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Week 10

Agenda for today and following two weeks

@ For the last meeting, we had overview presentations of the reading
projects by Kosha (min cost) and Xiaoxu (caching). As | said two
weeks ago, . | am basing the grade on the quality of these
presentations. The criteria are : Was the presentation clear and how
informative was the presentation.

@ Today Jinman will give her presentation on coloring. | will follow her
presentation by continuing the discussion on prophet inequalities and
prophet secretaries. Then time permitting. | will discuss ML advice.

@ Next week (April 1)
Alex (temporary jobs) and Koko (streaming) will give their
presentations (streaming).
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Recap of March 11 discussion

@ We discussed three related problems: the secretary problem, prophet
inequalities, and the prophet secretary problem.

@ These all can be considered within the framework of online bipartite
matching.

@ The prophet secretary results are relatively new and based mainly on
papers by Esfandiari et al [SICOMP 2017], Ehsani et al [SODA 2018]
and Correa et al [Math Programming 2020].

@ The secretary and prophet inequalities results are more “classic”. The
first published algorithm and proof for the secretary problem is
attribued to Lindley (1961). The prophet inequalities bounds is due
to Krengel and Sucheston (1977) whereas the threshold algorithm
presented presented on March is due to Samuel-Cahn (1984) using
the proof by Kleinberg and Weinberg (2012) as presented in Lucier
(2017).
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Summary of ressults for single item secretary,
prophet inequalities, and prophet secretary

All of the results that follow are asymptotic ratios.
@ For the secretary problem, the optimal competitive ratio is £ ~ .3679

e
@ For the prophet inequalities problem, the optimal competitive ratio is
% and this is achieved by a simple single threshold algorithm. This
improvement over the seretary bound is made possible since now the
input values are being drawn from known i.d. distributions even
though the items are arriving in adversarial order vs random order in

the secretary problem.

@ Recall, it is not possible to get a constant competitive ratio for
adversarial values and adversarial order even using randomized
algorithms.
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Summary of single item results continued

@ For the prophet secretary problem, there is a single threshold
algorithm (breaking ties using randomization) that achieves
competitive ratio 1 — % ~ .6321. Here we have the benefit of values
from i.d. distributions and random order. This bound is optimal for
non-adaptive thresholds.

NOTE: | was following a conference version of the Ehsani et al
paper. A later arXiv version presents this by introducing a time
variable t € [0, 1] and then inducing a random order on the arriving
buyers by choosing a random time T; for each buyer i. The proof of
the lemma and the theorem is in terms of g(t) which is defined as the
probability that the item has not been sold before time t. The
corresponding useful lemma is that g(t) < g_;(t) defined as the
probability that the item has not been sold before time t conditioned
on T; =t and then showing qg(t) > e~ t.
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Summary continued

@ Using adaptive thresholds, the 1 — % ~ .6321 bound can be improved
to .669 and this can be compared with the best known V3—-1=~.732
inapproximation. The current method (based on “blind strategies”)
has a .675 limitation.

@ These results can all be improved for i.i.d. distributions in which case
there is no difference between adversarial order and random order.
The optimal bound is .745 for i.i.d. vs the best known .732
inapproximation for i.d.
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Multi item extensions of the secretary problem,
prophet inequalities and the prophet secretary
problems

So far we have considered the secretary problem, prophet inequalities and
prophet secretary problems in their basic form where only one item is
being selected.

All of these problems have been extended to the settings where a set of
items are being selected subject to various downward closed constraints
(i.e., if S is a feasible set of items, then S’ is feasible for any S’ C S).

In this regard, matroid constraints, knapsack constraints and (bipartite)
matching constraints are the most common constraints. We will focus on
matching constraints.
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The multi item secretary problem subject to a
matching constraint

We first note that the Secretary problem is a special case of edge weighted
online bipartite matching when there is only one offline vertex. For our
first extension, it is natural to consider the edge weighted bipartite
matching problem in the ROM model.

That is, upon arrival of an online vertex, we know the edge weights of all
its adjacencies. We cannot do better than the % competitive ratio, so the
question is whether or not we can achieve this ratio.

The following theorem and algorithm due to Kesselheim et al [ESA 2013]
achieves the optimal ROM bound.

Theorem

The online edge weighted bipartite Algorithm has expected approximation
ratio % in the ROM model. More spefically

E[w(M)] > (5 - 1) OPT




The edge weighted bipartite matching algorithm

Algorithm 49 The EDGE-WEIGHTED BIPARTITE MATCHING ALGORITHM

procedure WEIGHTED MATCHING
> V is the set of offline vertices

> Online vertices uq, ..., u, arrive according to the ROM model
U' {1, U nse) b > U’ is the current set of online vertices
M« 0 > M will be the constructed matching
£+ [n/e]
while ¢ < n do

U + U U{u}

M® + optimal matching on edge weighted graph with online vertices U’ and offline

vertices V'

if (¢,7) € M® and r not yet matched then
M« MU{(t,r)}
C—1+1

Note: The matching M) is in terms of the induced graph defined by the
vertices in U’ ignoring whatever matches have already been made.
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Proof for the edge weighted bipartite matching
algorithm

The proof of the Theorem establishing the % competitive ratio relies on
the following lemma for estimating the expected contribution of each

online node uy for £ > [n/e]. We'll prove this lemma after seeing how it
yields the theorem.

Lemma

Let A; denote the contribution (i.e. the weight added to the solution) of
online vertex uy; € U for [n/e] < ¢ < n. Then E[A] > % JOPTE

n
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Proof for the edge weighted bipartite matching
algorithm continued

Using the Lemma, the proof of the Theorem follows easily.

Proof.
Theorem 1 is obtained by summing up the individual contributions E[A/].
That is,
n/e|—1

E[w(M)] = B[S0y Al) > Spe o0 25T

n 1 OPT

— 1 /eJ Ze el
This can be S|mp||f|ed to yield the desired bound on E[w(M)] by observing
that

ofel=t > (L —2yand 7=t . 3 > In(Eh > 1
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Proof of the lemma needed for the edge weighted
bipartite competitive ratio

It is helpful to view the random order of online vertices so that wuy is
chosen uniformly at random from U’. Then, conditioned on r being
unmatched thus far,

(1) the expected weight E[(ug, r)] of the edge (uy, r) is W(’\Z(Z))

where w(M?*) is the weight of the optimal matching on the current set of
vertices.

Furthermore, U’ is a uniformly at random set of size £ chosen from U so
that

(2) Elw(M®] > LOPT. It follows that

E[w(ug, r)] > ?

The expectation of the above inequality is in terms of the random choice
of U" and the choice of /¢ as the last arrival in U’.
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Proof of the lemma continued

We now need to consider the randomness in the preceding ¢ — 1 arrivals to
determine the probability that the intended match r for u, was not already
matched.

Using the same view that the last element in any initial input sequence is
being chosen randomly from the initial set of inputs and independent of
the order of the previous elements, the probability that r is not chosen in
the k' iteration (for k=¢—1,0—2,...1) is 5 and hence

Pr(r is unmatched) when uy arrives is equal to

_ fn/e1 1

Hk [n/e] et
Summarizing, the expected contribution of the ¢ online vertex is

E[A¢] = E[(ug, r)|r is not yet matched] - Pr(r is not yet matched). Namely
E[A/] > % : @ as claimed.
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The bipartite matching secretary problem in terms
of matroids

The weighted edge bipartite theorem is clearly selecting a set of winning
candidates subject to a constraint, namely the constraint is that the set of
selected online vertices can be matched (1-1) to the offline vertices. This
simpler constraint constitutes the definition of independence in a
transversal matroid.

Definition
Matroids Let U be a set of elements and Z be a collection of subsets of U.
(U,Z) is a matroid if the following hold:
o (Hereditary property) If | € Z and I’ C I, then I € Z.
o (Exchange property) If I';1 € Z and |I’| < |I|, then Ju € I\ I’ such
that I’ U{u} € 7.

An hereditary set system (U,Z) is any set system satisfying the hereditary
property so that a matroid is an hereditary set system that also satisfies
the exchange property.

The sets | € 7 are referred to as the independent sets. 14/20



Matroid secretary problem contiuned

We note that there are alternative equivalent definitions. In particular, an
alternative to the exchange property is that every maximal independent set
has the same size, and this maximum size is call the rank of the matroid.

Note: The bipartite matching constraint in terms of edges being a
matching is the intersection of two matroids and is not a matroid
constraint.

A special case of edge weighted matching is when the online vertices are
weighted which is equivalent to saying that so all edges adjacent to an
online node u have the same weight.

Let (U,Z) be a matroid whose elements u; are weighted by w : U — R20.
The matroid secretary problem is to choose an independent set / C U in
the matroid so as to maximize ) ., w,.
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Matroid secretary problem continued

As an immediate consequence of the Kesselheim et al secretary matching
result, we obtain a constant competitive ratio for three secretary problems
, namely choosing a set of candidates so as to maximize the sum of the
element weights subject to the following matroid independence constraints.

@ A uniform matroid; that is, where the independent sets / have
cardinality at most k for some fixed k. Here it is immediate to see
that the rank of such a matroid is the cardinality constraint k.

@ A partition matroid; that is, there is a parttion (Ui, ..., Uny) (for
some m) and for each U; there is a capacity k;; the independent sets

| are those satisfying |u € U;N | < kj. Clearly, every uniform matroid
is a partition matroid.

@ A transversal matroid. Every partition matroid is a transversal
matroid.
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The uniform matroid

Of course, since these particular matroid constraint problems are special
cases of the bipartite matching problem it may be possible to obtain better
constant approximation ratios. That is, multi item secretary problem
might have a better ratio for some constraints.

Indeed this is the case for the uniform matroid with cardinality constraint
k for which there is a (1 — %) approximation. Hence for uniform
matroids the approximation ratio limits to 1 as k increases.

It is an open problem whether or not there is a constant approximation for
all matroid constraints. Currently, the best known approximation guarantee

for an arbitrary matroid constraint is m for matroids of rank k.
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Knapsack secretary problem

Another noteworthy extension is the secretary problem subject to a
knapsack constraint. This is the same thing as the knapsack problem in
the ROM input model.) In this problem, candidates u; have both a value
vj and a size s; (sometimes called a size or a budget), and a size bound W.

The goal is to select online (in the ROM model) a set S of candidates
satisfying the constraint } ;.5 s; < W so as to maximize ;.5 v;. Note
that this constraint subsumes the uniform matroid constraint and is
incomparable with an arbitrary matroid constraint and incomparable with
the bipartite matching constraint. The best known competitive ratio for
the knapsack secretary problem is % achieved by a randomized
algorithm.
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The multi item prophet inequalities and prophet
secretary problem subject to a matching constraint

As | probably mentioned, the matching constraint for both prophet
inequalities and the prophet sectretary problem is of particular, interest
due to the interpretation for posted price mechanisms for auctions. The
matching constraint is a special case of a combinatorial auction, namely
the valuations are unit demand.

More generally, in a posted price combinatorial auction (CA) buyers arrive
online and take the best bundle of items (in terms of the agents valuation)
that is still available. A unit demand CA is one where each agent only has
value for single items. This is then clearly a matching problem. In the
posted price unit demand CA, each buyer is offered a single price for each
item. | self-interest buyer wll take the best item whose value (for the
buyer) exceeds the price.
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End of meeting on March 26

Next week we will have presentations by Alex and Koko. Our last meeting
will be on April 8 and | will continue with the proof of the secretary
matching problem and then discuss online algorithms with ML predictions.
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