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Week 9

Annoucements

@ | am planning to start listing questions for the second assignment.

Please submit your proposal for a project if you have not already done
so.

Todays agenda

Clarifying prirority algorithms vs polynomial time algorithms.
Colouring d-Independent, chordal and d inductively independent
graphs.

The many dimensions of fair division.

Review of the most studied fairness measures: EF (envy-freeness),
Proportionality (prop) , MMS (max-min-share), MNW
(max-Nash-welfare).

Some results for EF, MMS, MNW

If time permits, we return to Chapter 8 and extensions to the classical
ski-rental, bin packing, and k-server problems.
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Priority colouring and MIS for d-inductive and
chordal graphs?

Here is where | misspoke in the October 22 class. | said the following:

“It is also the case that the PEO provides an optimal fixed order priority
algorithm for computing a maximum independent set in a chordal graph
(i.e., the MIS problem). For example (as we know), sorting by non
decreasing finishing times, we obtain an optimal fixed order priority
algoritihm for interval selection.”

| was thinking in terms of the interval repesentation of an interval graph.
BUT, it is not at all clear how one can can do this from a graph
representation (e.g., the VAM-FI input model). One might still say we
have a greedy algorithm for optimally coloring any chordal graph since we
can create the PEO and the reverse of the PEO within polynomial time
but this doesn't satisfy our definition of a priority algorithm
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Priority algorithms for trees and bipartite graphs

When considering offline priority algorithms for graphs, the VAM-FI is the
appropriate input model in contrast to online algorithms where VAM-PH is
the more approriate model.

In the VAM-FI model, it is not difficult to see that we can optimally
2-colour bipartite graphs (and therefore trees) by an adaptive priority
algorithm. We can simply start colouring any node r with color 1.

Then the next nodes in the ordering are the neighbours N, of r in a
breadth first search. The nodes in N, receive color 2. The (not yet
coloured) neighbours of each node v in N, become the nodes next in the
ordering, and they receive color 1. We continue in this way to colour any
bipartite graph with 2 colours.

If we ever try to give conflicting colours to any node previously coloured
than we know that the graph is not bipartite.

4/32



Creating d-inductive and d-inductively independent
orderings

Can we create the orderings we need for classes of graphs that enjoy
special orderings as fixed or adaptive priority orderings within the VAM-FI
graph input model?

Note that every d-inductive graph is d-inductively independent and
chordal graphs are l-inductively independent.

The forward d-inductive and d-inductively independent orderings give us
d-approximations for the MIS problem on these graphs.

The reverse d-inductive and reverse d-inductively independent orderings
give us d-approximations for the colouring problem on these graphs.

It is easy to see the forward d-inductive ordering can be created as an
adaptive priority ordering. We can simply determine the node with the
smallest degree in the VAM-FI model.
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Creating d-inductive and d-inductively independent
orderings continued

But it doesn't seem possible to do this for a chordal graph (and hence for
any d-inductively independent ordering in the VAM-FI model. That is,
how can we determine how many neighbours of a vertex v are independent
in the VAM-FI input model? However, we can create these forward
orderings if we extend the VAM-FI model to also include all the nodes
within distance 2.

But | do not see how we can create the reverse d-inductive ordering or the
reverse PEO for chordal graphs (and hence the reverse ordering for
d-inductively-independent graphs) as a priority orderings.

See Ye and Borodin [2012] for a discussion of d-inductively independent
graphs, and the approximation bounds for the MIS problem and colouring
problem for these graphs.
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Fairness from the perspective of social choice theory
and algorithms

The are many variants and issues concerning the “fair division” of goods
and services. Indeed one can say that a central theme in political science is
who should pay for and who should receive various services. We shall avoid
the more controversial aspects of “fair decisions” (as in decisions for who
gets loans, paroles, fair taxation, etc.) made by machine learning
algorithms and focus on some precise well-studied meanings of “fairness”.

We will consider the division of both divisible and indivisible items but
mostly focus on indivisible items. When we speak of online fair division,
we can consider items or resources arriving sequentially, or agents arriving
sequentially. In some problems, such as kidney transplant matching, it may
be that both resources (e.g., donors) and agents (recipients) are arriving
sequentially. In any (online or offline) fair division problem there are many
dimensions to the problem. The following are some of the dimensions of
fair division:
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The main dimensions to fair-division

What are the fairness criteria?

@ Are decisions being made by a centralized mechanism or by

decentralized self interested agents?

Can randomized algorithms be considered fair?
Are agents truthful?

Are the items divisible or indivisible?

Is there a single (divisible) item that is being shared or multiple
(divisible or indivisible) items to be shared?

And how do results change when we consider random order sequences
or priority algorithms rather than online or arbitrary offline solutions?

Is there any recourse to online decisions?

Achieving better fainess approximations with predictions.
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Fairness criteria

There are a number prominent fairness concepts including:

@ Envy-freenes (EF): Agent i envies agent j if v;(A;) > vi(A;). An
allocation is envy-free if no agent envies another agent. One might
say that “fairness is in the eye of the beholder’. Some view EF as the
“gold standard” for fairness. Unfortunately, as we will see, it is rarely
obtainable. So we will have to settle for some weakening of EF.

@ Proportionality: If agent i has value v;(S) when allocated the entire
set S of items, then the allocation A; that agnet i receives has value
V,'(A,') > @

@ Max-Min fairness: The objective is to maximize the minimum
allocation to any agent. The max-min objective has also been studied
in combinatorial optimzation. In social choice theory it is often called
egalitarian social welfare. In scheduling we consider the max-min
allocation (rather than min-max scheduling in the makespan problem)
to machines. Max-min scheduling has been called the Santa Claus
problem. In scheduling it is not normally thought of as a fairness

measure.
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More fairness criteria

@ Max-Min-Share (MMS). Agent i partitions S into (A, A5, ... Al).
We define MMS; = maxa,. .. a,{min; v;(A;)}. A partition
(A1,...,Ap) is an MMS partition (and hence considered fair) if
vi(A;) > MMS; for all agents i. Why is this considered fair? Every
agent reasons that there is a way to partition the goods for me to
obtain my max-min share so | am entitled to at least this much value.

@ The Nash Social Welfare NSW (or Nash Welfare) of an allocation
(A1, Az, ..., Ap) is defined as (I'I;’Zlv,-(A,-))l/". A Max Nash Welfare
(MNW) solution is an allocation that maximizes the Nash Welfare
over all possible allocations. Why is this a fairness condition?

10/32



More fairness criteria

@ Max-Min-Share (MMS). Agent i partitions S into (A, A5, ... Al).
We define MMS; = maxa,. .. a,{min; v;(A;)}. A partition
(A1,...,Ap) is an MMS partition (and hence considered fair) if
vi(A;) > MMS; for all agents i. Why is this considered fair? Every
agent reasons that there is a way to partition the goods for me to
obtain my max-min share so | am entitled to at least this much value.

@ The Nash Social Welfare NSW (or Nash Welfare) of an allocation
(A1, Az, ..., Ap) is defined as (I'I;’Zlv,-(A,-))l/". A Max Nash Welfare
(MNW) solution is an allocation that maximizes the Nash Welfare
over all possible allocations. Why is this a fairness condition? A MNS
solution implies some desireable fairness outcomes for indivisible
goods including approximate MMS. Although, NP hard to compute
the MNS, it can often be obtained in practice. See the publicly
available site Spliddit (http //spliddit.org/) and the Caragiannis et al
paper [2016,2019] where they state that the MNW solution is
“arguably, the ultimate solution-for the division of indivisible goods"”.
Note: Max-min < MNW < 37 . v;(A;)/n.
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EF implies Proportional and Proportional implies
MMS

e EF implies Proportional. Suppose an allocation (Ay,...,A,) was not
proportional. Then some agent i, v;(A;) < vi(S)/n. This implies that
some agent j has reeived more than v;(S)/n so that i envies j and
hence the allocation was not EF.

@ Proportional implies MMS. For any agent i/, their least share is
< vi(S)/n

The previous inequalities apply to divisible or indivisible goods. We will
mainly focus on indivisible objects and additive valuations. But we have to
at least mention now what arguably might be the most popular fairness
setting, namely cake cutting. As we probably all know, in cake cutting, we
have n agents (e.g. birthday party attendees) that want their “fair share”
of the cake. Cake cutting is clearly about a single divisible item and is
usually stuied in the offline setting. with for example interesting results
about how many cuts are needed to insure envy-freeness. Walsh [2011]

defines and studies online cake cutting.
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Indivisible goods, EF and EF1

We will assume n agents who are being allocated m indivisible items
(goods). When we consider online allocations with the goods arriving
online, it is more standard to say that we are allocating a sequence
t=1,2,... T of online goods using T as the number of items. T may or
may not be known to the mechanism or the agents.

It is easy to see that it is impossible to have an EF solution offline or
online. Consider two agents who both want a single item. That item goes
to one agent leaving the other agent envious.

As we previously indicated, we will have to settle for some weakening of
EF to hope to obtain some degree of fairness.
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Some weakenings of EF

The following provide some degree of envy freeness

EF1 (Envy freeness up to one good): An allocation is EF1 if for all
agents / and j, the exists an item x € A; such that

vi(Ai) > vi(A; \ {x}). That is, taking away some item from j's
alloxcation removes the envy.

EFX (Envy freeness up to any good): An allocation is EFX if for all
agents i and j, and for all x € A;j, v;j(A;) > vi(Aj \ {x}).
Approximating EF: We can relax EF (and other fairness criteria) by
allowing an approximation. That is, we may be quite satisfied if for all
agents i and j, vi(A;j) > c - vj(A;) for some approximation factor ¢
that need not be a constant. For example, ¢ might be a function of n
or m. In many applications we expect that either n or m might be
small so that such approximations can be useful.

Bounded EF: There exists a constant b such that for all / and j,
vi(Ai) > vi(Aj) — b.
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Comments about EF1 and MMS

e EF1 is obtainable offline for all monotone valuations (i.e.
vi(Ai) < vi(AiU{x}); i.e., “free disposal”. Lipton et al [2004]

For additive valuations, the round robin mechanism obtains EF1.

@ MMS cannot be obtained offline. Procaccia and Wang [2014] show
that even for additive valuations, for n > 3 agents there cannot be a
perfect MMS solution. Feige et al establish the current best %
inapproximation which is given by an example for 3 agents. The best
offline approximation is 13 ~ 7692 by Heidari et al [2025] following
the previous approximation of 3 2t 3836 by Akrami and Garg [2024].

@ The situation gets much worse for online allocations even for additive
valuations. With regard to online allocation of indivisible goods, when
items arrive online both envy and MMS fairness have been studied.
Online envy-freeness has been studied for randomized allocations. For
MMS, | am only aware of deterministic algorithms. For allocating
chores the situation is better in that there is a deterministic allocation
of chores for any number of agents. There are also some results for

MMS fairness when agents are arriving online.
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A special case where EF1 can be obtained online

The following seems to be a folklore result that follows from the Lipton et
al offline EF1 proof. .

Theorem: If all agents have {0, 1} valuations, then there is an online
algorithm that achieves EF1. (The offline EF1 result is based on cycle
elimintaion in the envy-graph.)

Proof: As items arrive, we have an envy graph G; at each time step where
the nodes are agents and there is a directed edge (j, k) from j to k if
agent j envies agent k.

For each time t > 1, we maintain the following invariant after the tth item
is allocated:

The allocation thus far is EF1 and the envy graph G; is cycle free.

We prove by induction that the invariant holds for all t. The invariant is
obviously true for t = 1. Assuming the invariant is true for t — 1, we show

how to allocate the tth item so that the invariant remains true.
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Finishing the EF1 online algorithm for {0, 1}
valuations

We repeat the invariant and then provide the inductive step.
The allocation thus far is EF1 and the envy graph G; is cycle free.

Since G is cycle free there must be a directed path from some node j to a
node k where the in-degree of j is 0 and the out-degree of k is 0. Thus j
is not envied by anyone. We allocate item t to agent j.

Since no one was envying j, giving the t* item to j means that any other
agent can envy j by at most one item. And since we have {0, 1}
valuations, and since the allocation was EF1 before the tt" item arrived,
agent j no longer envies anyone and all the edges outgoing from j can be
removed. Thus no cycle can be added.

It has been shown that for {0, 1} valuations that MMS and EF1 are
equivalent so that we obtain online perfect MMS for {0,1} valuations.
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A randomized algorithm for EF

We consider what is arguably the simplest randomized allocation
algorithm. The Like mechanism is introduced in Alexandrov et al [2015]
and further studied in Alexandrov and Walsh [2019].

The Like algorithm randomly allocates an online item to any agent who
states a positive value for the item; that is, if n; agents have a posiitve
value for the i*" item, and the j*' agent has a positive bid for item i, then
the mechanism allocates item i to agent j with probability nl,

We have some good and bad news reegarding the Like algorithm.
First the good news.

@ The Like algorithm is envy-free ex-ante for all additive valuations.
That is, for every online sequence of items g1, g2, ..., &T:
E[Envy7] = 0. The result is not restricted to binary valuations.
That is, for all agents j, k, E[vj(A;)] > E[vj(Ak)] and hence
E[v;(A))] = E[v;(Aq)].
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More good news regading the Like mechanism

@ The Like algorithm is strategy proof (SP) or truthful for all online
sequences.
Note: For online algorithms, one can consider a somewhat weaker
form of strategy proofness; namely, an algorithm is online strategy
proof (OSP) if for all items €;, no agent j can strictly increase their
expected utility by not reporting truthfully their valuation for ¢;
assuming full knowledge of the past decisions of all egents.

@ In fact, any non-wasteful mechanism (i.e. greedy in the sense that it
will always allocate an item to someone who has value for the item)
that is strategy proof and envy-free ex ante is equivalent to the Like
mechanism.

@ Like achieves a % approximation to Pareto efficiency ex-ante.
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Other mechanisms for EF fairness

Alexandrov and Walsh [2019] introduce a number of online mechanisms
and characterizations. They define variants of Like mechanisms including
the following:

@ Balanced Like: For an item /, amongst those agents j having
vj(i) > 0, allocate randomly to those who have received the fewest
allocations thus far.

@ Maximum Like: For an item i/, amongst those agents j having
vj(i) > 0, allocate to an agent having the maximum value for that
item.

@ Online Random Priority: Choose a random ordering 7 of the agents
initially. Then allocate item i to the highest ranked (wrt ) agent
with v;(i) > 0.

Balanced Like is not strategy proof; that is, after allocating all items, an
agent might have wanted to be non-truthful at some earlier time. The
next slide is a table from the Aleksandrov and Walsh paper summarizing

properties of the 6 mechanisms discussed in their paper.
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Properties of Fairness Allocaction algorithms in
Aleksandrov and Walsh

Table 1. Axiomatic results. Key: x - the result follows from [Aleksandrov et al. 2015].

Mechanism SP | OSP | EFA | SEFA | EFP | SEFP  BEFP | PEA | PEP
General cardinal utilities
ONLINE RP VoY v

ONLINE SD v

v X
MAXIMUM LIKE | X | X X

X

v

PARETO LIKE X X
LIKE v v
BALANCED LIKE | X* | v/ x*

X | N| X | X |X

X | X | X | X |X|X
X | X | X | X |X|X
X | X | X | X |X|X
X | X | X |N|N[X
PR RNENENEN

Identical cardinal utilities

LIKE VAR Vi x* I x X v v

BALANCED LIKE | X |V v v x* v v
Binary cardinal utilities

LIKE VAR Vi x* % x* v v

BALANCED LIKE | X* | v/ vroIx x* % v v v

Note that Online Random Priority is Pareto Optimal ex-post but not

Pareto Optimal ex-ante.
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Almost matching good and bad news for
randomized EF fairness allocations

We stated the Aleksandrov and Walsh definition for EF ex ante for which
they show they show that the Llke mechanism is EF ex-ante. There is,
however, a more meaningful quantifiable sense in which we can study
randomized algorithms for envy freeness. Benade et al define

Envy; . = max{v;(Ax) — vj(A;),0} and then study E[max; ,{ Envy; «}]. It
can be seen that Aleksandrov and Walsh are studying max{E[Envy; ]}
which is 0 for the Like mechanism.

We have positive and negative results from Benade et al [2023,2025]
where they consider envy regret over time. Consider a sequence of online
items er, e, ..., et and let Envyr = E[max; «{Envy; «}] at time T. They
consider that an algorithm have vansihing regret if Envyr = o(T) so that
Eyr 0as T — oo
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Results from Benade et al [2023,2025]

e For T sufficiently large (T > nlog T), the random allocation

algorithm?! achieves E[Envyt] = O(+/TlogT /n with respect an
adaptive adversary. This implies the same bound for deterministic
algorithms.

@ Forany r <1, and n> 2, E[EnvyT = Q((%)rﬂ). Hence we can say
roughly that E[Envy7] = O(VT).

@ No randomized algorithm can achieve both E[Envyr]| = o(T) and a
(1 + €) approximation to Pareto efficiency ex-ante against an oblvious
adversary.

!Benade et al seems to say that this algorithm randomly allocates to all agents
uniformaly at random rather than the Like mechanism that only allocates to agents with
positive value for an item. This sdeems to be irrelevant but it is curious that Benade et

al do not refer explictly to the Llke mechanism.
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A better bound for EF regret against an oblvious
adversary

Halpern et al [2025] achieve a significantly improved regret bounds foir

envy-freeneww (in the sense of Benade et al) for randomzed algorithms
against an obvlivious adversary.

@ There is a randomized algorithm with Envyr = O(log T)

@ For every online randomized algorithm and every r < %
Envyr = Q(log T)").
Hence bound for Envyt is essentially optimal.
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MMS fairness

When there are only 2 agents the classic cut and choose procedure

achieves MMS fairness for both divisiible and indivisible items. However,

as we have previously stated, when there are n > 3 agents, we can no

longer achieve a perfect MMS even for additive valuations. The current
10

best approximation in the offline setting achieves a 33.

Perhaps, not surprisingly, the results for online MMS allocation are not as
positive. We will continue the notation that there are n agents and the
entire set of goods is 5. Online MMS fairness has been considered for
both online arrival of goods as well as online arrival of agents. In our
discussion of MMS fairness we will only consider deterministic algorithms.

We begin by considering the online arrival of goods. We will assume that
valuations are normalized so that v;(S) = n. We note that it is sufficient
to use the weaker assumption that v;(S) is known for all agents. We can
observe when defining MMS fairness that MMS; < 1v;(S) and hence
MMS; < 1 assuming normalized valuations. In order to guarantee that
MMS; is an aMMS, it suffices to obtain an allocation for which

vi(A;) > « for all agents /. 2 /3



Online MMS fairness for 2 agents

When there are n = 2 agents, there is a deterministic online algorithm that
allocates goods and achieves an %MMS allocation. Furthermore, % is the
best approximation to MMS that can be achieved for online goods when
there are 2 agents. These results are from Zhou et al [2023]

We describe the algorithm and why it acheives the desired MMS
approximation. Since it suffices for each agent to obtain a total value of 1,
once one of the two agents achieves that much value, the remaining goods
should all go to the other agent. Until one of the agents achieves value at
least % we proceed as follows: If a new online item g has value at least %
for both agents, then allocate that item to the agent whose current value
is the smallest amongst the two agents (breaking ties by allocating
arbitrarily to agent 1). Otherwise allocate item g to the agent whose value
for g is largest. (We break ties by allocating arbitrarily to agent 1.)
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MMS fairness for n = 2 agents continued and bad
news for n > 3

Note: | have to fill in more details for these resuts.

We cn prove that this algorithms achieves % MMS fairness, proceeding by
cases:

Case 1: Suppose an item g has value at least 5 for both agents. To be
completed.

Case 2: Suppose no item g has value at least
completed.

for both agents. To be

N[ =

Theorem: For n = 2 agents, the best determinstic online approximation to
MMS fairness is % More precisely, for all § > 0, there is an input instance
for which no deterministic online allocation can achieve a % +46
approximation to MMS fairness.

The following result is also from Zhou et al [2023].

Theorem

For n > 3, no deterministic online algorithm can achieve a constant

approximation to MMS fairness.
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MMS for Chores

We first give the definiton of MMS for chores. For chores, we have a cost
ci(e) if agent i is allocated chore e. Costs are additive. Each agent wants
to minmize the cost (i.e. work) for all the chores assigned to them.

As for goods, each agent chooses a partition.

MMS,' = minAL__.7An{man C,'(Aj)}.

We will assume (like for goods) that costs are normalized so that

¢i(S) = n where S is the full set of chores. (As for goods, | think it is
sufficient to assume that v;(S) is known for all agents.)

For chores MMS; > %c,-(S) and hence with nromaalization MMS; > 1.
Hence to achieve an o > 1 MMS, it suffices to have an allocation such
that every agent receives a total cost ¢;(S) < a. We also have the fact
that MMS; > max.cs{ci(e)} since some bundle of goods must contain
the chore of maximum value.
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Allocating online chores continued

Theorem
For all n > 2, there is a deterministic algorithm such that the cost to each
agent is at most (2 — 1).

The algorithm is similar in spirit to the algorithm for goods with n = 2
agents. As soon as an agent has accumulated cost > (1 — %) that agent
will not receive any more chores. For the agents with costs less than
(1- %) we assign each online chore “greedily” to the agent having

minimum cost thus far.

For n = 2 agents, the previous algorithm gives a % approximate MMS.
There is a modified algorithm that achieves a v/2 approximate MMS.

The current best negative results for chores are as follows (alsom from
Zhou et al):
@ For n > 3, the lower bound is 1.585 which is attained for the
restriuctive case when all agents have identical valuations.

@ For n = 2, the lower bound is %—? ~ 1.634 263



MMS fairness when agents are arriving online

We now turn to MMS fairness in the setting where each agent is arriving
online to reflect applications such as disaster relief where agents (i.e.
residents) request emergency goods. Here we assume that the algorithm
only finds out about an agents valuation when the agent arrives online.
Unfortunately, in this setting, the following example shows that no online
algorithm can achieve a constant approximation to MMS fairness even for
two agents with {0, 1} valuations.

Suppose there are an even number m of items. Let the first arriving agent
have value = 1 for each of the m items. This results in an MMS optimal
partition with value 7 by taking any subset of size 7. To insure an
allocation of a7, the online algorithms awards her a bundle of size a3
which are now no longer available to the second agent. The second agent
has a value of 1 for exactly two items, say j; and j». If items j; and j>
happen to be in the bundle given to agent one, every partition of the
goods will result in a zero MMS value if o > %
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Agents belonging to a small number of known types

When agents are arriving online, we have the following results for MMS
fairness due to Kulkarni et al [2025].

We circumvent the negative consequence in the previous example by
making information about the agents initially available to the algorithm.
Specifically, we will assume that each agent i has a valuation v; : S — R=0
belonging to one of k valuation types {v;'} (1 <j < k) initially known to
the algorithm. If v; = v/, we say that agent i has type /. When each
agent arrives, they reveal their type. It is reasonable to assume that in
many applications, such valuations are known and k is small.

Theorem:

There is a deterministic online algorithm ALG such that given an instance
of k agent valuation types v; : § — RZ% ALG achieves a % approximation
for MMS fairness.
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MMS fairness with online agents continued

We complement the posiitve result for k types by the following lower
bound.

Theorem:
For any deterministic online algorithm ALGy, there is an instance with k
valuation types such that ALGj does not achieve an « MMS

. . . > 2
approximation with o > N

We conclude the discussion of MM;S fairness by asking which (if any)
results can be improved with randomized algorithms (with respect to
oblivious adversaries)? In particular, which negative results still hold?
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Some concluding remarks on fairness

As we know, worst case adversarial results can be pessimistic, while
stochastic assumptions (e.g., online inputs drawn i.i.d. for a known or
unkownn distribution or random order online sequences) will often lead to
much more positive results. In particular, lets consider envy-freeness in the
i.i.d. model. That is, there is a known distribution D such that each online
item is drawn independently from D. We end our discussion (for now) of
fairness with the following result in Benade et al. :

For a known i.i.d. distribution, there is a randomized algorithm A
computing an allocation such that for T = T(e€) (the number of online
items in the input sequence) sufficiently large and all agents j, k, (1)
Either j does not envy k up to one item or (2) Agent j does not envy
agent k with probability at least 1 — .

In the latter case, we do not have a guarantee on how much agent j envies
agent k (with probability at most €). Hence we do not know if the regret
bound for envy can be improved for i.i.d. online inputs.
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