
CSC2421: Online and other myopic algorithms
Spring 2021

Allan Borodin

April 8, 2021

1 / 37

Week 12

Agenda for today
I will be rapdily going through some recent work in online algorithms after
first finishing up the prophet secretary problem. This will be the last
meeting of the term.

The prophet secretary matching problem

Online algorithms with ML advice

Probing problems and the stochastic rewards problem.

2 / 37

The prophet secretary matching problem

We have already seen that going from adversarial order to random order
enabled an improvement in the competitive ratio from 1

2 to 1− 1
e and then

to .669 for the single item prophet secretary problem. Can we extend the
ideas used in the single item single threshold 1− 1

e algorithm to obtain a
1− 1

e competitive ratio for the prophet secertary matching problem?

It should be intutive that we will need more than a single threshold given
that the values for each online buyer are being drawn independently from
(possibly) different distributions. We will again assume continuous
distrtibutions to avoid tie-breaking.

Conceptually, we can think of each offline node j having some intrinsic
value which suggests some base price bj for each offline node. It also
seems reasonable that buyers arriving late might be afforded a lower
threshold than if they arrived earlier as there are now less chances to sell
item j . However, this ”reasoning” was also true for the single item case
where a single threshold sufficed and it turns out we only need threshold
values for each offline node to obtain a 1− 1

e ratio.
3 / 37

The prophet secretary matching algorithm

In fact, Ehsani et al show how to reduce the matching extension to the
single item single threshold case. Whenever the i th buyer arrives, they will
be offered a specific offline item k given a price τk (i.e. a threshold for a
centralized algorithm) and will accept that item iff the item is available
and τk ≤ v(i ,k); that is, its value for that match is at least the threshold.

Theorem

There is a non-adaptive threshold strategy that achieves competitive ratio
1− 1

e for the prophet secretary matching problem.

4 / 37

The analysis for the non-adaptive prophet secretary
matching algorithm

Very roughly, here is the idea.
The analysis for the single item case can be strengthened for a very special
case. Namely, if we assume

∑n
i=1[Pr[vi] < 0] ≤ 1 then

E[Revenue] ≥∑n
i=1(1− 1

e)E[vi · 1vi<τ].

This then shows
E[ALGτ] ≥ (1− 1

e)
∑n

i=1 E[vi]

Now we have to indicate how we can “simulate” the assumption so as to
set the appropriate thresholds.

5 / 37

The analysis of the non-adaptive threshold algorithm
continued

Let v−i denote the set of valuations of all buyers except the i th buyer and
let vi denote the valuations of the i th buyer. Given the valuations for each
buyer, we calculate the probability
pk,i = Prv−i [(i , k) is in the optimal matching].

For each buyer i , we choose a random number ri ∈ [0, 1] and choose item
k such that

∑k−1
`=1 p`,i < ri ≤

∑k
`=1 p`,i .

Now to compute the threshold for item k , we construct a new distribution
v′ such that for each buyer i , vi is the distribution on the value of the edge
adjacent to i in the expected maximum matching.

This then will satisfy the condition we need (i.e.
∑n

i=1[Pr[vi] < 0] ≤ 1) so
that we can isolate out the contribution from each offline node.

6 / 37

Advice models

We have just been considering online algorithms in the context that the
input sequence is stochastic to some extent. This is the most common
approach to overcoming worst case results.

Another way to get around worst case results is to assume that the online
algorithm has some precise “side information” about the input. For
example, the algorithm designer may know the length of the input (an
assumption we made for the secretary and prophet problems), or absolute
lower and upper bounds of the cost/value of any item, or the maximum
degree of vertices in a graph, etc.)

In online algorithms, we have tradionally viewed this side information as
“advice” given by an oracle. That is, the oracle and algorithm work
together and we assume the oracle always gives correct advice (about the
input).

We consider two advice models, the per request model (where the
algorithm requests information about the next item), and the tape model
(where the algorithm has initial access to an advice string). 7 / 37

Advice models continued

Lets first consider the tape model and without worrying about the details
of the tape model, assume that for any input sequence σ = σ1, σ2, . . . , σn
that the computation uses only the first `(n) bits of the advice string.
Here we want `(n) to be a short string containing information about the
input set or sequence with n items.

For some problems, even `(n) = 1 for all n is sufficient to dramatically
improve upon the optimal competitive ratio without advice. For example,
consider the ski rental problem with rental cost = 1, and buying cost = b.
Here each input determines whether or not the ski season ends. We know
that the optimal deterministic online algorithm (without any advice) has
competitve ratio 2− 1

b .

Consider an online algorithm with one bit a of advice; namely, a = 1 iff
there are at least B ski days. If the advice bit a is correct then we should
buy on day 1 if a = 1 or else rent. This would yield an optimal cost
whether a = 1 or a = 0.

8 / 37

The proportional knapsack problem

The Proportional Knapsack Problem
Input: (w1,w2, . . . ,wn) where wi ∈ R≥0 and knapsack size W
Output: z = (z1, z2, . . . , zn) where zi ∈ {0, 1}
Objective: To maximize

∑n
i=1 ziwi subject to

∑n
i=1 ziwi ≤W

This is sometimes called the simple knapsack problem or the subset-sum
problem. However, subset-sum also refers to the decision problem “does
there exist z such that

∑n
i=1 ziwi = W ?”

Aside: Subset-sum and 3-Subset-sum are basic problems the area of
fine-grained complexity.

In our fast overview of the chapters, we mentioned (Week 3) the following
results (appearing in Chapter 3): We saw a substantial improvemnent in
the competitive ratio for the proportional knapsack even when using just
one bit of randomization.

Without any randomization, no constant competitive ratio is possible.

But with one bit of randomization we obtain a 1
4 -competitiive ratio.

9 / 37

The randomized proportional knapsaack interpreted
as an advice algorithm

3.4. HOW MUCH CAN RANDOMNESS HELP? 57

n + ✏ > W . Moreover, packing any of wj for j > i + 1 doesn’t affect the value of the objective
function. Thus, we have ALG = ✏n, whereas OPT = wi+1 = n(1� ✏) + ✏. We get the competitive
ratio of n(1�✏)+✏

✏n � n(1�✏)
✏n = 1�✏

✏ .

Next we show that a randomized algorithm, which we call SimpleRandom, that uses only 1 bit
of randomness achieves competitive ratio 4. Such 1 bit randomized algorithms have been termed
“barely random”. Algorithm 10 provides a pseudocode for this randomized algorithm. The algorithm
has two modes of operation. In the first mode, the algorithm packs items greedily — when a new
item arrives, the algorithm checks if there is still room for it in the bin and if so packs it. In
the second mode, the algorithm waits for an item of weight � W/2. If there is such an item, the
algorithm packs it. The algorithm ignores all other weights in the second mode. The algorithm
then requires a single random bit B, which determines which mode the algorithm is going to use in
the current run.

Algorithm 10 Simple randomized algorithm for Proportional Knapsack
procedure SimpleRandom

Let B 2 {0, 1} be a uniformly random bit . W is the knapsack weight capacity
if B = 0 then

Pack items w1, . . . , wn greedily, that is if wi still fits in the remaining weight knapsack
capacity, pack it; otherwise, ignore it.

else
Pack the first item of weight �W/2 if there is such an item. Ignore the rest of the items. .

We can also pack the remaining items greedily (i.e. pack an iterm if it fits) but this is not needed
to establish the competitive bound.

Do we want the comment that one could fill in greedily rather than just ignoring the rest of the
items.
Agian we are not following our convention.

Theorem 3.4.5.
⇢OBL(SimpleRandom)  4.

Proof. The goal is to show that OPT  4 · E(SimpleRandom) on any input sequence w1, . . . , wn.
We distinguish two cases.

Case 1: for all i 2 [n] we have wi < W/2. Subcase 1(a):
Pn

i=1 wi  W . In this subcase,
SimpleRandom running in the first mode packs all of the items. This happens with probability
1/2, thus we have E(SimpleRandom) � 1/2

P
i wi and OPT =

P
i wi. Therefore, it follows that

OPT  2 · E(SimpleRandom) in this subcase. Subcase 1(b):
P

i wi > W . Consider SimpleRandom
running in the first mode again. There is an item that SimpleRandom does not pack in this case.
Let wi be the first item that is not packed. The reason wi is not packed is that the remaining
free space is less than wi, but we also know that wi < W/2. This means that SimpleRandom
has packed total weight at least W/2 by the time wi arrives. Since SimpleRandom runs in the
first mode with probability 1/2 we have that E(SimpleRandom) � (1/2)(W/2) = W/4 � OPT/4,
where the last inequality follows from the trivial observation that OPT W . Rearranging we have
OPT  4 · E(SimpleRandom) in this subcase.

Case 2: there exists i 2 [n] such that wi �W/2. Consider SimpleRandom running in the second
mode: it packs the first wi such that wi � W/2. Since SimpleRandom runs in the second mode

We can re-interpret the randomized algorithm as a 1-bit advice algorithm.
The one bit B indicates whether or not there is an input item wi ≥ B/2.
With just this one bit of advice, the algorithm achieves a 1

2 competitive
ratio.

10 / 37

ML predicted advice

The ski rental problem is somewhat of an exception. Here 1 bit of correct
advice results in competitive ratio = 1. In general, one expects that there
is some tradeoff between the number of advice bits vs the competitive
ratio one can obtain with advice.

More recently, a new line of research has emerged. Namely, instead of an
oracle providing correct advice, we think of advice coming from an
untrsted source. For example, consider predictions from a machine
learning (ML) algorithm perhaps based on previously trained data (i.e. a
weather forcaster that determines the number of days before warm
weather will end the season).

In this situation we know the advice can be sometimes erroneous even if it
is often highly reliable. However, for both the ski rental problem and the
proportional knapsack problem, the competitive ratio can be arbitrarily
bad if the prediction bit is incorrect.

11 / 37

The tradeoff between “robustness” and
“consistency”

While every problem will have its own “natural” type or types of advice
and ways to measure error in a prediction, there is a general basic question
that we can ask once we have formulated a specific online problem with
ML predictions or untrusted advice.

Informally the question is: Can we use ML or any untrusted advice to
improve worst case performance (e.g. the competitive ratio) when the
advice is correct or “almost correct” while not suffering dramatically when
the advice is incorect and possibly far from being correct?

For predicted advice, we often want a parameterized algorithm that gives
the algorithm designer a choice in determining the tradeoff between
robustness and consistency where informally, robustness means that the
algorithm will guard against terrible performance when the predictions are
arbitrarily bad, while improving upon worst case results when predictions
are correct or close to being correct (i.e. small error).

12 / 37

Consistent-robust algorithms: ski rental example

For definiteness, lets consider a cost problem where we are trying to
minimnize the competitive ratio.

Let us say that an algorithm A is :

α-consistent if its competitive ratio limits to α as the error limits to 0
and

β-robust if the competitive ratio is bounded by β no matter the size
of the error.

In the ski rental problem, the prediction y is a prediction on the number of
ski days and lets say x is the actual number of ski days. Then the error
η = |y − x |. (Note: Alternatively, we can think of the algorithm as having
1-bit of untrusted advice; namely, the bit predicts whether or not the ski
rental season is at least b days long where b is the cost of buying the skis.)
Consider (next slide) the following class of deterministic ski rental
algorithms parameterized by λ due to Kumar et al [2018].

13 / 37

The ski rental parameterized algorithm

Algorithm 2: A deterministic robust and consistent algorithm.
if y � b then

Buy on the start of day d�be
else

Buy on the start of day db/�e
end

ratio is obtained when x = d�be, for which OPT = d�be. In this case, we have ALG = b+d�be�1 
b + �b 

�
1+�
�

�
d�be =

�
1+�
�

�
OPT. On the other hand, when y < b, the algorithm buys skis at the

start of day db/�e and rents until then. In this case, the worst competitive ratio is attained whenever
x = db/�e as we have OPT = b and ALG = b + db/�e � 1  b + b/� =

�
1+�
�

�
OPT.

To prove the second bound, we need to consider the following two cases. Suppose y � b. Then,
for all x < d�be, we have ALG = OPT = x. On the other hand, for x � d�be, we have
ALG = b + d�be � 1  (1 + �)b  (1 + �)(OPT + ⌘). The second inequality follows since
either OPT = b (if x � b) or b  y  OPT + ⌘ (if x < b). Suppose y < b. Then, for all
x  b, we have ALG = OPT = x. Similarly, for all x 2 (b, db/�e), we have ALG = x  y + ⌘ <
b + ⌘ = OPT + ⌘. Finally for all x � db/�e, noting that ⌘ = x � y > b/� � b = (1 � �)b/�,
we have ALG = b + db/�e � 1  b + b/� < b + (1

1��)⌘ = OPT + (1
1��)⌘. Thus we obtain

ALG  (1 + �)OPT + (1
1��)⌘, completing the proof.

Thus, Algorithm 2 gives an option to trade-off consistency and robustness. In particular, greater trust
in the predictor suggests setting � close to zero as this leads to a better competitive ratio when ⌘ is
small. On the other hand, setting � close to one is conservative and yields a more robust algorithm.

2.3 A randomized robust and consistent algorithm

In this section we consider a family of randomized algorithms and compare their performance against
an oblivious adversary. In particular, we design robust and consistent algorithms that yield a better
trade-off than the above deterministic algorithms. Let � 2 (1/b, 1) be a hyperparameter. For a given
�, Algorithm 3 samples the day when skis are bought based on two different probability distributions,
depending on the prediction received, and rents until that day.

Algorithm 3: A randomized robust and consistent algorithm
if y � b then

Let k b�bc;
Define qi

�
b�1

b

�k�i · 1
b(1�(1�1/b)k)

for all 1  i  k;
Choose j 2 {1 . . . k} randomly from the distribution defined by qi;
Buy at the start of day j.

else
Let ` db/�e;
Define ri

�
b�1

b

�`�i · 1
b(1�(1�1/b)`)

for all 1  i  `;
Choose j 2 {1 . . . `} randomly from the distribution defined by ri;
Buy at the start of day j.

end

Theorem 2.3. Algorithm 3 yields a competitive ratio of at most min{ 1
1�e�(��1/b)

, �
1�e�� (1+ ⌘

OPT)}.

In particular, Algorithm 3 is (1
1�e�(��1/b)

)-robust and (�
1�e��)-consistent.

Proof. We consider different cases depending on the relative values of y and x.

(i) y � b, x � k. Here, we have OPT = min{b, x}. Since the algorithm incurs a cost of (b + i� 1)
when we buy at the beginning of day i, we have

E[ALG] =

kX

i=1

(b + i� 1)qi =

kX

i=1

(b + i� 1)

✓
b� 1

b

◆k�i
1

b(1� (1� 1/b)k)
=

k

1� (1� 1/b)k

4

Theorem

Algorithm 2 (above) is a deterministic algorithm that is
min{1+λλ , 1 + λ+ η

(1−λ)·OPT } competitive with 1-bit of untrusted advice;

hence the algorithm is α = 1 + λ consistent and β = 1 + 1
λ robust.

For example, setting λ = 1/2, we would have a 3
2 competitive algorithm

when the advice is correct while being 3-competitive if the advice is
incorrect (no matter how incorrect).

14 / 37

The MIN of online algorithms

A general approach to using ML advice is to try to combine two (or more)
online algorithms in such a way that one obtains “approximately” the
minimum of the individual competitive ratios.

This idea was first used by Fiat et al [1991] in the context of paging
algorithms, and extended by Fiat, Rabani and Ravid [1994] to the k server
problem enabling them to achieve competitve ratio 2O(k log k). This was
the first online algorithm to achieve a ratio depending only on k (and not
the size of the metric space or the number of server requests).

The idea was further extended by Blum and Burch [1997] in the context of
the metrical task systems and expert learning.

We will use the MIN idea for caching ML advice but first a quick review of
the classical paging problem.

15 / 37

Review of caching without advice

We recall the class of marking algorithms which work as follows: The
algorithm executes in phases. At the start of a phase, all the pages in the
cache are unmarked. When a page in the cache is requested, the page is
marked. When a requested page is not in the cache (i.e. a cache miss), an
unmarked page is evicted. If all pages are marked, a new phase begins
with all pages now unmarked again. In either case, the newly requested
page is brought into the cache and marked.

All deterministic marking algorithms have competitive ratio k (for a cache
of size k) and this is optimal for deterministic algorithms. LRU and FIFO
are examples of deterministic marking algorithms.

The randomized Fiat et al algorithm (called MARK) evicts a random
unmarked page and has competetive ratio 2Hk ≈ 2 ln k . The algorithms
Partition (Mcgeouch and Sleator [1991] and Equitable (Achlioptas et al
[1996] achieve the optimal randomized competitive ratio Hk .

16 / 37

Caching with ML advice

It is natural to revist the MIN idea in the context of ML advice. Here we
now switch to the advice per request advice model. In a seminal paper
promoting ML predicted advice, Lykouris and Vasilvitskii [2018] derive a
consistent and robust randomized algorithm for caching.

The Lykouris and Vasilvitskii paper and the Kumar et al [2018] paper (on
ski rental and non-clairvoyant job scheduling) are the two papers that
popularized the idea of ML prediction advice applied to online algorithms.

The underlying idea is to combine an optimal on line algorithm (namely, a
determninistic or randomized Marking algorithm) with the optimal offline
algorithm (i.e. Belady’s farthest in the future) algorithm. But of course,
this has to be done carefully and one as to first define an appropriate error
measure.

Lylouris and Vasilvitski also present evidence (on some real world data
sets) that their consistent and robust algorithm “performs well on real
data sets using off the shelf predictions”.

17 / 37

Caching with ML advice continued

Let σ1, σ2, . . . , σn be a sequence of page requests. When a page request
σi enters the cache, we record a prediction y(i) as to the first time x(i)
when σi will be again be requested; that is the first time when σx(i) = σi .
If σi is not requested again, x(i) = n + 1.

Lykouris and Vasilvitskii define Blindoracle as the non-robust eviction
algorithm that uses a prediction y for the correct time x when a cache
page will be requested again. The error bound is η =

∑n
i=1 |yi − xi | which

is normalized by OPT so as to be able to achieve meaningful results.

Rohatgi [2020] and Wei [2020] adapt the Lykouris and Vasilvitski
algorithm to obtain improved results. For the deterministic algorithm, we
present the result as in Wei.

Wei first improves the analysis for Blindoracle showing that the Blindoracle
competitive ratio is bounded by min{1 + 2 η

OPT , 4 + 4
k−1

η
OPT }

18 / 37

Caching with ML advice: the deterministic algorithm

For a deterministic algorithm, Wei combines LRU with Blindoracle using
the Fiat et al combiner which is essetially to “follow the leader”. That is,
upon receiving a request σt that causes a cache miss, the combined
algorithm either uses LRU or Blindoracle to evict depending on which of
these algorithms would have performed best so far (i.e. in processing
σ1, σ2, . . . , σt).

The result is the following determistic competitive ratio:

2 min{min(1 + 2
η

OPT
, 4 +

4

k − 1

η

OPT
), k}

.

Note that this means that the algorithm is consistent (with ratio
approaching 2 when η = o(OPT)) and robust never exceding competitive
ratio 2k.

19 / 37

Caching with ML advice: the randomized algorithm

For a randomized algorithm, we will state the result as in Lykouris and
Vasilvitskii. They combine the randomized MARK algorithm with
Blindoracle. The combining here (for eviction) is more delicate than in the
deterministic case.

Lykouris and Vasilvitskii achieve the following randomized competitive
ratio (i.e., in expectation):

2 + O(min{
√

η

OPT
, log k})

Note this means the algorithm is consistent with ratio approaching 2 when
η = o(OPT) and robust with ratio never exceding O(log k)

20 / 37

Probing Problems

Consider an online application such as matching online arriving advertisers
to specific (offline) advertisement slots where each advertisement slot has
an associated reward that is realized if and only if the advertisement is in
some sense “used” (i.e., the user clicks on the advertisement or purchases
the item being advertised).

When an online node arrives, the matching algorithm knows both the value
of each advertisement slot (if available and used) and only the probability
that a given advertisement slot will be used. The algorithm must decide on
which (if any) available slot (equivalently which edge from the online node
to the slots) to probe (to see if the edge exists) and match to the online
advertiser if that edge exists. If a match is not used, there is no reward.
Determining if an edge exists can take time or be expensive and there is
usually some limitation (or budget) on probes for each online node.

21 / 37

Probing in a general graph

While we are concentrating on online problems, the concept of probing
(e.g., edges in a graph) was already explored in the context of offline
algorithms for probing edges in a general graph within a patience (alsp
called timeout) constraint that at most `v edges adjacent to a vertex v
can be probed.

An important application is probing potential matchers for kidney
translants where nodes are (donor,recipient) pairs and edges denote which
pairs are biologically compatible. Clearly in this application probes can be
expensive (and invasive) and there is often some limitation on which and
how many probes can be attempted.

Another application is dating where probing can correspond to whether or
not a match will turn into a romance. And again, matches can be time
consuming and expensive. Indeed the initial paper in this area by Chen et
al [2009] is called “Approximating matches made in heaven”.

22 / 37

The stochastic rewards problem

We consider the following online stochastic rewards (with patience)
problem. An adversary chooses a stochastic graph G which is a bipartite
graph G = (U,V ,E , p, `,w) where V is the set of online nodes, U is the
set of offline nodes, p : E → (0, 1] is a probabiliity on the edges,
` : V → |U| is a patience parameter1 and w : U → R≥0 (or w : E → R≥0)
is a weight or value function. The interpretation is that pe is the
probability that the edge e exists, `v specifies the maxiumum number of
times an edge adjacent to v can be probed (i.e., the maximum number of
attempted matches) and w represents the value of an offline vertex (or
edge). Furthermore, if an edge e = (u, v) is probed and exists (with
probability pe), then (u, v) must be added to the current matching (if u is
not already matched). This is called the commitment constraint.

1The patience constraint as initially defined in Chen et al (and most of ther following
papers) was simply a limitatiion on the total number of edges that can be probed. More
generally, there can be a set of constraints determining which edges can be probed.

23 / 37

Stochastic rewards continued

The objective is (as in the more “classical” online bipartite matching) to
maximize the sum of the weights of vertices (or edges) that are included in
the matching that is created. If the patience function ` is not specified
then this means unit patience (i.e., only one attempted match for each
online node) If w is not specified then this is the unweighted version where
the objective is the size of the computed matching.

As indicated, the stochastic rewards problem belongs to a broader class of
stochastic probing problems. Unlike more standard forms of stochastic
optimization, it is not just that there is some stochastic uncertainty in the
set of inputs, stochastic probing problems involve inputs that cannot be
determined without probing (at some cost and/or within some constraint)
so as to reveal the inputs. Applications of stochastic probing occur
naturally in many settings. In a non-adaptive algorithm, there is a fixed
order of probing the edges adjacent to each vertex so one might then
probe (u, v) even though v is already matched.

24 / 37

Many variants of the stochastic rewards problem

Does the algorithm know the entire stochastic graph G in advance or does
it only learn know the edges adjacent to an online node v when v arrives.
The problem is meaningful in the case of a known stochastic G since the
algorithm does not know the instantiation of any edge until that edge is
probed.

Is the stochastic graph adversarial or generated according to some
distibution (e.g. online vertices are generated by an i.d. or i.i.d. process).

Is the sequence of online nodes determined adversarially or is it random
order (ROM)?

Is the stochastic graph vertex or edge weighted or unweighted.

What are the patience constraints (or other types of constraints) for each
online node.

25 / 37

What is the “correct” benchmark?

What is the right benchmark for determining the competitive ratio of a
stochastic rewards algorithm? The issue here is somewhat subtle. The
following example shows that we cannot hope to obtain a reasonable
competitive ratio if we are comparing an online algorithm to the
expectation of the optimal value knowing the instantiations of the edge
probabilities.

Example

Consider a single online vertex v having patience `v = 1 and n = |V |
unweighted offline vertices where the probability of each edge is 1

n . The
expected value of any online algorithm is 1

n while the expectation of the
optimal match is 1− (1− 1

n)n → 1− 1
e . Hence the competitive ratio is

Ω(n) and this also holds for the stochastic ROM and i.i.d. models as well
as for adversarial inputs since there is only one online vertex.

26 / 37

The benchmark continued

For the stochastic rewards benchmark we shall hypothesize an optimal
offline probing algorithm OPT . OPT knows the stochastic graph G and
can probe edges in any order, adaptively choosing the next edge as a
function of G and all previously revealed edges and decisions. In particular,
OPT is not required to process edges in any online order. The benchmark
may or may not have to satisfy commitment.

The (asymptotic) competitive ratio of an algorithm ALG is then defined as

lim infG
E[ALG(G)]
E[OPT (G)] . The strict competitive ratio is infG

E[ALG(G)]
E[OPT (G)] .

The expectation is with regard to the edge probabilities and the stochastic
graph (if generated by some stochastic process and not adversarial).

While OPT is an ideal benchmark, it is not clear how to analyze the
competitive ratio in terms of OPT . Instead, we can use an appropriate LP
relaxation of OPT and analyze algorithms against the expected value of
the optimum solution to the LP relaxation.

27 / 37

The choice of rhe LP relaation

The choice of the LP relaxation is important. If too restrictive it, may
preclude legitimate solutions and hence not have any relevance to the
desired competitive ratio against the ideal offline OPT. If it is “too
relaxed” then the resulting competitive ratio (against the LP) will not be a
good estimate of the competitive ratio wth respect to the ideal offline
OPT.

We will aslo often use the chosen LP to guide our algorithms. And if we
are interested in efficiency, then we have to be sure that the LP is
efficiently solvable even though it may have exponentially many variables
or constraints.

On the next two slides, I am stating a new LP relaxation that we (with
Calum MacRury and Akash Rakheja) have recently introuduced. I am
following the notation in previous work and our work where U is the offline
vertices and V are the online vertices.

28 / 37

The configuration LP

Let G = (U,V ,E) be a stochastic graph with arbitrary edge weights,
probabilities and constraints (Cv)v∈V . For each k ≥ 1 and
e = (e1, . . . , ek) ∈ E (∗), define g(e) :=

∏k
i=1(1− pei).

Notice that g(e) corresponds to the probability that all the edges of e are
inactive, where g(λ) := 1 for the empty string λ.

Observe then that val(e) :=
∑|e|

i=1 peiwei · g(e<i) corresponds to the
expected weight of the first active edge of e if e is probed in order of its
indices. Finally, for each v ∈ V and e ∈ Cv , we introduce a decision
variable xv (e). We can then express (on the next slide) the configuration
LP.

29 / 37

The configuration LP

corresponds to the expected weight of the first active edge of e if e is probed in order of its indices.
Finally, for each v ∈ V and e ∈ Cv, we introduce a decision variable xv(e). We can then express the
following LP from [4]:

maximize
∑

v∈V

∑

e∈Cv

val(e) · xv(e) (LP-config)

subject to
∑

v∈V

∑

e∈Cv:
(u,v)∈e

pu,v · g(e<(u,v)) · xv(e) ≤ 1 ∀u ∈ U (2.1)

∑

e∈Cv

xv(e) = 1 ∀v ∈ V, (2.2)

xv(e) ≥ 0 ∀v ∈ V,e ∈ Cv (2.3)

Theorem 2.1 (Theorem 3.1 in [4]). For any stochastic graph G = (U, V,E) with substring-
closed probing constraints, OPT(G) ≤ LPOPT(G), where LPOPTconf(G) is the optimum value
of LP-config.

In order to prove Theorem 2.1, the natural approach is to define xv(e) to be the probability
that the committal benchmark probes the edges of e in order, where v ∈ V and e ∈ Cv. However,
to our knowledge, this interpretation of the decision variables of LP-config does not seem to yield a
proof of Theorem 2.1, for technical reasons which we discuss in detail in Appendix B.

The approach we take in [4] is to instead introduce a combinatorial relaxation of the com-
mittal benchmark, which is a new stochastic probing problem on G whose optimum solution upper
bounds OPT(G). Specifically, we introduce the relaxed stochastic matching problem, a solu-
tion to which we refer to as a relaxed probing algorithm. A relaxed probing algorithm operates
in the same probing framework as an offline probing algorithm, however it does not return a (two-
sided) matching of G. Instead, it returns a subset of its active probes which form a one-sided
matching of V . This one-sided matching N has the additional property that each offline vertex
of U is included in N at most once in expectation. We define the relaxed benchmark to be an
optimum relaxed probing algorithm, and denote its evaluation on G by OPTrel(G). Since each of-
fline probing algorithm is a relaxed probing algorithm, clearly OPT(G) ≤ OPTrel(G). On the other
hand, by defining xv(e) to be the probability the relaxed benchmark probes e ∈ Cv of v ∈ V in
order, we can show that OPTrel(G) = LPOPT(G), which implies Theorem 2.1. For completeness,
we include the details in Appendix B.

Not only does LP-config relax the committal benchmark, it can be solved efficiently, provided
the constraints (Cv)v∈V are assumed to be closed under substrings and permutations. The approach
we take in [4] is to first consider the dual of LP-config. It is not hard to verify that the DP-OPT
algorithm of Theorem 3.1 can be used as a (deterministic) polynomial time separation oracle for this
LP. This ensures that the dual of LP-config can be solved efficiently, as a consequence of how the
ellipsoid algorithm [23, 10] executes. Moreover, by tracking which polynomial number of constraints
of the dual of LP-config are queried by this separation oracle, one can reduce the number of decision
variables needed in LP-config to a polynomial number. Since this restriction of LP-config has a
polynomial number of constraints, it can then be solved efficiently. We omit the details, as a more
complete proof is given in [4], and this technique for solving LPs which have an exponential number
of variables is well-known in the literature (see [26, 25, 1, 17] for instance).

We now define a fixed vertex probing algorithm, called VertexProbe, which is applied to an
online vertex s of an arbitrary stochastic graph (potentially distinct from G):

6

30 / 37

The competitive ratio for the unknown stochastic
graph with edge weights

We note that the setting of an unknown stochastic graph generalizes rhe
standard online bipartite matching problem. Hence for edge weighted
graphs, there cannot be a constant competitive ratio for adversarial order
and 1

e is the best we can possibly obtain for online vertices arriving in
random order.

We now show that the same 1
e ratio can be obtained by modifying the

Kesselheim et al algorithm using the configuration LP. We non-adaptivley
attempt a match for each online vertex using the fractional variuables of
the configuration LP as probabilities.

The next slide is the randomized 1
e competitive algorithm for the edge

weighted stochastic rewards problem in the random order model. This
algorithm calls a subroutine (Vertex Probe) that attempts a match for an
online vertex. Vertex probe is given in the following slide.

31 / 37

The edge weighted stochastic rewards problem for
an unknown stochastic graph

Algorithm 2 Unknown Stochastic Graph ROM
Input: U and n := |V |.
Output: a matching M from the (unknown) stochastic graph G = (U, V, E) of active edges.
1: Set M ;.
2: Set G0 = (U, ;, ;)
3: for t = 1, . . . , n do
4: Input vt, with (we)e2@(vt), (pe)e2@(vt) and Cvt .
5: Compute Gt, by updating Gt�1 to contain vt (and its relevant information).
6: if t < bn/ec then
7: Pass on vt.
8: else
9: Solve LP-config for Gt and find an optimum solution (xv(e))v2Vt,e2Cv .

10: Set et VertexProbe(vt, @(vt), (xv(e))e2Cvt
).

11: if et = (ut, vt) 6= ; and ut is unmatched then
12: Add et to M.
13: end if
14: end if
15: end for
16: return M.

Let us consider the matching M returned by the algorithm, as well as its weight, which we
denote by w(M). Set ↵ := 1/e for clarity, and take t � d↵ne. Define Rt as the unmatched vertices
of U when vertex vt arrives. Note that committing to et = (ut, vt) is necessary, but not sufficient,
for vt to match to ut. With this notation, we have that E[w(M)] =

Pn
t=d↵ne E[w(ut, vt) · 1[ut2Rt]].

Moreover, we claim the following:

Lemma 2.5. For each t � d↵ne, E[w(et)] � LPOPTconf (G)/n.

Proof of Lemma 2.5. Set ↵ := 1/e for clarity, and take t � d↵ne. Define et := (ut, vt), where ut is
the vertex of U which vt commits to (which is the empty set ;, if no such commitment occurs). For
each u 2 U , denote C(u, vt) as the event in which vt commits to u. Let us now condition on the
random subset Vt, as well as the random vertex vt. In this case,

E[w(et) | Vt, vt] =
X

u2U

wu,vt P[C(u, vt) | Vt, vt].

Observe however that once we condition on Vt and vt, Algorithm 2 corresponds to executing
VertexProbe on the instance (vt, @(vt), (xvt(e))e2Cv), where we recall that (xv(e))e2Cv ,v2vt is an
optimum solution to LP-config for Gt = G[U[Vt]. Thus, Lemma 2.2 implies that P[C(u, vt) | Vt, vt] =
pu,vtexu,vt , where

exu,vt :=
X

e02Cvt :
e2e0

g(e0
<e) · xvt(e

0),

and so E[w(et) | Vt, vt] =
P

u2U wu,vtpu,vtexu,vt . On the other hand, if we condition on solely Vt, then
vt remains distributed uniformly at random amongst the vertices of Vt. Moreover, once we condition
on Vt, the graph Gt is determined, and thus so are the values (xv(e))v2Vt,e2Cv . These observations
together imply that

E[wu,vt pu,vt exu,vt | Vt] =

P
v2Vt

wu,v pu,v exu,v

t
(2.4)

8

32 / 37

The vertex probe subroutine

Algorithm 1 VertexProbe
Input: an online vertex s of a stochastic graph, @(s), and probabilities (z(e))e2Cs which satisfyP

e2Cs
z(e) = 1.

Output: an active edge N of @(s).
1: N ;.
2: Draw e0 from Cs with probability z(e0).
3: if e0 = � then . the empty string is drawn.
4: return N .
5: else
6: Denote e0 = (e01, . . . , e

0
k) for k := |e0| � 1.

7: for i = 1, . . . , k do
8: Probe the edge e0i.
9: if st(e0i) = 1 then

10: Add e0i to N , and exit the “for loop”.
11: end if
12: end for
13: end if
14: return N .

Lemma 2.2. Suppose VertexProbe (Algorithm 1) is passed a fixed online node s of a stochastic
graph, and probabilities (z(e))e2Cs which satisfy

P
e2Cs

z(e) = 1. If for each e 2 @(s),

eze :=
X

e02Cv :
e2e0

g(e0
<e) · zv(e

0),

then e 2 @(s) is probed with probability eze, and returned by the algorithm with probability pe · eze.

Remark 2.3. If VertexProbe outputs the edge e = (u, s) when executing on the fixed node s,
then we say that s commits to the edge e = (u, s), or that s commits to u.

Returning to the problem of designing an online probing algorithm for G, let us assume that
n := |V |, and that the online nodes of V are denoted v1, . . . , vn, where the order is generated u.a.r..
Denote Vt as the set of first t arrivals of V ; that is, Vt := {v1, . . . , vt}. Moreover, set Gt := G[U [Vt],
and LPOPTconf(Gt) as the value of an optimum solution to LP-config (this is a random variable,
as Vt is a random subset of V). The following inequality then holds:

Lemma 2.4. For each t � 1, E[LPOPTconf (Gt)] � t
n LPOPTconf (G).

In light of this observation, we design an online probing algorithm which makes use of Vt, the
currently known nodes, to derive an optimum LP solution with respect to Gt. As such, each time
an online node arrives, we must compute an optimum solution for the LP associated to Gt, distinct
from the solution computed for that of Gt�1.

7

33 / 37

The online stochastic rewards problem with offline
vertex weights

We now consider stochastic graphs where the offline vertices (but not the
edges) are weighted. We again are letting U be the offline nodes and V
the online nodes.

We recall that in the classical (non-probing) setting, there is a randomized
algorithm with competitive ratio 1− 1

e for offline vertex weighhted
bipartite garphs and online nodes arriving in adversarial order. This result
can also be reinterpreted as a deterministic 1− 1

e algorithm in the random
order model.

We will extend this result to provide the same 1− 1
e ratio in the probing

setting. Unfortuantely, we so far cannot obtain the result in the full
generality that we want. In short, we can state a result when the probing
constraint Cv) for each on line vertex v is “rankable”.

34 / 37

The competitive ratio for randable constraints on
the online vertex probing sequence

For motivation, consider a patience constraiunt; that is, the number
|(u, v)| of probed edges is at most `v , the patience contraint.

Suppose we want to probe the edges (u, v) such that u ∈ R ⊆ U where we
R is the set of offline vertices not yet matched. This con be solved by
using a dynmaic program. If the patience is `v = 1 we would just probe
the edge (u, v) with maximium value p(u,v · wu. On the other hand if
`v = |R|, we would probe the edges (u, v) for u ∈ R by non-increaing
order of the weights wu. For arbitrary `, having sorted the vertices u ∈ R,
we can use a dynmaic program to derive an optimal sequence of probes as
given by Pruohit et al [2019] and Brubach et al [2019].

35 / 37

Rankable vertices

Informally, an online vertex v is rankable if there is a ordering πv of the
edges (u, v) such that the dynmaic program will yield the optimal
expected value for any R ⊂ U. The permutation will depend only on the
vertex weights an ad probabilitires and not R. .

This includes the following cases (extending known results):

v has unit patience or unlimited patience; that is, `v ∈ {1, |U|}.
v has patience `v , and for each u1, u2 ∈ U, if pu1,v ≤ pu2,v then
wu1 ≤ wu2 .

G is unweighted, and v has a budget2 Bv with edge probing costs
(cu,v)u∈U , and for each u1, u2 ∈ U, if pu1,v ≤ pu2,v then cu1,v ≥ cu2,v .

We will use an adaption of the primal dual analysis for this result due to
Devanur et al [2013]. We note that this analysis was the basis for a proof
of KVV (Eden et al [2021]) using an econmic interpretation.

2In the case of a budget Bv and edge probing costs (cv)v∈V , any subset of ∂(v) may
be probed, provided its cumulative cost does not exceed Bv .

36 / 37

The ROM algorithm for the vertex weighted case

While the primal dual analsis will employ an LP, the algorithm will be
completely combinatorial.

For each i = 0, . . . , m � 1, denote @(s)>i := {ei+1, . . . , em}, and @(s)>m := ;. Moreover,
define the family of subsets I>i

s := {B ✓ @(s)>i : B [{ei} 2 Is} for each 2  i  m, and
I>0

s := Is. Observe then that (@(s)>i, I>i
s) is a downward-closed set system, as Is is downward-

closed. Moreover, we may simulate oracle access to I>i
s based on our oracle access to Is.

Denote OPT(I>i
s) as the maximum value of f over constraints I>i

s . Observe then the following
recursion:

OPT(Is) := max
i2[m]

(pei · wei + (1� pei) · OPT(I>i
s)) (3.2)

Hence, given access to the values OPT(I>1
s), . . . , OPT(I>m

s), we can compute OPT(Is) efficiently.
In fact, it is clear that we can use (3.2) to recover an optimum solution to f , and so the proof
follows by an inductive argument on |@(s)|. We can define DP-OPT to be a memoization based
implementation of (3.2).

Given R ✓ U , consider the induced stochastic graph, G[{s} [R] for R ✓ U which has probing
constraint CR

s ✓ Cv, constructed by restricting Cs to those strings whose entries all lie in R ⇥ {s}.
Moreover, denote the output of executing DP-OPT on G[{s} [R] by DP-OPT(s, R). Consider
now the following online probing algorithm, where we assume the online vertices of G arrive in an
adversarially chosen unknown order v1, . . . , vn, where n := |V |.

Algorithm 3 Greedy-DP
Input: offline vertices U with vertex weights (wu)u2U .
Output: a matching M of active edges of the unknown stochastic graph G = (U, V, E).
1: M ;.
2: R U .
3: for t = 1, . . . , n do
4: Let vt be the current online arrival node, with constraint Cvt and edges probabilities

(pe)e2@(vt).
5: Set e DP-OPT(vt, R)
6: for i = 1, . . . , |e| do
7: Probe ei.
8: if st(ei) = 1 then
9: Add ei to M, and update R R \ {ui}, where ei = (ui, vt).

10: end if
11: end for
12: end for
13: return M.

In general, the behaviour of OPT(s, R) can change very much, even for minor changes to R.
For instance, if R = U , then OPT(s, U) may probe (u, s) first – thus giving it highest priority –
whereas by removing u⇤ 2 U from U (where u⇤ 6= u), OPT(s, U \ {u⇤}) may not probe (u, v) at all:

Example 3.2. Let G = (U, V, E) be a bipartite graph with U = {u1, u2, u3, u4}, V = {v} and
`v = 2. Set pu1,v = 1/3, pu2,v = 1, pu3,v = 1/2, pu4,v = 2/3. Fix " > 0, and let the weights of offline
vertices be wu1 = 1 + ", wu2 = 1 + "/2, wu3 = wu4 = 1. We assume that " is sufficiently small –
concretely, "  1/12. If R1 := U , then OPT(v, R1) probes (u1, v) and then (u2, v) in order. On the
other hand, if R2 = R1 \ {v2}, then OPT(v, R2) does not probe (u1, v). Specifically, OPT(v, R2)
probes (u3, v) and then (u4, v).

13

37 / 37

	Week 10

