CSC2421: Online and Other Myopic Algorithms
Fall 2025

Allan Borodin

October 22, 2025

1/26

Week 8

Annoucements

@ Next week is reading week. We will not be meeting. Please use
reading week to submit a proposal for your project.

o | will soon start posting questions for Assignment 2. Assignment 1
now available for submission on Markus and is due Friday (given the
announced extension).

Todays agenda
@ Finish up online colouring algorithms
@ Priority algorithms for d-inductive and chordal graphs?

@ Online fair allocation.

2/26

Colouring trees and Bipartite Graphs

For colouring trees we have the following (almost) optimal online result:

Theorem: Every tree can be online colored with |logn+ 1] colors by the
FirstFit algorithm.

This then shows that the competitve ratio is M since trees are

bipartite graphs and bipartite graphs are precisely the graphs that are
2-colourable. This is (almost exactly) a tight bound since it is shown that:

For every deterministic online colouring algorithm, there is a a graph that
requires Uoéﬂ colours.

The lower bound follows from the following inductive statement that holds
for any deterministic colouring algorithm ALG. :

For every deterministic algorithm and for all kK > 1, the adversary can
create disjoint trees T1, To,... wuch that the akgorithm has used k
colours to colour the roots of these trees T; and the total number of nodes
in all these trees is at most 2% — 1.

3/26

The lower bound proof for online tree colouring.

The base of the induction is k = 1 in which we have a single node tree.
For the induction step, assume true for k and extend to k + 1. Let

T1, To ..., Ty be the trees whose roots are coloried with k different
colors. Call thess colors S. Then after all the nodes corresponding to the
trees { T;} have been colored, create a second list of trees T7, T3, ...
Then one of two cases can occur:

© One of the T/ trees is colored with a color not in S. Then we are
done since the algorithm has used k + 1 colors and the combined size
is at most i 2(2k — 1) < 2kt — 1.

@ The roots r1, r, ... of the T/ trees are colored by the k colors in S.
Then the adversary creates a new vertex connected to each of the r;
so that the algorithm must use a new colour. The total number of
nodes in all the t; and T/ trees (including the new root) is at most
202k —1) +1 =2k 1.

The lower bound on the competitive ratio follows since trees can be
coloured with 2 colours and the algorithm has used k = log(n+ 1)
colours. 4/26

First Fit coloring on trees and bipartite graphs

Inspired and following the lower bound argument, in order for the
adversary to Force First Fit to use k colors on trees it must create at least
2k=1 nodes. Hence First Fit is only using k = log n colours and 2 colours
are required.

Trees are bipartite and bipartite graphs are clearly 2-colourable.

Perhaps suprisingly, in contrast to trees, there are bipartite graphs on
which First Fit will use Q(n) colors.

Lovész, Saks and Trotter provide a deterministic algorithm for colouring
bipartite graphs with competitve ratio log n and this is the optimal ratio.

5/26

Online colouring of bipartite graphs

Consider the following algorithm, called CBIP, for online graph Coloring of
Blpartite Graphs. When a vertex v arrives, CBIP computes the connected
component C, (so far) to which v belongs. Since the entire graph is
bipartite, C, is also bipartite. CBIP computes a partition of C, into two
blocks: S, that contains v and §V that does not contain v. Note: that the
argument is symmetric for both sides of the graph.

Note that neighbors of v are only in .g\,. B

Let / denote the smallest colour that does not appear in S,,. CBIP colors v
with color i. We can show that CBIP colours the graph using a most

2 log n colours and hence is log n competitve. The result follows from the

following claim:

Theorem: Let n(i) denote the minimum number of nodes that have to be

presented to CBIP in order to force it to use color i for the first time. By

induction on i, we can show that n(i) > [2//2].

6/26

The induction for CBIP colouring of bipartite graphs

The base case is that n(1) =1 and n(2) = 2. Assume claim is true for

i > 2, show true for i + 1.

Let v be the first vertex that is colored with color i +1 by CBIP. Consider
c,,S,, and 5 as defined on the last slide. In particular, all colors

1,2,...,i appear among 5 Let u be a vertex in 5 that is colored /. Let
Cy, SU, S be defined as before, but now for the vertex u at the time that
it appeared. Since u was assigned color i, then all colors 1,2,...,/—1

appeared in S,,. Observe that 5§, C S, .

Therefore, there exists vertex u; € §V colored i — 1 and there exists vertex
up € S, colored i — 1, as well. Without loss of generality assume that u;
arrived before uy. At the time that uo was colored, the connected
component C,, of up had to be disjoint from the connected component
Cy, of uy;, for otherwise uy would not have been colored with the same
color as uy.

7/26

Finishing the induction proof

Thus, we have C,, N C,, = &. Furthermore, we can apply the inductive
assumption to each of C,, and C,, to get that |C,,| > [2(~1/2] and
|Cy,| > [20=1D/2]. Thus, the number of vertices that have been presented
prior to v is at least |Cy, | + | Cy,| > 2[20-1)/2] > [2(i+1)/2],

°
uy,col=17—1

colors 1,...,1

8/26

Colouring d-inductive graphs

For now | am just going to state the theorem and state some immediate
consequences. Then | will move to interval graphs. The following theorem
is due to Irani [1994]

Theorem: FirstFit colours every d-inductive graph using at most
O(d log n) colours.

As a consequence,

@ FirstFit is O(log n) competitve on trees since trees are 1-inductive. Of
course we know we have a tight competitive ratio of "’% for trees. .

@ FirstFit has competitive ratio O(log n) on planar graphs since planar
graphs are 5-inductive.

@ FlrstFit has competitive ratio (log n) on chordal graphs since chordal
graphs are x(G)-inductive where x(G) is the minimum number of
colours to colour a graph.

@ This will imply the same competitve ratio for interval graphs since
interval graphs are a special case of chordal graphs. But as we shall

see we can do much better for interval graphs.
9/26

Colouring interval graphs

We note that it is known that FirstFit colouring of interval graphs has
competitive ratio between 5 and 8. This follows a series of results. We
give the history in the Historical notes for chapter 7.

Kierstead and Trotter [1981] show there is deterministic online algorithm
ALG that colours every interval graph G with at most 3x(G) — 2 colours
where x(G) is the chromatic number of the graph. That is, ALG is
3-competitive.

The competitive ratio for ALG will follow fairly easily from the following
result that will be proved by induction:

Theorem: Let w(G) denote the cliqgue number of a graph G and note that
X(G) > w(G). For all k, there is an algorithm RECGy (recursive greedy)
that will color every interval graph with at most 3w(G) — 2 colours.

10/26

The inductive construction of RECG,

We will derive RECGy by induction on k. The base case k = 1 is trivial as
G must be an independent set so that no two nodes are adjacent and
hence 3.1 — 2 =1 colour suffices.

Let G be an interval graph whose largest clique is k and consider the
online input sequence of vertices vi < v»... < v,. The algorithm
maintains a partition V = AU B of vertices. When a vertex v; arrives, the
algorithm RECG will place v; in Aif w(AU{v;}) < k; otherwise, RECG
puts v; in B. Any v; € A, it can be colored (by induction) by RECGy_1
using 3k — 5 colors. Any v; € B is colored by FirstFit.

We will show that vertices in B can be colored using at most 3 colors
larger that 3k — 5 so that the total number of colors is 3k — 2. In order to
show that the 3 additional colours suffice, want to show that every v € B
has at most two adjacent vertices in B.

It is convenient to think that we have an interval repreesentation of the
graph but this will not be necessary. Using the interval repesentation we
can see that there cannot be any triangles in B or else the clique numbet, 2

Finishing the induction and using RECG, to colour
any interval graph

It is convenient to think that we have an interval repreesentation of the
graph but this will not be necessary. Using the interval repesentation we
can see that there cannot be any triangles in B or else the clique number
would be at least k 4+ 1. Similarly, no v € B can have three neighbours.
This finishes the induction argument.

The algorithm starts using RECG;. For every k, the algorithm continues
to use RECGy until a new vertex causes a k + 1 clique, and then the
algorithm switches to RECGy1. Note that the algorithm only needs to be
able to detect cliques and doesn’t need the interval representation.

This implies that the competitive ratio is at most 3 since the colouring
number x(G) = w(G(, for interval (and chordal) graphs.

By induction, we can also show that for all k there exist interval graphs
that require 3w(G) — 2 colours so that 3 is the optimal competitive ratio.

12/26

Chordal graphs

As we have noted, interval graphs are a special case of chordal graphs. It
is natural to ask if we can get a constant competitive ratio for all chordal
graphs. In fact, Irani asked that question. It was solved by Albers and
Schraink [2017,2021] who showed a randomized lower bound Q(log n) on
the competitive ratio to colour some chordal graphs.

Albers and Schraink also showed an Q(log n) randomized lower bound on
the competitive ratio for trees. Since trees are planar and also bipartite,
the same Q(log n) randomized lower on the competitive ratio applies to
planar graphs and bipartite graphs.

Finally, they show that for all d and n, there is a Q(d log n) randomized
lower bound for colouring d-inductive graphs. Thus ©(d log n) is the
optimal competitive ratio for arbitrary d-inductive graphs.

13/26

Priority colouring of graph classes?

It is interesting to note that both d-inductive and chordal graphs are
defined in terms of the existence of a certain ordering on the vertices.

For d-inductive graphs, the definition is the ordering. For chordal graphs,
the standard definition is that the graph does not have any induced cycles
of length £ > 4. They can also be characterized by having a pefect
elimination ordering (PEO).

If we consider reversing the ordering, we get that every d-inductive graph
can be coloured with d + 1 colours. Of course, some graphs can be
coloured with less colours. For example, planar graphs are 5-inductive
while they can alwaye be 4-coloured.

And by reversing the perfect elimination ordering, every chordal graph can
be coloured optimally with x(G) colours. In particular, for interval graphs,
the reverse of the PEO results in the same ordering as intervals sorted by
non-decreasing starting times.

14/26

Priority colouring and MIS for d-inductive and
chordal graphs?

Here is where | missopke in todays class. If | didn’'t have to worry about
how to obtain the reverse of a PEQ, the previous comment would show
that there is an optimal priority algorithm for colouring any chordal graph.

It is also the case that the PEO provides an optimal fixed order priority
algorithm for computing a maximum independent set in a chordal graph
(i.e., the MIS problem). For example (as we know), sorting by non
decreasing finishing times, we obtain an optimal fixed order priority
algoritihm for interval selection.

| was thinking in terms of the interval repesentation of an interval graph.
BUT, it is not at all clear how one can can do this from a graph
representation (e.g., the VAM-PH input model). One might still say we
have a greedy algorithm for optimally coloring any chordal graph since we
can create the PEO and the reverse of the PEO within polynomial time
but this doesn’t satisfy our definition of a priority algorithm

15/26

Inductively independent graphs

An equivalent way to state a PEQO ordering is to say that the induced
graph of Nbhd(v;) N{vit1,...,va} has at most one independent node
(i.e., has independence number 1).

We can define a larger (than chordal) class of graphs as follows: A graph
G is d-inductively independent if it has a d inductive indepedendence
order vi, va, ..., v, such that the induced graph of

Nbhd(v;) N {v1, va,...,vn} has independence degree d. Clearly,
d-inductive graphs are a subclass of d-inductively-independent graphs.

There are many examples of d inductively independent graphs.

@ Planar graphs are 3-inductively independent.

@ The intersection of disk graphs (resp, unit disk graphs) are 5
(respectively 3) inductively independent. See Ye and Borodin [2012]
for other examples.

Extending the results for chordal graphs, we obtain polynomial time (but
noti necessarily priroity) d approximation algorithms for the MIS and

colouring problem for d-inductively independent graphs. o2
1

Priority algorithms for trees and bipartite graphs

When considering offline priority algorithms for graphs, the VAM-FI is the
appropriate input model in contrast to online algorithms where VAM-PH is
the more approriate model.

In the VAM-FI model, it is not difficult to see that we can optimally
2-colour bipartite graphs (and therefore trees) by an adaptive priority
algorithm. We can simply start coluring any node r with color 1.

Then the next nodes in the ordering are the neighbours N, of r in a
breadth first search. The nodes in N, receive color 2. The (not yet
coloured) neighbours of each node v in N, becone the nodes next in the
ordering, and they receieve color 1. We continue in this way to colour any
bipartite graph with 2 colours.

If we ever try to give conflicting colours to any node previously coloured
than we know that the graph is not bipartitie.

17/26

Moving on to Chapters 8 and 9

We will move from Chapter 7 (graph problems) to discuss a few of the
results in Chapters 8 anbd 9. Chapter 8 considers extensions to three
classic problems, namely ski rental, bin packing, and the k server problem.

After reading week, | intend to discuss a few ski rental extensions, namely
the two closely related problems, capital investment and multi-slope ski
rental, and then file migration.

| also intend to discuss renting servers in the cloud, an extension of bin
packing.

But this week, | want to start discussing fair division and mainly allocating
indivisible goods to agents. which is part of Chapter 9 where we discuss
algorithmic mechansim design, and social choice theory.

18/26

Fair Division

Fair allocation of goods (or chores) is a relative new area for online
algorithms. Fair division is part of the more general topic of social choice
theory which itself is part of algorithmic social choice and mechanism
design. In these areas, we have self interested agents. Mechansims design
tries to balance these self interests with some more global objective(s).

We will focus on the area of online fair division and mainly on fair division
of indivisible items.

In some cases, the mechanism will be making deccisions (e.g., what items
to give to an agent); in other cases, agents may be making decisions (e,g,
should | take an item) in which case the mechanism has to incentivize
agents.

Suppose there are n agents. We let A = (A1, Az, ..., A,) be an allocation
of goods (or chores) to the agents. We will focus on goods being
allocated. For divisible goods, A; will be the fractions of the different

items that agent i receives. For indivisible goods, A; will be the subset of
items that the agent receives. 19/26

Fairness criteria

There are a number prominent fairness concepts including:

@ Envy-freenes (EF): Agent i envies agent j if v;(A;) > vi(A;). An
allocation is envy-free if no agent envies another agent. One might
say that “fairness is in the eye of the beholder’. Some view EF as the
“gold standard” for fairness. Unfortunately, as we will see, it is rarely
obtainable. So we will have to settle for some weakening of EF.

@ Proportionality: If agent i has value v;(S) when allocated the entire
set S of items, then the allocation A; that agnet i receives has value
V,'(A,') > @

@ Max-Min fairness: The objective is to maximize the minimum
allocation to any agent. The max-min ojective has also been studied
in combinatorial optimzation. In social choice theory it is often called
egalitarian social welfare. In scheduling we consider the max-min
allocation (rather than min-max scheduling in the makespan problem)
to machines. Max-min scheduling has been called the Sanat Claus
problem in scheduling it is not normally thought of as a fairness

measure.
20/26

More fairness criteria

@ Max-Min-Share (MMS). Agent i partitions S into (A1, Az, ..., Ap).
We define MMS; = maxa, ... a,{min; v;(A;)}. A partition
(A1,...,Ap) is an MMS partition (and hence considered fair) if
vi(X;) > MMS; for all agents i. Why is this considered fair? Every
agent reasons that there is a way to partition the goods for me to
obtain my max-min share so | am entitled to at least this much value.

@ The Nash Social Welfare NSW (or simply Nash Walfare) of an
allocation (A1, Az, ..., A,) of items to n agents is defined as
M7_,vi(A;). A Max Nash Welfare (MNW) solution is an allocation
that maximizes the Nash Welfare over all possible allocations. Why is
this a fairness condition?

21/26

More fairness criteria

@ Max-Min-Share (MMS). Agent i partitions S into (A1, Az, ..., Ap).
We define MMS; = maxa, ... a,{min; v;(A;)}. A partition
(A1,...,Ap) is an MMS partition (and hence considered fair) if
vi(X;) > MMS; for all agents i. Why is this considered fair? Every
agent reasons that there is a way to partition the goods for me to
obtain my max-min share so | am entitled to at least this much value.

@ The Nash Social Welfare NSW (or simply Nash Walfare) of an
allocation (A1, Az, ..., A,) of items to n agents is defined as
M7_,vi(A;). A Max Nash Welfare (MNW) solution is an allocation
that maximizes the Nash Welfare over all possible allocations. Why is
this a fairness condition? A MNS solution implies some desireable
fairness outcomes for indivisible goods including approximate MMS.
Although, NP hard to compute the MNS, it can often be obtained in
practice. See the publicly available site Spliddit (http //spliddit.org/)
and the Caragiannis et al paper [2016,2019] where they state that the
MNW solution is “arguably, the ultimate solution-for the division of

indivisible goods".
21/26

EF implies Proportional and Proportional implies
MMS

@ EF implies Proportional. Suppose an allocation (Aj,...,A,) was not
proportional. Then some agent i, vi(A;) < vi(S)/n. This implies that
some agent j has reeived more than v;(S)/n so that i envies j and
hence the allocation was not EF.

@ Proportional implies MMS. For any agent i/, their least share is
< vi(5)/n

The previous inequalities apply to divisible or indivisible goods. We will
mainly focus on indivisible objects and additive valuations. But we have to
at least mention what arguably might be the most well known fairness
setting, namely cake cutting. As we probably all know, in cake cutting, we
have n agents (e.g. birthday party attendees) that want their “fair” share
of the cake. We will want to consriuder cake curtting in the online setting.

22/26

Indivisible goods, EF and EF1

We will assume n agents who are being allocated m indivisible items
(goods). When we consider online allocations with the goods arriving
online, it is more standard to say that we are allocating a sequence
t=1,2,... T of online goods using T ws the number of items. T may or
may not be known to the mechanism or the agents.

It is easy to see that it is impossible to have an EF solution offline or
online. Consider two agent who both want a single item. That item goes
to one agent leaving the other agent envious.

As we previously indicated, we will have to settle for some weakening of
EF to hope to obtain some degree of fairness.

23/26

Some weakenings of EF

The following provide some degree of envy freeness

EF1 (Envy freeness up to one good): An allocation is EF1 if for all
agents / and j, the exists an item x € A; such that

vi(Ai) > vi(A; \ {x}). That is, taking away some item from j's
alloxcation removes the envy.

EFX (Envy freeness up to any good): An allocation is EFX if for all
agents i and j, and for all x € A;j, v;j(A;) > vi(Aj \ {x}).
Approximating EF: We can relax EF (and other fairness criteria) by
allowing an approximation. That is, we may be quite satisfied if for all
agents i and j, vi(A;j) > c - vj(A;) for some approximation factor ¢
that need not be a constant. For example, ¢ might be a function of n
or m. In many applications we expect that either n or m might be
small so that such approximations caan be useful.

Bounded EF: There exists a constant b such that for all / and j,
vi(Ai) > vi(Aj) — b.

24/26

Comments about EF1 and MMS

@ EF1 is obtainable offline for all monotone valuations (i.e.
vi(Ai) < vi(Ai U{x}); i.e., “free disposal”. Lipton et al [2004]. For
additive valuations, the round robin mechanism obtains EF1.

@ MMS cannot be obtained offline. Procaccia and Wang [2-4] show
that even for additive valuations, for n > 3 agents there cannot be a
perfect MMS solution. Feige et al [2021] provide the current best %
inpproximation for an example with 3 agents and 9 items. The best
offline approximation is 13 ~ 7692 by Heidari et al [2025] following
the previous approximation of 3 1+ 3836 by Akrami and Garg [2024].

@ The situation gets much worse for online allocations even for additive
valuations. Benade et al [2025] show that regret must grow with the
number T of online items which as a consequence shows that no
bounded EF is possible online. He at al [2019] show that, even for
two agents, in order to obtain EF1 in an online sequence of T items,
there must be Q(T) re-allocations of items. We will discuss these

negative results after presenting some positive results.
25/26

End of Week 8 slides

We will return to EF, EF1 and other fairness results in our next class after
reading week on Wednesday, November 5.

26/26

