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Week 4: agenda

Our goal today is to try to converge as much as possible on initial projects.
I was hoping that we could even hear some preliminary discussions next
week. But that will require having one or two people doing some reading.

I will walk through the chapters of the text (many not even started) and
indicate where I think there are interesting recent developments.

But choosing a more “classical topic” can still be interesting.

So I hope todays discussion will be helpful in choosing topics.

Last week, Alex and David had chat messages about the use of the
Harmonic algorithm in some real world systems. Please raise hand or in
any way please do interupt. I lost the chat message when I ended the
zoom meeting and didn’t copy the chat. David mentioned SLAB and
Xiaoxu also mentioned SLAB. Alex mentioned Hoard.
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A recurring theme

One recurring theme is bridge the gap between theory and practice. There
are different ways this theme is encounterd:

Assume some partial information is available allowing for more
optimistic results. This partial information can be assumed definite
knowledge, knowledge that is not fully trusted, or stochastic
assumptions.
The online framework can be relaxed. For example the assumption
that decisions are irreversible can be relaxed or one can argue for less
powerful adversaries (e.g., the random order model).
Alternative measures other than the competitive ratio.
New applications are defined to better model real world applications.
One prominent example are models relating to online advertising and
other examples of online matching.

We can keep these themes in mind as we walk through the chapters. If
anything seems like a potential topic then please stop me and we can
elaborate. I will elaborate on some things close to my current research
interests.
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Chapters 1-3

We already skimmed the content in Chapters 1,2,3.

I didn’t have time last week to say more about the Yao principle for
establishing lower bounds on randomized algorithms. This method is
used in both online and offline algorithms. For offline the method is
used for establishing time bounds (in restricted models) and in online
algorithms we use it for establishing competitive ratio
inapproximations as for example in showing that Hk ≈ ln k is the best
possible ratio for paging/caching .

In later chapters we will see extensions of ski rental and caching (to
address other settings for virtual memory) as well as motivating the
interest in alternative measures (e.g., to distinguish between different
paging algorithms.)
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Chapter 4: “classical” problems

Of course nothing in this topic is classical by the standards of say
mathematics. What I mean is problems that have been studied since say
the start of active TCS interest in online algorithms (say 1985).

The list accessing problem was in the seminal Sleator and Tarjan
paper. The competitive ratio for MTF is established by the potential
function method. This is a common method used in data structure
analysis and other areas of algorithm analysis. Understanding
potential funcitions is an art form and there is no compelling
approach to how to create appropriate potential functions for a given
application.

Soon after the Sleator and Tarjan paper, two abstract problem
formulations were defined, namely first the MTS formulation and then
the k-server problem. Both problems are still actively studied. The
current main interest is with regard to establishing the best
randomized algorithm for both problems.
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The lasting influence of MTS and k server problems.

The MTS and k-serever problems led to Bartal’s concept of
Hierarchical Separated Trees (a randomized class of metric spaces)
which allows one to embed arbitrary metric spaces into HSTs. This
has found applications outside of online algorithms.

The current approach to randomized algorithms for the MTS and
k-server problems is to first obtain a bound for HSTs and then to
embed a given metric spece into HSTs. The optimal embedding
incurs a cost of O(log n) where n is the size of the metric space.

This makes the analysis more challenging for the k serever problem
where there is a conjecture that there is an O(log k) randomized
algorithm for every metric space (i.e. independent of n). There is now
a O(log6 k) algorithm.

This has led to connections between online algorithms analysis and
online learning and convex optimization.
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What else is in chapter 4

The Koutsoupias and Papadimitriou [1995] work function algorithm is
given and this is the latest word on the deterministic k-server
conjecture provding a 2k competitve ratio which “nearly” solves the
k-server conjecture which states that k is the optimal bound for all
metric spaces.

Other makespan models are presented, namely the related machines,
the restricted machines and the ubnrelated machines models.

Call admission and routing problems
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Chapter 5: graph problems

We know that many (most?) otpimization problems for graphs become
hard (in the sense of NP hardness) to approximate wrt arbitrary graphs.

This does not imply that we could not obtain (an inefficient) online
algorithm with a good competitive ratio. But in fact these NP hardness
results are generally speaking matched by corresponding competitive rastio
inapproximations. For the vertex cover problem we can obtain a
2-approximation result matching a known hardness conjecture.

The field of graph theory and graph algorithms focuses on classses of
graphs (e.g. planar graphs, interval graphs, trees, etc. )

For graph problems there are reasonable alternative ways to say what is
the input model. We discuss the common input models.

The graph colouring problem is interesting for different graph classes.
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The online bipartite matching problem

The online graph problem that has attracted the most attention is probably
the online bipartite matching problem and vafriants of this problem.

This is due to the fact the bipartitie matching is the basic problem
underlying many variants that are aimed at online advertising.

Another reason is the surprising seminal result for unweighted online
bipartite matching, the randomized Ranking algorithm of Karp, Vazirani
and Vazirani (KVV) algorithm that achieves competitibe ratio 1− 1/e. .

The Ranking algorithm can be extended to the case where each offline
vertex has a weight. More generally we want to deal with edge weighted
bipartite graphs graphs in the context of online advertising. But one
cannot obtain constant bounds for online edge weighted bipartite
matching if we are assuming adversarial input sequences.

We can obtain a 1
e ratio if we consider inputs in the random order model

(ROM). This is done by extending the secretary problem algorithm.
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Online advertising problems: adwords

Consider online vertices as queries (i.e. targets for ads based on these
queries) and offline vertices as advertisers. As each query arrives,
advertisers bid on the query (i.e., have a weight wj for an edge between
advertiser vj and the query ui ).

The goal now is not a matching but rather an assignment of online
vertices where each offline vertex can be assigned many online vertices.
Let U be the set of online vertices and V the offline vertices.

The adwords problem: Each advertiser vj has a budget Bj . Let
M ⊆ U × V be the matching returned by an ‘algorithm. The
objective function to be maximized is

∑
j min{Bj ,

∑
i :(ui ,vj )∈M wj}.

The standard assumption is the small bids assumption: wj << Bj

There is a less studied version with a hard budget constraint. That is,
an ad cannot be matched with an advertiser if it would the added bid
would exceed the budget.
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Online advertsing problems: display ads

In the display ads (with free disposal) problem, each advertiser is a
unit demaand buyer meaning many ads can be assigned to an
advertiser but the advertiser is only interested in the most valuable ad
assigned. (More genrally, each advertiser vj is interested in at most sj
items.)

The adwords and display ads are both special case of a submodular welfare
problem. In this probliem each offline vertex vj is associated with a
monotone submodular function fj . The objective is to maximize

∑
j fj(Vj)

where Vj is the set of online vertices assigned to vj

These problems has been studied from the perspective of worst case inputs
(input sequences in adversarial or random order), and also when online
inputs are generated i .i .d from a known or unknown distribution.
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Bipartite matching advertising problems

ADV ROM Unknown i.i.d. Known i.i.d.

Unweighted Bipartite Matching 1 � 1/e (opt)[16] 0.696 [13] 0.696 0.7299 [1]

O✏ine-Vertex Weighted 1 � 1/e (opt)[6] 0.6534 [8] 0.6534 0.7299 [1]

Edge Weighted with FD 0.5086 [4] 0.51 [15] 1 � 1/e 0.705

Edge Weighted without FD 0 1/e (opt)[17] 1/e 0.705 [1]

AdWords 1
2 0.51 [15] 1 � 1/e 1 � 1/e

Submodular Welfare 1
2 (opt)[12] 0.5096 [2] 1 � 1/e (opt)[12] 1 � 1/e

Table 1: Summary of results on bipartite matching.

by:

C.R. = min
G(U[V,E),order of V

ALG(G)

OPT (G)

If the algorithm is randomized we take the expected value of the objective function:

C.R. = min
G(U[V,E),order of V

E[ALG(G)]

OPT (G)

As mentioned earlier, without the free disposal assumption, we cannot achieve a competitive ratio
better than 0 as the adversary can generate new edges of arbitrary weight. Under the free disposal
assumption, Feldman et al [10] showed that the greedy algorithm that always picks the edge max-
imizing marginal gain 1 is 1

2�competitive. Zadimoghaddam [18] later gave an algorithm with a
better competitive ratio of at least 0.501 . That result was also interesting because it showed that
edge-weighted bipartite matching was strictly easier than SWM in the adversarial case, where we
know the competitive ratio of 1

2 achieved by the greedy algorithm is optimal [12]. Currently, the
best competitive ratio achieved in this model is at least 0.5086 [4]. The only known negative result
for this problem is 1 � 1/e, which comes from the unweighted case.

2.1 Online Correlated Selection

After a series of papers [18, 9, 7, 4] aiming at beating the longstanding 1/2 barrier for edge-weighted
bipartite matching, a subroutine called Online Correlated Selection (OCS) seems to have been a
key ingredient in getting better results. This routine takes a sequence of pairs of elements (o✏ine
vertices) and selects one element from each pair, such that elements chosen across di↵erent pairs
are negatively correlated. OCS was defined by Huang and Tao [9, 7] after they identified it as
the underlying key algorithmic ingredient of the algorithm by Zadimoghaddam [18]. It’s worth
noting that [4] is the culmination of previous works and has appeared online very recently. None
of [18, 9, 7, 4] has yet gone through peer review.

Definition 2.1 (�-OCS). Consider a set of ground elements. For any � 2 [0, 1], a �-OCSC is an
online algorithm that takes as input a sequence of pairs of elements, and selects one per pair such

1The marginal gain of displacing an edge already in the matching is the weight di↵erent between the two edges.

3

[Table due to Chris Karavasilis]
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Chapter 6: Maximizing a submodular function and
the Max-Sat problem

This chapter is based in some sense on one problem in a paper by
Buchbinder et al. The problem is maximize a non monotone submodular
set function (e.g., max cut, and max di-cut). Note that this makes sense
with or without constraints on the allowable sets.

The Buchbinder et al algorithm is a conceptually simple and efficient
randomized algorithm, the first to achieve a 1

2 competitive ratio which is
optimal for arbitrary non-monotone submodular functions. Optimal with
regard to NP hardness and subexponential query complexity.

The randomized algiorithm utilizes a nice general idea, that of a natural
randomization of a deterministic algorithm.

There is some evidence that the algorithm cannot be “de-randomized” to
obtain the same 1

2 ratio.

In the same paper, Buchbinder et al show how to extend their algorithm to
obtain a 3

4 ratio for the submodular max-sat problem.
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Max-sat

The standard weighted Max-sat problem is a classic NP hard optimization
problem and just one example of a constraint satisfaction problem. The
naive randomized algorithm can be de-randomized to achieve a 2

3 ratio.
Historical note It turns out that Johnsons’ determistic algorithm was
known since around 1974. After 15 years Yannakakis showed that the
de-randomization of the naive algorithm becomes Johnson’s algorithm.

Indpendently, Poloczek and Schnitger, and van Zuylen presented
randomized online algorithms that achieve the same 3

4 ratio. It turns out
that the van Zuylen algorithm is equivalent to the Buchbinder et al
algorithm when that algorithm is restricted to the standard weighted
max-sat problem.

It is open if the 3
4 competitve ratio can be improved.(The best known

offline approximation ratio is .7968.) It is open if there is any determinstic
online algorithm with ratio 3

4 . There is some evidence that such a
deterministic online algorithm does not exist but based on a restricted (but
still general enough to obtain the randomized 3

4 ratio) input model. 14 / 15



Chapter 7: Recent progress

This chapter contains extensions to some of the classic problems, some
new applications, and as well as (hopefully) a proof of the latest
randomized k server results.

We present some extensions of the ski rental and bin packing

Related to the k-server is the k-taxi problem and the uber problem. We
also consider some work related to page migfration and and other
applications related to distributed computation.

The recent progress for the k-server results is based on convex optimization
as developed in online learning. This is a very substantial development.
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