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Week 8

Agenda for today and following two weeks

For the last two meetings, we had overview presentations of the
reading projects. I am basing the grade on the quality of these
presentations. The criteria are : Was the presentation clear and how
informative was the presentation.

Koosha and Xiaoxu will give their more detailed presentations next
week March 18. Alex, Jinman and Koko will follow on March 25. If
you cannot prepare sufficiently by those dates please let me know. I
am allowing approximately 50 minutes for the next presentations.

During the weeks when there are no presentations (including today), I
will present some other topics in some detail.
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Todays agenda

Today we will discus three related problems: the secretary problem,
prophet inequalities, and the prophet secretary problem.

These all can be considered within the framework of online bipartite
matching.

The prophet secretary results are relatively new and based mainly on
papers by Esfandiari et al [SICOMP 2017], Ehsani et al [SODA 2018]
and Correa et al [Math Programming 2020].

The secretary and prophet inequalities results are more “classic”. The
first published algorithm and proof for the secretary problem is
attribued to Lindley (1961). The prophet inequalities bounds is due
to Krengel and Sucheston (1977) whereas the threshold algoriehm
presented here is due to Samuel-Cahn (1984) using the proof by
Kleinberg and Weinberg (2012) as presented in Lucier (2017).

3 / 1



The random order model

Aa we have mentioned, worst case analysis can often be misleading, as the
bounds can be too pessimistic and at odds with the “real world”
performance of some online and other conceptually simple algorithms.

The basic online model and what was initially competitive analysis was a
game between the online algorithm and an adversary. For deterministic
and randomized online algorithms (wrt oblivious adversaries), an adversary
sees the algorithm and creates a nemesis input set {I1, I2, . . . , In} and an
adversarially chosen input sequence of the input set.

In the random order model, the adversary still creates a nemesis input set
but then the sequence of input items arrives in random order. That is, in
the random order model (ROM), the inputs arrive in the order
π(1), π(2), . . . , π(n) where π is chosen uniformly at random from the n!
possible orderings.
We already saw (Week 4) that any deterministic online greedy algorithm
for unweighted maximum bipartite matching has competitive ratio 1/2
while in ROM, the natural greedy algorithm has ratio 1− 1/e.
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The random model continued

I will continue to view the random order model (and other stochastic
models which involve distributions on input items) as online models (and
continue to use the terminology of “competitive ratio”) since the online
algorithm has no control over the input sequence.
In the ROM, we often say that “nature” selects the permutation.

Whenever we have some stochastic aspect to the input sequence, the
algorithm’s performance is the expected value the algorithm achieves for
the objective function.

Since the benchmark is the optimal value for the input set, the benchmark
in the random order model is not impacted by the random order and hence
we do not need to take an expectation for OPT.

When the input set or sequence comes from a distribution, the usual
benchmark is to take the expectation of OPT with respect to the
randomness in the input.
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The secretary problem

As I am sure I have mentioned before, to the best of my knowledege, the
random order model was first used in the secretary problem. The
terminology may not be politically correct. The problem has also been
called the “dowry problem” which is more problematic. It might be best to
call this the candidate problem but the name secretary problem has stuck.

The problem is to select one candidate (one item) from a worst case set of
n candidate values. Another very useful interpretation is for a seller to
select one buyer who wishes to purchase an item.

Each candidate arrives online and (say by interviewing) we learn the value
of this candidate. For each candidate, the algorithm (i.e. the interviewer)
must either irrevocably reject the candidate or irrevocably accept the
candidate (in which case, the algorithm stops).

This then can be seen as a special case of edge or vertex weighted online
bipartite matching where there is one single offline vertex.
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The secretary problem continued

Since the candidate values are completely adversarial, it is easy to see that
there cannot be any competitive ratio not depending on the values if the
order of arrivals is adversarial. (This is true even for n = 2 candidates.)

But in ROM, the optimal competitive ratio is 1
e . In fact, the solution to

the secretary problem is an algorithm that (as n→∞) selects the best
candidate (i.e., the highest value) with probability 1

e which implies that the
expected value of the algorithm is at least 1

e .

It can be shown that this is the optimal expected value.

Unlike most (or maybe all) of the online problems we have considered,
here we assume that the algorithm knows the number n of candidates.
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The secretary algorithm

An historical account for the secretary problem is given by Ferguson
(1989) and he attributes the first solution to Lindley (1961).
Note: I think TCS interest in ROM begins with the KVV (1990)
algorithm for online bipartite matching. Here is the secretary algorithm
copied from the text.
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combinatorial nightmare. Instead, we often bypass such cumbersome combinatorial estimates by
relying on a continuous analysis.

The value of c leading to the best algorithm of the above form is 1/e and we call it the Secretary
algorithm. The pseudocode is presented in Algorithm 44.

Algorithm 44 A deterministic algorithm for the Secretary problem in ROM.
procedure Secretary

vbest  v1

i 2
r  bn/ec
while i  r do . Find the best candidate amongst the first r = n/e candidates

if vi > vbest then
vbest  i

i i + 1
while i  n do . Output next candidate (if any) better than initial best

if vi > vbest then return i

Observe that the Secretary algorithm is deterministic. Next, we prove the positive result for
this algorithm.

Theorem 15.1.1. Algorithm 44 selects a best candidate with probability p(n)! p = 1
e as n!1.

Proof. In order to be more precise we make the dependence of certain variables on n explicit. We
will now see why choosing r(n) = bn/ec is the right place to stop sampling. In fact, we treat
r(n) = bc · nc as parameterized by some constant c 2 (0, 1) and carry out our analysis for general
c. We then derive that c = 1

e gives the best asymptotic result as a consequence of analysis.
The key observation is that the following is a necessary and sufficient condition for the algorithm

to choose the correct candidate:

• The overall maximum value of an applicant occurs in position t + 1 for some t � r(n).

• The maximum value of an applicant among [1, t] is the same as the maximum value of an
applicant in [1, r].

In ROM, for a given t, the first condition happens with probability at least 1/n and the second
condition happens with probability at least r(n)/t. These probabilities are achieved exactly if and
only if the corresponding maximum values are unique. This happens for all possible scenarios if
all applicants have distinct values. Since this minimizes the probability of success of Secretary
algorithm and we are interested in worst case probability of success, from now onward, we assume
that all applicants have distinct values. Thus, for a given t � r(n) the correct candidate is chosen
with probability exactly r(n)

t · 1
n . It follows then that the probability of outputting the best candidate,

denoted by p(n), is

p(n) =
r(n)

n

n�1X

t=r(n)

1

t
.

We are interested in computing limn!1 p(n) using continuous analysis. First of all, observe that
c � 1/n  r(n)/n  c. Therefore, limn!1 r(n)/n = c. We claim that the second factor in p(n),
namely

Pn�1
t=r(n)

1
t , is equal to

R 1
c

1
xdx = �

R c
1

1
xdx = � ln c in the limit. To see this, define

U(n) =
n�1X

t=r(n)

n

t
· 1

n
, and
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Proof of the secretary bound

Intuitively and informally, for any choice of an initial set of r = r(n)
candidates, there is a probability that the second best will occur amongst
the first r candidates while the best candidate will occur after the first r
candndiates.

It is easy to see that for any choice of c < 1, r = cn will result in a
constant competitive ratio. For example, if c = 1/4, we immediately get
at least a comeptitive ratio 3/16 ≈ .1875 < 1/e ≈ .3678.

But of course there are other ways that the best candidate could be found.
For example when c = 1/4, it could be that the third best canddiate is in
the first r candidates and the while the best precedes the second best and
occurs after the first r candidates, etc. etc,

Enumerating all the possibilities and their probability of occurence would
be painfully tedious at best and really a combinatorial nightmare.
Furthermore we are interested in this probability as n→∞.
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The secretary bound continued

Instead by estimating probabilities using continuous analysis, the
calculation fr(n) = cn becomes manageable and one can then optimize for
the value of c . As stated in the secretary algorithm, the optimum value of
c = 1/e and r(n) = bn/ec.
I will go over the proof as we state it in the text. We can assume that all
values are distinct since identical values only make it more likely to select
the best value. Then the necessary and sufficient conditions for the
algorithm to select the best candidate:

The maximum value occurs in position t + 1 for some t ≥ r(n) which
occurs with probability 1/n. And

The maximum value of the first t candidates is the same as the
maximum value of the first r(n) candidates which occurs with
probability r(n)/t

Summing up over all t ≥ r(n), the desired probability is

pc(n) =
∑n−1

t=r(n)
r(n)
t

1
n = r(n)

n

∑n−1
t=r(n)

1
t
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Finishing the proof

Claim: In the limit as n→∞, we have

n−1∑

t=r(n)

1

t
=

∫ 1

c

1

x
dx = −

∫ c

1

1

x
dx = − ln c

So the probability for r(n) = cn (in the limit) is

pc(n) =
cn

n

n−1∑

t=r(n)

1

t
= −c ln c

which is optimized at c = 1
e .
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Beyond worse case: inputs generated from
distributions
Stochastic optimization usually refers to optimization problems where we
assume that input sets are not fully specified but rather are specified by
distributions. In stochastic optimization, the outcome of an execution of
an algorithm becomes a random process where inputs are instantiated as
random values drawn from the distribution. For randomized algorithms,
the process is then in terms of both the randomness in the input as well as
the randomness in the algorithm.

And what is the benchmark? We assume a non-adaptive adversary that
initially chooses the distribution D for the input set. The input sequence
can then either be adversarial or random order. We will adopt the usual
convention that the benchmark is the expectation (over the input
instantiations) of an optimal solution for each instantiation. That is, the
competitive ratio is defined as:

max
D

Ex∈D[ALG (x)]

Ex∈D[OPT (x)]
12 / 1



Independence

A common (but often unrealistic) assumption is that the distributions D
are product distributions, that is, input items are defined by independent
distributions and we refer to such a process as as an “i.d. process”. That
is, each input item instance wi is drawn independently from a distribution
Xi .

A further assumption is that the distributions are identical and we refer to
such a process as an “i.i.d. process”.
As stated, independence is often but not always unrealistic. Currently in
TCS, i.d. and i.i.d. processes are still the most common assumption
although as we have seen (e.g., in Markov paging), where we assume that
the input item are correlated.

Question: Is independence a reasonable assumption for the secretary
problem? That is, is it reasonable to assume that the values each of each
candidate (or buyer) are are determined by indepedent distributions?
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Adopting the distributional assumption to the
secretary problem

The prophet inequalities and prophet secretary problems are i.d.
distributional analogues of the secretary problem. We assume the
algorithm is given n input item distributions X1,X2, . . . ,Xn from which
values will be drawn.

In the prophet inequalities problem, the input sequence is an adversarially
defined sequence (Xπ(1),wπ(1), (Xπ(2),wπ(2)), . . . , (X{π(n),wπ(n)) where π
is determined by the adversary.

We adopt the convention that the algorithm knows the set of distributions
but not the order which is being revealed one input item at a time.
In the prophet secretary problem, the sequence order is determined
randomly; that is, π is chosen uniformly at random.
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Threshold algorithms for the prophet inequalities
and prophet secretary problems.

In the prophet problems, upon seeing an input item (Xπ(i),wπ(i)), the

algorithm must irrevocably decide whether to take the item (and then the
process stops) or reject the item and go on to the next item
(Xπ(i+1),wπ(i+1)) For i = n, the algorithm might as well accept the last
item but results do not usally depend on taking the last item.

This decision as to accepting or rejecting an item (Xπ(i),wπ(i)) can be
seen to be equivalent to setting a threshold τπ(i ) and accepting if and only
if τπ(i) ≤ wπ(i). In general, the threshold τπ(i) can be a function of
i ,Xπ(i),Xπ(j) (for all j > i).

Implicitly, when seeing the input (Xπ(i),wπ(i)), the algorithm knows that
the first j < i items were rejected and knows what distributions remain.

Non-adaptive threshold algorithms are a restricted class of threshold
algorithms where each τi as a function of just Xi and D. That is, the
algorithm has no knowledge of the history thus far nor what input items
still remain to be seen. 15 / 1



The non-adaptive threshold template
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Algorithm 48 The non-adaptive thresholds template for prophet inequalities and prophet secre-
taries.

procedure Prophets
⇡ : [1, n]! [1, n] is a permutation . For prophet inequalities, ⇡ is adversarially chosen; for

prophet secretaries, ⇡ is a random permutation.
⌧1, ⌧2, . . . , ⌧n is a sequence of thresholds . The thresholds are chosen by the algorithm based

on the set of distributions before the individual online items arrive. In particular, the thresholds
do not depend on when an item arrives.

flag  0
for j = 1..n and while flag = 0 do

Draw w⇡(j) from distribution X⇡(j)

if j < n and w⇡(j) � ⌧⇡(j) then
Accept the ⇡(j) item
flag  1

else if j = n then
Accept the ⇡(n) item

Hence in either case, the algorithm’s expected value is 1 as n ! 1. It can can shown (Exercise
2) that E[maxi Xi] ! 2 as n ! 1 so that the asymptotic competitive ratio is 1

2 for the given
distributions.

Surprisingly, if we randomize the decision for when w⇡(j) = ⌧j , it turns out that there is a
single threshold that provides a 1� 1

e competitive ratio for the prophet secretary problem. For the
example used in Theorem 15.3.3, if the algorithm only accepts the deterministic distribution with
probability 1

n , the expected value for the algorithm becomes 1+ 1
e as n!1 so that the asymptotic

ratio for this set of distributions is 1+ 1
e

2 ⇡ .6843. Intuitively, we are choosing the probability inversely
proportional to the expectation of obtaining a tie aqnd hence we are likely to accept the large value
n (if it is drawn) and also still likely to accept the deterministic value of 1 if the large value is not
drawn. We note that if we assume continuous distributions then “ties” essentially do not occur and
we have the following theorem:

Theorem 15.3.4. ‘For any set of distributions (using a randomized tie breaking rule for discrete
istributions), there is a single threshold ⌧ , such that Algorithm 48 achieves competitive ratio 1� 1

e .
The thershold ⌧ is defined so that Pr[maxi Xi  ⌧ ] = 1

e . Let us refer to this algorithm as ALG⌧ .

In proving Theorem 15.3.4 we will assume continuous distributions so as to ignore tie breaking.
The following lemma will be useful.

Lemma 15.3.5. Let q(j) = Pr[max1kj [w⇡(k) < ⌧ ] and q�i(j) = Pr[The algorithm does not choose
any of the first j � 1 items|⇡(j) = i]. That is, q(j) is the probability that the first j items were not
chosen and q�i(j) is the probability that the first j� 1 items were not chosen conditioned on the jth

item being Xi. Then q�i(j)  q(j).

Proof.

We are now ready to prove Theorem 15.3.4.
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An optimal single threshold algorithm for prophet
inequalities

It turns out that by restricting items to come from a known set of
independent distributions, we can achieve a much improve competitive
ratio than the optimal ratio for the worst case secretary problem (even
though the input order is adversarial).

Moreover, there is a simple non-adaptive single threshold stopping rule.
Let T = E[maxi wi ]

2 . The uniform stopping rule is to accept the
first wi ≥ T and then stop. This threshold stopping rule turns out to be
the best online algorithm.

Theorem

Let A be the online algorithm using the above stopping rule.
For every set of independent distributions X1,X2, . . . ,Xn, A has
competitive ratio at least 1

2 .
Furthermore this is an optimal stopping rule in the sense that for any
ε > 0, there are distributions such that the expected value of any online
algorithm is at most (12 − ε) · E[maxiwi ].

17 / 1



Proof of threshold algorithm for prophet inequalities

Proof

For the negative example, let X1 be a deterministic distribution with
value 1 and let X2 be the distribution such that w2 = 1

ε with probility
ε and 0 with probability 1− ε for some arbitrarily small ε > 0. An
online algorithm can accept w1 = 1 and obtain that value or it can
decide to reject w1 and then obtain E[X2] = 1. So that any online
algorithm will obtain expected value 1. On the other hand.

Claim For the above distributions, E[max{X1,X2}] = (2− ε).
While the claim may seem surprising at first, the result follows from a
simple conditional expectation argument. Let Y be any random
variable and let Z be a random {0, 1} indicator variable with
p = Prob[Z ]. Then

E[Y ] = E[Y |Z ] · p + E[Y |Z̄ ] · (1− p)

The claim follows by setting Y = max{X1,X2}, and letting Z be the
indicator variable for X1 ≥ X2 so that p = prob[Z ] = (1− ε).
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Proof of threshold algorithm continued

We now consider the positive result showing that the algorithm achieves
the desired competitive ratio.
We will use an economic interpretation for the analysys of the single
threhold algorithm. Namely, we will interpret the threshold as a price that
the seller is offering to each buyer and that price becomes the sellers
revenue if any buyer accepts an offer.

The utility of a successful buyer is then the value to the buyer minus the
price. We want to find lower bounds for E[Revenue] and E[Utility ].

The desired objective is then E[ALGτ ] = E[Revenue] + E[Utility ]. In
economic terminology the objective is called the social welfare.

Note: There is a similar economic presentation of the KVV Ranking
bipartite matching algorithm.
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Proof of threshold algorithm continued

The revenue to the seller is precisely the threshold T times the
probability that there is a successful sale. That is,

E[Revenue] = T ·Pr[the item is sold] =
1

2
max

i
Xi ·Pr[the item is sold]

To calculate the expected utility, we consider the expected utliltiy
E[Utiltiyi ] of each buyer i . Only one buyer can be successful and the
purchase by buyer i only depends on the value wi and the event that
that the item has not been previously sold to a previous buyer j < i ,
an event which is independent of wi . Therefore, E =

∑
i E[Utiltiyi ].

Letting (wi − T )+ = max(wi − T , 0) we have :

E[Uiltityi ] = E[(wi − T )+] · Pr[item was not sold to any buyer j < i ]

and thus

E[Uiltity ] =
∑

i

E[(wi − T )+] · Pr[item was not sold to any buyer ]
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End of proof of threshold algorithm

Finally,

∑

i

E[(wi − T )+] ≥ E[max
i

(wi − T )+] ≥ E[max
i

wi ]− T = E[max
i

Xi ]/2

so that
E[A] = E[Revenue] + E[Utility ]

≥ 1
2E[maxi Xi ]·Pr[item was sold]+1

2E[maxi Xi ]·Pr[item was not sold]
= 1

2E[maxi Xi ]

End of Proof
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Comments on the theorem and proof

Note that the negative result holds even when the algorithm knows the
order X1,X2 of the input sequence while the positive result holds without
knowledge of the order.

In fact, the positive results holds if only OPT = E[maxi Xi ] is known.
Furthermore if the algorithm could control the order and reveal (X2,w2)
first, then the algorithm would be optimal for this set of distributions.

This begs the question as to what if the input order was random?

It also begs the question as to finding a “best order” which we postpone
for now as that takes us beyond the online framework.
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The prophet secretary problem

As already defined the prophet secretary problem assumes that there is a
known set of distributions D = {X1, . . . ,Xn} given by an adversary and
the input item (Xπ(i),wπ(i)) arrive in random order.

Theorem

There is a single threshold (and hence non-adaptive) algorithm for the
prophet secretary problem with competitive ratio 1− 1

e . This is the
optimal competitive ratio for non-adaptive thresholds.
Note: The algorithm is a deterministic algorithm for continuous
distributions but requires randomization to “break ties” when the single
threshold τ = wj for some j. More specifically, without tie breaking no
deterministic single threshold algorithm can achieve a competitive ratio
asymptotically better than 1

2 .
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A bad example for a deterministic single threshold
algorithm

We first note that for a continuous distribution, and no matter how many
distinct thresholds are used, the probability of a tie is infinitessimally small.
But now consider the following discrete probability example:
There are n − 1 deterministic distributions such that Pr[Xi = 1] = 1 and
one distribution Xi such that Pr[Xi = n] = 1/n and 0 otherwise. It follows
that:

1 For any fixed threshold τ < 1, the algorithm obtains the value n with
probability 1/n2 and 1 otherwise so that that algorithm’s expected
value approaches 1 as n→∞,

2 For any fixed threshold τ ≥ 1, the algorithm obtains value n with
probability 1/n (and 0 otherwise) and therefore the algorithms
expected value is precisely 1.

Hence in either case, the algorithm’s expected value is 1 as n→∞. It can
can shown that E[maxi Xi ]→ 2 as n→∞ so that the asymptotic
competitive ratio is 1

2 for the given distributions.
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Motivating the use of tie-breaking for randomization

If we randomize the decision for when wπ(j) = τj , it turns out that there is

a single threshold that provides a 1− 1
e competitive ratio for the prophet

secretary problem.

For the example used in the comment above, if the algorithm only accepts
the deterministic distribution with probability 1

n , the expected value for the
algorithm becomes 1 + 1

e as n→∞ so that the asymptotic ratio for this

set of distributions is
1+ 1

e
2 ≈ .6843.

Intuitively, we are choosing the probability inversely proportional to the
expectation of obtaining a tie and hence we are likely to accept the large
value n (if it is drawn) and also still likely to accept the deterministic value
of 1 if the large value is not drawn.
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The proof for the fixed threshold prophet secretary
algorithm with competitve ratio 1− 1

e

We will assume continuous distributions so as to ignore the tie-breaking
needed for non-continuous (e.g. discrete) distributions.

We set the threshold τ so that Pr[maxi Xi ≤ τ ] = 1
e .

We will again use the economic interpretation for the analysys of the single
threhold algorithm. Namely, we will interpret the threshold as a price that
the seller is offering to each buyer and that price becomes the sellers
revenue if any buyer accepts an offer.

Namely, the desired objective is E[ALGτ ] = E[Revenue] + E[Utility ].
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Continuing the proof for the fixed threshold prophet
secretary algorithm

We first bound E[Revenue]. By the definition of τ , values below the
threshold are drawn with probability less than 1

e so that the probability of
a successful sale is 1− 1

e . It follows that
E[Revenue] ≥ (1− 1

e ) · τ ≥ (1− 1
e ) · E[OPT · 1OPT<τ ]

We will just state the following lemma that we need to bound E[Utility ]:

Lemma

Let q(j) = Pr[max1≤k≤j [wπ(k) < τ ] and q−i (j) = Pr[The algorithm does
not choose any of the first j − 1 items | π(j) = i ]. That is, q(j) is the
probability that the first j items were not chosen and q−i (j) is the
probability that the first j − 1 items were not chosen conditioned on the
j th item being Xi . Then q−i (j) ≤ q(j).
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Bounding the Utility of the buyer

Let ui be the utility of buyer i and let 1wi≥τ denote the indicator function
specifying that wi ≥ τ . Using the inequality from Lemma ?? we obtain:

E[utiliy ] =
n∑

i=1

E[ui ] =
n∑

i=1

n∑

j=1

Pr[π(j) = i ] · q−i (j) · E[wi1wi≥τ ]

=
n∑

i=1

n∑

j=1

q−i (j) · E[wi1wi≥τ ] · 1

n

≥
n∑

i=1

n∑

j=1

q(j) · E[wi1wi≥τ ] · 1

n

=
n∑

i=1

E[wi1wi≥τ ]
n∑

j=1

q(j)
1

n

= E
[ n∑

i=1

wi1wi≥τ
] n∑

j=1

q(j)
1

n
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Continuing the Utility bound

E
[∑n

i=1 wi1wi≥τ
]∑n

j=1 q(j) 1n ≥ E
[∑n

i=1OPT · 1OPT≥τ
]∑n

j=1 q(j) 1n

We then only need to bound
∑n

j=1 q(j) 1n and that bound will be 1− 1
e

We this by first showing q(j ≥ exp
(
− j

n and then the summation is
.

Let p(i) = Pr[wi < τ ] and (as usual) exp(z) = ez . For every j

q(j) = Pr
[

max1≤k≤j{wπ(k) < τ}
]

= Eπ
[∏j

k=1 p(π(k))
]

= Eπ
[
exp
(∑j

k=1 ln p(π(k)
)]
≥ exp

(
Eπ
[∑j

k=1 ln p(π(k)
)])

= exp
(

j
n

∑j
k=1 ln p(π(k)

)

= exp
(
− j

n

)

where the inequality is due to the convexity of the function exp and
the final equality follows from the definition of τ .

For the desired summation we have∑
q(j) · 1n ≥

∑
exp(− j

n ) · 1n ≥
∫ 1
0 exp(−x)dx = (1− 1

e )
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Finishing up the proof of the competitive ratio for
the fixed threshold prophet secretary bound

We have just concluded that

E(Utility) ≥ E ·
[∑n

i=1OPT · 1OPT≥τ
]∑n

j=1 q(j) 1n

≥ E
[∑n

i=1OPT · 1OPT≥τ
]
· (1− 1

e ).

Summing up, we obtain
E[ALG ]τ = E(Revenue) + E(Utility) ≥
E[OPT · 1OPT<τ ](1− 1

e ) + E
[∑n

i=1OPT · 1OPT≥τ
]
(1− 1

e )
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Beating the 1− 1
e competitive ratio.

Can the 1− 1
e “barrier” be overcome? It turns out that there is a

randomized blind multi-threshold strategy that can achieve an improved
ratio. A blind strategy is a “slightly” adaptive threshold algorithm where
the {τi} are chosen as follows:

Let α : [0, 1]→ [0, 1] be a non-increasing function.

Let u1, u2, . . . , un be drawn independently from [0, 1]

Sort the {ui} so that u1 ≤ u2 . . . ≤ un

Choose τi such that Pr[maxi Xi ≤ τi ] = α(ui )
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The state of the art for the prophet secretary
problem

We state the following theorem without proof. While the format of a blind
stratregy is conceptually simple, the analysis is more involved than the
analysis for the fixed threshold strategy.

Theorem

For the prophet secretary problem, we have have the following results:

For any set of distributions {Xi}, there is a blind threshold strategy
with competitive ratio .669

Every blind strategy has competitivee ratio at most .675

Every online algorithm has competitve ratio at most
√

3− 1 ≈ .732.
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