤ n)
xi,j ≥ 0 (0 ≤ i < j ≤ n)

min ∑0≤i<j≤n δ(ri, rj)xi,j

Duality

Dual Programming

Dk

bj − ai ≤ δ(ri, rj) (0 ≤ i < j ≤ n)
a0, …, an ≥ 0

max −ka0 − ∑n
i=1 ai + ∑n

j=1 bj

We add a subscript in and because we want to deal with different cache sizes for online and optimal offline
algorithms .

 () is the dual variable for the primal constraint
 () is the dual variable for the primal constraint

k Pk Dk

ai 0 ≤ i ≤ n out(i)
bj 1 ≤ j ≤ n in(j)

22

Weighted Caching

Primal Programming

P

−∑n
j=1 x0,j ≥ −k

−∑n
j=i+1 x1,j ≥ −1

∑j−1
i=0 xi,j = 1
xi,j ≥ 0

min ∑0≤i<j≤n δ(ri, rj)xi,j

Update Feasible Solution

Dual Programming

D

bj − ai ≤ δ(ri, rj)
a0, …, an ≥ 0

max −ka0 − ∑n
i=1 ai + ∑n

j=1 bj

Let be the multiset of indices of requests in the cache. Initially,
contains copies of .

 and are initially .

When the request arrives,

if the page is already in the cache (), we set
and .

Otherwise, increase dual variables
by until some dual constraints are tight.

S S
k 0

ai bj 0

n

∃i ∈ S, ri = rn xi,n = 1
S ← S∖{i} ∪ {n}

{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n}
Δ ≥ 0

23

Weighted Caching

Primal Programming

P

−∑n
j=1 x0,j ≥ −k

−∑n
j=i+1 x1,j ≥ −1

∑j−1
i=0 xi,j = 1
xi,j ≥ 0

min ∑0≤i<j≤n δ(ri, rj)xi,j

Update Feasible Solution

Dual Programming

D

bj − ai ≤ δ(ri, rj)
a0, …, an ≥ 0

max −ka0 − ∑n
i=1 ai + ∑n

j=1 bj

Increase dual variables by
 until some dual constraints are tight

Observation

• . Proof: won’t change until is
evicted ().

• .

{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n}
Δ ≥ 0

i ∈ S ⟹ ai = 0 ai ri
i ∉ S

b1 ≥ … ≥ bn

24

Weighted Caching

Primal Programming

P

−∑n
j=1 x0,j ≥ −k

−∑n
j=i+1 x1,j ≥ −1

∑j−1
i=0 xi,j = 1
xi,j ≥ 0

min ∑0≤i<j≤n δ(ri, rj)xi,j

Update Feasible Solution

Dual Programming

D

bj − ai ≤ δ(ri, rj)
a0, …, an ≥ 0

max −ka0 − ∑n
i=1 ai + ∑n

j=1 bj

Increase dual variables by
until some dual constraints are tight.

What’s “some dual constraints”?

To evict a page, we want a constraint where
 to become tight.

Because , the constraint becomes .

Because , the constraint becomes .

Because , we can focus on the constraint
.

{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n} Δ ≥ 0

bj − ai ≤ δ(ri, rj)
i ∈ S

i ∈ S ⟹ ai = 0 bj ≤ δ(ri, rj)

ri ≠ rn bj ≤ w(ri)

bi+1 ≥ bi+2 ≥ …
bi+1 ≤ w(ri) Observation

•
• .

i ∈ S ⟹ ai = 0
b1 ≥ … ≥ bn

25

Weighted Caching
Update Feasible Solution

Increase dual variables by
 until some dual constraints are tight.

Focus on the constraint

Let be the request which loads page .

Example:

.

{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n}
Δ ≥ 0

bi+1 ≤ w(ri)

i− ri

4− = 4,1− = 5− = 1

26

Weighted Caching

Primal Programming

P

−∑n
j=1 x0,j ≥ −k

−∑n
j=i+1 x1,j ≥ −1

∑j−1
i=0 xi,j = 1
xi,j ≥ 0

min ∑0≤i<j≤n δ(ri, rj)xi,j

Update Feasible Solution

Dual Programming

D

bj − ai ≤ δ(ri, rj)
a0, …, an ≥ 0

max −ka0 − ∑n
i=1 ai + ∑n

j=1 bj

Increase dual variables by
 until some dual constraints are tight.

Focus on the constraint

Let be the request which loads page .

We increase dual variables until
, set and

.

{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n}
Δ ≥ 0

bi+1 ≤ w(ri)

i− ri

∃i ∈ S, bi−+1 = w(ri−) = w(ri) xi,n = 1
S ← S∖{i} ∪ {n}

27

Weighted Caching

Primal Programming

P

−∑n
j=1 x0,j ≥ −k

−∑n
j=i+1 x1,j ≥ −1

∑j−1
i=0 xi,j = 1
xi,j ≥ 0

min ∑0≤i<j≤n δ(ri, rj)xi,j

Update Feasible Solution

Dual Programming

D

bj − ai ≤ δ(ri, rj)
a0, …, an ≥ 0

max −ka0 − ∑n
i=1 ai + ∑n

j=1 bj

Increase dual variables by
 until some dual constraints are tight.

Increase dual variables until
.

Why the solution is still feasible?

For , .

For , as
.

{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n}
Δ ≥ 0

∃i ∈ S, bi−+1 = w(ri−) = w(ri)

i ∉ S (bj + Δ) − (ai + Δ) = bj − ai ≤ δ(ri, rj)

i ∈ S bj − ai ≤ bi−+1 − ai = w(ri) − 0 = δ(ri, rj)
j ≥ i + 1 ≥ i− + 1 ⟹ bj ≤ bi−+1 Observation

•
• .

i ∈ S ⟹ ai = 0
b1 ≥ … ≥ bn

28

Weighted Caching

Primal Programming

P

−∑n
j=1 x0,j ≥ −k

−∑n
j=i+1 x1,j ≥ −1

∑j−1
i=0 xi,j = 1
xi,j ≥ 0

min ∑0≤i<j≤n δ(ri, rj)xi,j

Algorithm Recap

Dual Programming

D

bj − ai ≤ δ(ri, rj)
a0, …, an ≥ 0

max −ka0 − ∑n
i=1 ai + ∑n

j=1 bj

Maintain

• Primal solution , dual solution

• A set (copies) initially

When a request arrives,

• Either .

• Or we increase dual variables
 until .

• Set and .

xi,j a0, …, an, b1, …, bn

S = {0,…,0} k

rn

∃i ∈ S, ri = rn

{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n} ∃i ∈ S, bi−+1 = w(ri)

xi,n = 1 S ← S∖{i} ∪ {n}
Observation

•
• .

i ∈ S ⟹ ai = 0
b1 ≥ … ≥ bn

29

Weighted Caching

Primal Programming

Pk

−∑n
j=1 x0,j ≥ −k

−∑n
j=i+1 x1,j ≥ −1

∑j−1
i=0 xi,j = 1
xi,j ≥ 0

min ∑0≤i<j≤n δ(ri, rj)xi,j

Competitiveness

Dual Programming

Dk

bj − ai ≤ δ(ri, rj)
a0, …, an ≥ 0

max −ka0 − ∑n
i=1 ai + ∑n

j=1 bj

Let

Claim: Given a cache size and requests , our algorithm has

 is feasible in is feasible in (because does not
occur in constraints)

where is the optimal offline algorithm

Plus , we have .

∥a, b∥t = −ta0 −
n

∑
i=1

ai +
n

∑
j=1

bj

k σ 𝒜
𝒜(k, σ) ≤

k
k − h + 1

∥a, b∥h − ∑
j∈S

bj−+1

(a, b) Dk ⟹ (a, b) Dh k

∥a, b∥h ≤ optimum of Dh = optimum of Ph = OPT(h, σ)

OPT

bj ≥ 0 𝒜(k, σ) ≤
k

k − h + 1
OPT(h, σ)

Observation
•
• .

i ∈ S ⟹ ai = 0
b1 ≥ … ≥ bn

30

Weighted Caching
Proof of the claim

Let

Claim:

∥a, b∥t = −ta0 −
n

∑
i=1

ai +
n

∑
j=1

bj

𝒜(k, σ) ≤
k

k − h + 1
∥a, b∥h − ∑

j∈S

bj−+1

Algorithm Recap

When a request arrives,

• Either .

• Or we increase dual variables
 until

.

• Set and .

rn

∃i ∈ S, ri = rn

{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n}
∃i ∈ S, bi−+1 = w(ri)

xi,n = 1 S ← S∖{i} ∪ {n}

Let be our eviction cost, and

. We want to prove

.

Initially, .

If , is unchanged.
Also,

C
𝒰 =

k
k − h + 1

∥a, b∥h − ∑
j∈S

bj−+1

C ≤ 𝒰

C = 𝒰 = 0

∃i ∈ S, ri = rn C
n− = i− ⟹ ∑

j∈S∖{i}∪{n}

bj−+1 = ∑
j∈S

bj−+1

31

Weighted Caching
Proof of the claim

Let

Claim:

∥a, b∥t = −ta0 −
n

∑
i=1

ai +
n

∑
j=1

bj

𝒜(k, σ) ≤
k

k − h + 1
∥a, b∥h − ∑

j∈S

bj−+1

Algorithm Recap

When a request arrives,

• Either .

• Or we increase dual variables
 until

.

• Set and .

rn

∃i ∈ S, ri = rn

{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n}
∃i ∈ S, bi−+1 = w(ri)

xi,n = 1 S ← S∖{i} ∪ {n}

Otherwise, is increased by .

Claim’: does not change if we increase dual variables
by .

Proof

If , it’s easy to verify that and .

If , …

C w(ri)

𝒰
Δ

0 ∈ S Δ = 0 i = 0

0 ∉ S

32

Weighted Caching
Proof of the claim

Let

Claim:

∥a, b∥t = −ta0 −
n

∑
i=1

ai +
n

∑
j=1

bj

𝒜(k, σ) ≤
k

k − h + 1
∥a, b∥h − ∑

j∈S

bj−+1

Algorithm Recap

When a request arrives,

• Either .

• Or we increase dual variables
 until

.

• Set and .

rn

∃i ∈ S, ri = rn

{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n}
∃i ∈ S, bi−+1 = w(ri)

xi,n = 1 S ← S∖{i} ∪ {n}

Otherwise, is increased by .

If

The first term

The second term

Thus, remains unchanged increasing dual variables.

C w(ri)

0 ∉ S

∥a′ , b′ ∥h

= −h(a0 + Δ) − ∑
i∉S

(ai + Δ) − ∑
i∈S

ai + ∑
j

(bj + Δ)

= ∥a, b∥h + (k − h + 1) ⋅ Δ

∑
j∈S

(bj−+1 + Δ) = ∑
j∈S

bj−+1 + |S | ⋅ Δ = ∑
j∈S

bj−+1 + k ⋅ Δ

𝒰
33

Weighted Caching
Proof of the claim

Let

Claim:

∥a, b∥t = −ta0 −
n

∑
i=1

ai +
n

∑
j=1

bj

𝒜(k, σ) ≤
k

k − h + 1
∥a, b∥h − ∑

j∈S

bj−+1

Algorithm Recap

When a request arrives,

• Either .

• Or we increase dual variables
 until

.

• Set and .

rn

∃i ∈ S, ri = rn

{ai : i ∉ S} ∪ {bi : 1 ≤ i ≤ n}
∃i ∈ S, bi−+1 = w(ri)

xi,n = 1 S ← S∖{i} ∪ {n}

Otherwise, is increased by .

Claim’: does not change if we increase dual variables by .

And we have .

Thus, is also increased by . The claim is proved.

C w(ri)

𝒰 Δ

n− = n ⟹ bn−+1 = 0

∑
j∈S∖{i}∪{n}

bj−+1

= ∑
j∈S

bj−+1 − bi−+1 + bn−+1

= ∑
j∈S

bj−+1 − w(ri) + 0

𝒰 w(ri)

34

Outline

• Introduction

• Problem Definition

• Summary of Results

• Background

• Duality in Linear Programming

• An Example: “Ski Rental” via Primal-Dual

• A Primal-Dual Approach to Weighted Caching

• Conclusion
35

We have seen two online tasks solved via a Primal-Dual Approach - a toy example
“Ski Rental” and Weight Caching.

Steps to design an online algorithms using Primal-Dual

1. Formulate with Linear Programming and its dual

2. Monotonically change dual variables tightening dual constraints, and update
the corresponding primal variables

3. Bound the primal objective by dual objective, and use Duality Theorem to
complete the competitiveness proof

Thanks for Listening!

Conclusion
Primal-Dual Approach

36

• Buchbinder, Niv, and Joseph Naor. The design of competitive online algorithms
via a primal-dual approach. Now Publishers Inc, 2009.

• Borodin, Pankratov. Online and Other Myopic Algorithms, Working Draft, 2021.

Reference

37

