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Week 1

Course Organization

This will be a reading course and will be run so that it is appropriate
as a foundational course for anyone who has the equivalent of our
undergraduate algorithms course CSC373.

In addition, depending on what topics or papers students undertake,
the course could also be appropriate for anyone interested in
undertaking research relating to the scope of this course.

I Sources: The main source is a text (with the same title as the course
title) that I am now writing with Denis Pankratov.

I In addition, there are course notes at other Universities, slides for this
course and my previous courses, various textbooks, and relatively
current research papers. See links posted on the course web page.

I The precise reading requirements will depend on how many people are
in the course (either enrolled or actively audting),
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More organization

This is a very active field. I will attempt give a sense of the different
aspects of this field (according to the current planned Chapters) and
then we will begin to have student presentations.
I am thinking that every student (whether auditing or taking the
course for credit) will give two presentations, perhaps an intiial
overview of some topic, and then later a more detailed discussion of
one or more specific papers in the chosen topic.
It seems clear that we will be meeting online. The class will now meet
Thursdays 4-6 to avoid the conflict wtih Nisarg Shah’s Thursday 1-3
class. Rather than regularly scheduled office hours, I am happy to
meet individually (say by zoom, or skype) whenever anyone wants to
meet.
There is also a piazza page which I encourage as a good way to share
comments and questions. I particularly welcome students answering
questions.
My contact information : bor@cs.toronto.edu The course web page is
www.cs.toronto.edu/˜bor/2421s21
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About the title and the course

An online algorithm receives its input as a sequence of input items. When
a new input item arrives, the algorithm needs to make a decision about the
input item. We think of the inputs arriving in discrete steps; that is, input
item Ij arrives at step j . We may or may not also have a real time t
associated with each input item.

When considering online algorithms, we use the term competitive ratio
rather than approximation ratio. Informally, this is a “worst case” (over all
possible input sequences) ratio for the performance (e.g, profit or cost) for
an algorithm’s solution relative to an optimal solution.

See Chapter 1 for a brief history and a couple of examples of online
algorithms.

In Chapter 2, we formalize deterministic online algorithms in terms of
request answer games. We then formalize the competitive ratio of a
deterministic online algorithm.
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Some variants of online algorithms

There are many variants of online algorithms. (We’ll return to this when
we consider a specific problem: Makespan.)

The standard meaning of “online algorithm” within TCS is that the
decision for each input item is irrevocable and must be made without
knowledge of future input items. However, in some models, there can
be limited ways in which decisions can be revoked,
In the initial works on competitive analysis, the input item sequence
can be completely adversarial. One variant is to assume that each
item is drawn from some distribution where these distributions can be
known or unknown in advance.
Another example is when an adversary provides an input set but the
input sequence is a random permutation of the items in the input set.
Whenever there is randomness in the algorithm or randomness in the
input sequence, we need to consider the expected performance; that
is, the performance of an algorithm is a random variable and we
consider its expected value. See Chapter 3 for the definition of a
randomized online algorithm and its competitive ratio.
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Myopic algorithms

I am using the term myopic algorithm to indiicate that an algorithm can
have some ability to look at the input set but there is still information that
is not yet revealed.
We consider every online algorithm to be a myopic algorithm. In addition:

Online algorithms with advice refers to an online algorithm that can
first obtain a limited amount of information about the input set. See
Chapter 10.

In the literature of scheduling algorithms, the term online algorithm
often refers to what I would call a “real time algorithm” where
decisions about an input item arriving at time t can be made at any
time t ′ ≥ t. See Chapter 13.

In probing algorithms, some information about each input is revealed
upon arrival but other information about the item is obtained by
probing within say some budget. See Chapter 16.

We consider greedy algorithms and some other one pass algorithms to
be myopic. This is formalized in Chapter 17.
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Why study online and other myopic algorithms

In many applications, there is an inherent online requirement. For
example, paging (also called caching) algorithms have to decide what page
to evict when the cache (or some level of the memory hierarchy) is full.

Some auctions need to be run in an online fashion. One very important
example is online advertising (i.e. selling ads deriving from online search to
advertisers).

In other applications it may not be a requirement but rather a desireable
property. Moreover, online and other myopic algorithms tend to be
conceptually simple and very efficient.

Even when online algorithms do not provide solutions that are
“competitive” in performance with more complex algorithms, they can
serve as a benchmark or initial solution when an initial solution is needed
quickly.
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The difference between online/myopic algorithm
analsyis and more standard algorithm analysis as in
approximation algorithms and complexity theory.

The seminal work of Cook-Karp-Levin on NP-completeness strongly
suggests that there are many related problems that cannot be solved
efficiently (i.e., in polynomial time). But this is still a conjecture, an
almost universally believed conjecture but still a conjecture.

Although we may strongly believe P 6= NP, we do not have explicit
problems f in NP for which we can prove that f is not computable in
linear time for a sufficiently general mlodel of computation.

In contrast, in the analysis of online and other myopic algorithms we
restrict the class of algorithms and prove negative results without any
complexity (or even computability) assumptions. We use what are called
information theoretic arguments to establish negative results. That is,
because the algorithm is working with incomplete information, there are
limitations to what such an algorithm can do.
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Comments and disclaimers on the course perspective

I consider this course to be a “foundational graduate course” even
though online and other myopic algorithms are a small part of the
field of algorithm design and analysis.

Although the topic seems focused, the analysis of these algorithms
often introduces analysis methods used more generally in algorithmic
analysis.

Sushant Sachdeva is the instructor for a different section of CSC2421
“Topics in Algorithms: Graphs, Matrices and Optimization”. The two
course have some overlap but mainly they they are covering different
topics. Most graduate algorithms courses are biased towards some
research perspective. Given that CS might be considered (to some
extent) The Science and Engineering of Algorithms, one cannot
expect any comprehensive introduction to algorithm design and
analysis in any course.
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Rest of todays agenda

Just to motivate the course a little more I want to skim through what the
different Chapters are about and then skim through some of the results in
Chapters 1-3. I have posted the curent draft of the index and Chapters 1-3
on the web page.

For later Chapters, I may post them on BBCollaborate so that they are
restricted to the class. So if you are interested in participating (even if
auditing), I would lke to add you to the list of students on BbCollaborate.
The easiest thing would be for you to audit the course. If you are on the
course Quercus list you will get all course annoucements. If at any time
you would no longer like to be on the list, I can delete you from the list so
that you will not be bothered by these emails. We all get more than
enough email.

So... before we begin, are there any questions or comments?

We start with a little history and the makespan problem.
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Greedy and online algorithms:
Graham’s online and LPT makespan algorithms

Let’s start with these two greedy algorithms (one online and one
“semi-online”) that date back to 1966 and 1969 papers Graham.

These are good starting points since (preceding NP-completeness)
Graham conjectured that these are hard (requiring exponential time)
problems to compute optimally but for which there were worst case
approximation ratios (although he didn’t use that terminology).

This might then be called the start of worst case approximation
algorithms. One could also even consider this to be the start of online
algorithms and competitive analysis (although one usually refers to a
1985 paper by Sleator and Tarjan as the seminal paper in this regard).
As pointed out in Chapter 1, there are other works that precede even
the Graham paper.

There are some general concepts to be observed in Graham’s work
and (even after more than 50 years) still open questions concerning
the many variants of makespan problems.
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The makespan problem for identical machines

The input consists of n jobs J = J1 . . . , Jn that are to be scheduled
on m identical machines.
Each job Jk is described by a processing time (or load) pk .
The goal is to minimize the latest finishing time (maximum load) over
all machines.
That is, the goal is a mapping σ : {1, . . . , n} → {1, . . . ,m} that

minimizes maxk

(∑
`:σ(`)=k p`

)
.

Algorithms Lecture 30: Approximation Algorithms [Fa’10]

Theorem 1. The makespan of the assignment computed by GREEDYLOADBALANCE is at most twice the
makespan of the optimal assignment.

Proof: Fix an arbitrary input, and let OPT denote the makespan of its optimal assignment. The
approximation bound follows from two trivial observations. First, the makespan of any assignment (and
therefore of the optimal assignment) is at least the duration of the longest job. Second, the makespan of
any assignment is at least the total duration of all the jobs divided by the number of machines.

OPT≥max
j

T[ j] and OPT≥ 1

m
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j=1

T[ j]

Now consider the assignment computed by GREEDYLOADBALANCE. Suppose machine i has the largest
total running time, and let j be the last job assigned to machine i. Our first trivial observation implies
that T[ j] ≤ OPT. To finish the proof, we must show that Total[i]− T[ j] ≤ OPT. Job j was assigned
to machine i because it had the smallest finishing time, so Total[i]− T[ j] ≤ Total[k] for all k. (Some
values Total[k] may have increased since job j was assigned, but that only helps us.) In particular,
Total[i]− T[ j] is less than or equal to the average finishing time over all machines. Thus,

Total[i]− T[ j]≤ 1
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Proof that GREEDYLOADBALANCE is a 2-approximation algorithm

GREEDYLOADBALANCE is an online algorithm: It assigns jobs to machines in the order that the jobs
appear in the input array. Online approximation algorithms are useful in settings where inputs arrive
in a stream of unknown length—for example, real jobs arriving at a real scheduling algorithm. In this
online setting, it may be impossible to compute an optimum solution, even in cases where the offline
problem (where all inputs are known in advance) can be solved in polynomial time. The study of online
algorithms could easily fill an entire one-semester course (alas, not this one).

In our original offline setting, we can improve the approximation factor by sorting the jobs before
piping them through the greedy algorithm.

SORTEDGREEDYLOADBALANCE(T[1 .. n], m):
sort T in decreasing order
return GREEDYLOADBALANCE(T, m)

Theorem 2. The makespan of the assignment computed by SORTEDGREEDYLOADBALANCE is at most 3/2
times the makespan of the optimal assignment.

2

[picture taken from Jeff Erickson’s lecture notes]
12 / 26



Redux: The Many Variants of Online Algorithms

As I indicated, Graham’s algorithm could be viewed as the first example of
what has become known as competitive analysis (as named in a paper by
Manasse, McGeoch and Sleator) following the paper by Sleator and Tarjan
which explicitly advocated for this type of analysis. Another early (pre
Sleator and Tarjan) example of such analysis was Yao’s analysis of online
bin packing algorithms.

In competitive analysis we compare the performance of an online algorithm
against that of an optimal solution. The meaning of online algorithm here
is that input items arrive sequentially and the algorithm must make an
irrevocable decision concerning each item. (For makespan, an item is a job
and the decision is to choose a machine on which the item is scheduled.)

But what determines the order of input item arrivals?
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The Many Variants of Online Algorithms continued

In the “standard” meaning of online algorithms (for CS theory), we
think of an adversary as creating a nemesis input set and the ordering
of the input items in that set. So this is traditional worst case analysis
as in approximation algorithms applied to online algorithms. If not
otherwise stated, we will assume this as the meaning of an online
algorithm and if we need to be more precise we can say online
adversarial model.
We will also sometimes consider an online stochastic model where an
adversary defines an input distribution and then input items are
sequentially generated. There can be more general stochastic models
(e.g., a Markov process) but the i.d. and i.i.d models are common in
analysis. Stochastic analysis is well studied in OR.
In the i.d. and i.i.d models, we can assume that the distributions are
known by the algorithm or unknown.
In the random order model (ROM), an adversary creates a size n
nemesis input set and then the items from that set are given in a
uniform random order (i.e. uniform over the n! permutations)
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More general online frameworks

In the standard online model (and the variants we just mentioned), we are
considering a one pass algorithm that makes one irrevocable decision for
each input item.

There are many extensions of this one pass paradigm. For example:

An algorithm is allowed some limited ability to revoke previous
decisions.
There may be some forms of lookahead (e.g. buffering of inputs).
The algorithm may maintain a “small’ number of solutions and then
(say) take the best of the final solutions.
The algorithm may do several passes over the input items.
The algorithm may be given (in advance) some advice bits based on
the entire input.

Throughout our discussion of algorithms, we can consider deterministic or
randomized algorithms. In the online models, the randomization is in
terms of the decisions being made. (Of course, the ROM model is an
example of where the ordering of the inputs is randomized.)
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Other measures of performance

The above variants address the issues of alternative input models, and
relaxed versions of the online paradigm.

Competitive analysis is really just asymptotic approximation ratio analysis
applied to online algorithms. Given the number of papers devoted to
online competitive analysis, it is the standard measure of performance.

However, it has long been recognized that as a measure of performance,
competitive analysis is often at odds with what seems to be observable in
practice. Therefore, many alternative measures have been proposed. An
overview of a more systematic study of alternative measures (as well as
relaxed versions of the online paradigm) for online algorithms is provided in
Kim Larsen’s lecture slides that I have placed on the course web site.

See, for example, the discussion of the accommodating function measure
(for the dual bin packing problem) and the relative worst order meaure for
the bin packing coloring problem.
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Returning to Graham’s online greedy algorithm

Consider input jobs in any order (e.g. as they arrive in an online setting)
and schedule each job Jj on any machine having the least load thus far.

We will see that the approximation ratio for this algorithm is 2− 1
m ;

that is, for any set of jobs J , CGreedy (J ) ≤ (2− 1
m )COPT (J ).

I CA denotes the cost (or makespan) of a schedule A.
I OPT stands for any optimum schedule.

Basic proof idea: OPT ≥ (
∑

j pj)/m;OPT ≥ maxjpj
What is CGreedy in terms of these requirements for any schedule?

Algorithms Lecture 30: Approximation Algorithms [Fa’10]
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Graham’s online greedy algorithm

Consider input jobs in any order (e.g. as they arrive in an online setting)
and schedule each job Jj on any machine having the least load thus far.

In the online “competitive analysis” literature the ratio CA
COPT

is called
the competitive ratio and it allows for this ratio to just hold in the
limit as COPT increases. This is the analogy of asymptotic
approximation ratios.

NOTE: Often, we will not provide proofs in the lecture notes but rather
will do or sketch proofs in class (or leave a proof as an exercise).

The approximation ratio for the online greedy is “tight” in that there
is a sequence of jobs forcing this ratio.

The negative result (i.e. there is “bad” input sequence for the
algorithm) is not an asymptotic result. Is there a “meaningful
asymptotic result?

This bad input sequence suggests a better algorithm, namely the LPT
(offline or sometimes called semi-online) algorithm.
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Graham’s LPT algorithm

Sort the jobs so that p1 ≥ p2 . . . ≥ pn and then greedily schedule jobs on
the least loaded machine.

The (tight) approximation ratio of LPT is
(
4
3 −

1
3m

)
.

It is believed that this is the best “greedy” algorithm but how would
one prove such a result? This of course raises the question as to what
is a greedy algorithm.

We will present the priority model for greedy (and greedy-like)
algorithms. I claim that all the algorithms mentioned on the next
slide can be formulated within the priority model.

Assuming we maintain a priority queue for the least loaded machine,
I the online greedy algorithm would have time complexity O(n logm)

which is (n log n) since we can assume n ≥ m.
I the LPT algorithm would have time complexity O(n log n).
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Greedy algorithms in CSC373

Some of the greedy algorithms we study in different offerings of CSC 373

The optimal algorithm for the fractional knapsack problem and the
approximate algorithm for the proportional profit knapsack problem.

The optimal unit profit interval scheduling algorithm and
3-approximation algorithm for proportional profit interval scheduling.

The 2-approximate algorithm for the unweighted job interval
scheduling problem and similar approximation for unweighted
throughput maximization.

Kruskal and Prim optimal algorithms for minimum spanning tree.

Huffman’s algorithm for optimal prefix codes.

Graham’s online and LPT approximation algorithms for makespan
minimization on identical machines.

The 2-approximation for unweighted vertex cover via maximal
matching.

The “natural greedy” ln(m) approximation algorithm for set cover.
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Makespan: Some additional comments

There are many refinements and variants of the makespan problem.

There was significant interest in the best competitive ratio (in the
online setting) that can be achieved for the identical machines
makespan problem.

The online greedy gives the best online ratio for m = 2,3 but better
bounds are known for m ≥ 4. For arbitrary m, as far as I know,
following a series of previous results, the best known approximation
ratio is 1.9201 (Fleischer and Wahl) and there is 1.88 inapproximation
bound (Rudin). Basic idea: leave some room for a possible large job;
this forces the online algorithm to be non-greedy in some sense but
still within the online model.

Randomization can provide somewhat better competitive ratios.

Makespan has been actively studied with respect to three other
machine models.
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The uniformly related machine model

Each machine i has a speed si

As in the identical machines model, job Jj is described by a
processing time or load pj .

The processing time to schedule job Jj on machine i is pj/si .

There is an online algorithm that achieves a constant competitive
ratio.

I think the best known online ratio is 5.828 due to Berman et al
following the first constant ratio by Aspnes et al.

Ebenlendr and Sgall establish an online inapproximation of 2.564
following the 2.438 inapproximation of Berman et al.
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The restricted machines model

Every job Jj is described by a pair (pj , Sj) where Sj ⊆ {1, . . . ,m} is
the set of machines on which Jj can be scheduled.
This (and the next model) have been the focus of a number of papers
(for both online and offline) and there has been some relatively recent
progress in the offline restricted machines case.
Even for the case of two allowable machines per job (i.e. the graph
orientation problem), this is an interesting problem and we will look
at some recent work later.
Azar et al show that log2(m) (resp. ln(m)) is (up to ±1) the best
competitive ratio for deterministic (resp. randomized) online
algorithms with the upper bounds obtained by the “natural greedy
algorithm”.
It is not known if there is an offline greedy-like algorithm for this
problem that achieves a constant approximation ratio. Regev [IPL
2002] shows an Ω( logm

log logm ) inapproximation for “fixed order priority
algorithms” for the restricted case when every job has 2 allowable
machines.
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The unrelated machines model

This is the most general of the makespan machine models.

Now a job Jj is represented by a vector (pj ,1, . . . , pj ,m) where pj ,i is
the time to process job Jj on machine i .

A classic result of Lenstra, Shmoys and Tardos [1990] shows how to
solve the (offline) makespan problem in the unrelated machine model
with approximation ratio 2 using LP rounding.

There is an online algorithm with approximation O(logm). Currently,
this is the best approximation known for greedy-like (e.g. priority)
algorithms even for the restricted machines model although there has
been some progress made in this regard (which we will discuss later).

NOTE: All statements about what we will do later should be
understood as intentions and not promises.
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Makespan with precedence constraints; how much
should we trust our intuition
Graham also considered the makespan problem on identical machines for
jobs satisfying a precedence constraint. Suppose ≺ is a partial ordering on
jobs meaning that if Ji ≺ Jk then Ji must complete before Jk can be
started. Assuming jobs are ordered so as to respect the partial order (i.e.,
can be reordered within the priority model) Graham showed that the ratio
2− 1

m is achieved by “the natural greedy algorithm”, call it G≺.

Graham’s 1969 paper is entitled “Bounds on Multiprocessing Timing
Anomalies” pointing out some very non-intuitive anomalies that can occur.

Consider G≺ and suppose we have a given an input instance of the
makespan with precedence problem. Which of the following should never
lead to an increase in the makepan objective for the instance?

Relaxing the precedence ≺
Decreasing the processing time of some jobs
Adding more machines

In fact, all of these changes could increase the makespan value.
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Index of cbapters

My intention is to cover selected chapters in theb text we are considering.
We end today meeting with a quick llok at the index for the text.
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