CSC2421: Online and Other Myopic Algorithms
Fall 2025

Allan Borodin

October 15, 2025

1/20

Week 7

Annoucements
@ The first problem set is due October 22 at noon.

@ Please see or email me about a possible project. Even if we have
discussed a project, | would like to have a one paragraph proposal for
each project.

Todays agenda
o A few more suggested projects.
@ Discussion of the RobustMatch algorithm.
@ Online graph problems and their representation.

@ Online graph colouring.

2/20

A few more possible topic suggestions

Note: | emphasize a project need not obtain new results but should
motivate a topic and present a coherent understanding of the topic as to
what has been done, open probelms and possible directions for future work.

@ In preparing todays class, | thought of some additional possible
projects with repect to graph problems. Graph problems seem endless
since there are so many graph classes one can consider, different
optimization problems, and different myopic models.

@ Moving on to later chapters, chapter 12 is only a brief introduction to
stochastic inputs. One can look at any online result to see how much
better a ratio one can obtain when assuming (known and unkown)
i.i.d. input sequences. What is much less studied is when input items
are not independent such as in Markov Processes.

3/20

More addditional project suggestions

@ The recent interest in advice models is about predictions where the
objetctive is to obtain good consistency (i.e. performance when the
prediction has no or little error) and robustness (i.e., when the
preforance is not that bad when the prediction is arbitrarily bad).

This is now a well studied topic but one can always find problem
areas where such prediction advice has either not been studied or
where more realistic predictions can be introduced. And as | already
suggested, experiments for algorithms with predictions can be very
interesting both in studying how predictions can be obtained how do
algorithms perform in practice.

@ In real time scheduling theory with preemption usually means
preemption with resumming. What result can be obtained with
restarting or revoking? What results can be improved with restarting
or revoking noting that the offline benchmark can also use resumming
whereas with revoking or restaring the benchmark does not need to
preempt.

4/20

Comments on the magical RobustMatch algorithm

Raghvendra’s deterministic RobustMatch algorithm (Algorithm 7.7.6 in
the text) is based on an alternating path analysis inspired by the
Permutatation algorithm. As we stated, for arbitrary metrics the algorithm
obtains the optimum ratio for the online case (i.e.,adversarial order) and
obtains O(log k) in the random order model.

The algorithm will maintain an online solution M and an approximate
offline solution M* that it is created incrementally. The algorithm critically
uses the following concept:

Definition

Let P be an augmenting path in a matching M (between servers and
requests). The t-net cost of P is defined as

¢e(P) =t <Z(u.v)€P\M d(U'V)) = 2 uvyepnm d(u, v).

5/20

Continuing the comments on the deterministic
RobustMatch algorithm for atrbitrary metrics.

Note that when t = 1 the t-net cost is the cost of a min cost augmenting
path P to update a matching. We will now use a path P of minimum
t-net cost to guide the updating of the online algorithm. We view paths
and matchings as sets of edges. While the statement of the algorithm is

reasonably natural, the analysis in each of its applications is different and
quite technical.

As t increases the cost to the algorithm decreases but the offline
approximation gets worse. One might expect that there should be some
best choice of t to balance the online cost and the offline approximation.
But surprisingly, the competitve ratio improves with larger values of t.
Namely, Raghvendra [2016] proves the following competitive ratios:

@ For online algorithms (i.e., adversarial order) the ratio is

2 2
2+ =) n— 01—)
. . . 2 2
@ For random order algorithms, the ratio is (2 + :=7) - H, — (1 — :57)

6/20

The RobustAlgorithm

Algorithm 7.7.6 Algorithm RobustMatching parameterized by ¢ for the Min Cost Perfect Match-
ing problem.

procedure RobustMatching(t)

A+ S > the set of available servers
My« 0 > the matching constructed so far
M* 0 > the optimal matching so far
i1

while i < k do

if 3s; € A:s; =r; then
M; < M; 1 U {(T, 9])}
M* — M*U{(ri,s)}
A A\ {s;}

else
Let P be a t-net cost augmenting path in M* of minimum cost starting at the current

request 7; and ending at a server s; in A.

M; < Mi—y U{(rs,55)}
M*«~ M*® P
A+ A \ {(9]‘}4

i+l

The algorithm and its analysis for arbitrary metrics is in the [2016] paper
by Raghvendra. The analysis for the line metric is in his [2018] paper.

7/20

Online input models for graph problems

For graph problems, there are two common ways to represent the input
items. In one representation, edges e = (u, v) are the input items. For
weighted problems, the representation would give the weight of the edge
and/or the weight of the adjacent vertices.

The other input representation is when vertices are the input items. Here

the most common model is that an online vertex is given by the list of its

adjacent vertices that have already arrived. We denote this input model as
VAM-PH. The less common model is when the entire vertex adjacency list
is given, denoted VAM-FI.

Note: When studying the problems for biprtite graphs, we so far have used
the one-sided model where the offline nodes are known in advance.

For vertex cover, we will use the edge model.
For graph coloring we will use the VAM-PH input representation.

8/20

Unweighted and weighted vertex cover

So far, we have discussed two graph theoretic problems where we have
online algorithms with optimal or good competitive ratios; namely,
unweighted maximum bipartite matching and min cost metric matching.
Both have optimal offline algorithms.

One other graph problem for which we have a good randomized and
deterministic competitive ratios is the NP-hard vertex cover problem. (See
Section 7.8.) Here we are assuming edges (uj, v;) are arriving online. For
the unweighted case, there is a simple deterministic 2-competitive
algorithm (i.e. take both vertices if the edge is not yet covered). This is
the optimal deterministic ratio.

For the weighted case (where vertices have weights), there is a randomized
algorithm (which | would call the natural randomized greedy algorithm
with respect to the weights of the adjacent vertices) that obtains a
2-competitive ratio. That is, cover an uncovered edge e = (u, v) by u with
probability % and otherwise cover with v. This algorithm is due

to Ausiello et al in their textbook “Complexity and Approximations”. 02

A deterministic algorithmm for weighted vertex
cover

The obvious deterministic greedy algorithm covers an uncovered edge
(ui, vi) by uj if w(u;) < w(v;), and otherwise covers with v;. It is with
respect to this deterministic algorithm that (in hindsight) we defined the
previous “natural randomized elgorithm” .

But this determinsitc algorithm is not competitive having competitive ratio
Q(n). In particular, consider the execution of this algorithm on a weighted
star graph where the weight of each leaf is slightly larger than the weight
of the center node.

In an analogy to the ski rental problem and the BreakEven algorithm, for
the star graph we can think of our choice to cover (u, v;) with a leaf v; as
a rental cost and think of using the center as a buying cost. Following the
analogy, we want to keep track of the rental costs for using the v; and buy
the center node u when the accumulated weights of choosing the {v;}
“breaks even” with the weight of u.

10/20

A deterministic vertex cover algorithm continued

We can implement this “break even” idea on an arbitrary graph by
maintaining dynamic weights w(v). Now to cover an edge (u, v), we
choose the vertex (say v) with the smaller dynamic weight and then
update the dynamic weight of u by subtracting the dynamic weight of v
from the dynamic weight of w.

The algorithm is proven to be 2-competitive in our text Theorem 7.3.

A similar use of updated weights for the weighted vertex cover problem is
given in Clarkson [1983] where he gives a 2-approximation greedy (i.e
adaptive priority) algorithm where now vertices are the input items. | am
not sure if the weighted vertex cover problem has been studied in the
online model. Howverer, in the VAM-PH model (where algorithm the
algorithm must either accept or reject each online vertex without
knowledge of future vertices), it is not difficult to see that there cannot be
a constant competitive algorithm.

11/20

The 2-competitive deterministic algorithm for
weighted vertex cover

Algorithm 7.3.3 Augmented greedy algorithm for the online Weighted Vertex Cover problem.

procedure AugmentedGreedyV C

S+« 0 > S will be the vertices in the vertex cover
F+0 > an auxiliary data structure to help with the proof
i1

while i < m do
New online edge e; = {u;,v;} arrives according to < together with vertex weights w(u;)
and w(v;)
if SN{u;,v;} =0 then > if vertices adjacent to e; are not in S
if u; appears for the first time then
W(u;) = wlu;)
if v; appears for the first time then
w(v;) wlvi)
if w(u;) < w(v;) then
w(v;) = w(v;) — w(u;)
add directed edge (u;,v;) to F'
else
S« Su{vi}
W(u;) — w(u;) — w(v;)
add directed edge (v, u;) to F
> we greedily selected smaller vertex according to augmented weights
i—i+1

12/20

Online colouring of graphs

Many graph theoretic problems are NP-hard for arbitrary graphs and
indeed many are NP-hard to obtain an approximation significantly better
than a naive algorithm. Although that doesn't rule out online and priority
algorithms with good competitive or priority ratios, we don't have much
evidence of such algorithms. Potential project?

One NP hard to approximate is vertex colouring where it is known to be
NP hard to obtain an approximation n'=¢ for any € > 0.

Corresponding to the NP-hardness of coloring , Halldorsson and Szegedy
[1994] [prove the following negative result for online colouring of arbitrary
graphs.

Theorem: No deterministic or randomized online algorithm can obtain a
competitive ratio better than lozgn where n is the number of vertices.
Before | sketch the proof, | want to point out that graph colouring can be
online reduced to vector bin packing as shown in section 8.2. This

immediately gives a lower bound for online vector bin packing.

13/20

The reduction of colouring to vector bin packing

There is an online reduction of graph coloring to vector bin packing. Given
a graph G = (V, E) with n = |V/| vertices, we construct a d = n
dimensional vector bin packing instance as follows: For each vertex v;, we
create a vector v} such that v/(i) =1 and v/(j) = 1/nif (vj,v;) € E and
j <iand V/(j) = 0 otherwise. Here v/(j) is the j* coordinate of the
vector v'.

Then for any S C [1,n], v/(S) = {v} : i € S} can be packed in a single bin
if and only if Vs = {v; : i € S} is an independent set in G (i.e., can be
colored with one color).

Theorem: For any function g(d) there exists a constant ¢ such that for
any randomized algorithm ALG, there exist instances | where

E[ALG(])] > clog%d - OPT + q(d). The lower bound assumes that
n = |V] is known in advance. (There is a somewhat better but more
technically involved Q(Iog"zd) asymptotic lower bound .)

Aside: What problems online reduce to what other problems. Are there
classes of online problems for which there are “complete” problems?

14/20

The proof of the HS lower bound

We start with the proof for deterministic algorithms which can then be
extended to randomized algorithms.

We view the construction of the nemesis graph as a game betwen the
Algorithm and an Adaptive Online Adversary. Namely, the adversary will
present each online vertex v; by giving its pre-neighbourhood N~1. The
algorithm will provide a colour b(v;) and then the adversary will announce
its colour ¢(v;). In the more standard game, the adversary need not
determine its solution untile the end. This is, of course, what we called an
adaptive online adversary wrt randomized algorithms.

We think of placing the online vertices in bins. Let

H(j) = {c(v) : b(v) =j}. These are the colours used by the adversary to
colour nodes with online colour b(v). As time goes on, bin j will be
eliminated when |H(j)| = n/2.

Then let S = (ly;]z) \ {H(j)} for some j < i. The adversary then chooses

N=Y(v;) = {v; :j < iand c(v;) ¢ S}; the adversary chooses a colour in S.
15/20

Continuation of the HS lower bound

The game continues as long as there is some bin that is still available.
k

Thus, the game goes on for at least n = 5(,?;]2) iterations.

This means that the algorithm has used (ly;]z) colours while the adversary
has used at most k colours. This implies we can set k = log n resulting in

the algorithm using Ifg”n colours which establishes the competitive ratio.

The argument can be extended using the Yao Principle. The adverssary no
longer can deterministically choose S since it doesn’t know what are the
available colours. Instead, an oblivious adverary chooses a random set S of
colours of size k/2 and a random colour in S. It can be shown that for

n < 2k/4 jterations. the probability that the adversary choose a
non-admissable colour is sufficiently small.

16 /20

Online coloring of graph classes

Given that many graph probelms are hard to approximate, one then often
studies classes of graphs. In this regard there are many results concerning
online vertex colouring of different graph classes.

In the text we discuss trees, bipartite graphs, d-inductive graphs and
interval graphs. We have the following defintions:

@ A d-inductive graph is such that there is an ordering of the vertices
Vi, Vo, ..., Vv, such that v; has degree at most d when restricted to
thd(v,) N {V,'+1 R Vn}.

@ A chordal graph has many equivalent definitions. See the lecture by
Don Knuth (https://www.youtube.com/watch?v=txaGsawljjA) on
trees and chordal graphs.

One definition that is most relevent for us is the following: A chordal
graph has a perfect elimination ordering; namely, there exist an
ordering vi, ..., v, such that the induced subgraph of

Nbhd(v;) N {Vit1...,Vva} is a clique.

Knuth: Chordal graphs are “probably the next most important class
(after trees) of graphs”. 17/20

Examples of d-inductive and chordal graphs

@ Trees are 1-inductive and trees are also bipartite.

@ Planar graphs are 5-inductive.

@ Chordal graphs are x(G) inductive where x(G) is the colouring
number of the graph.

@ Trees and interval graphs are chordal graphs. An interval graph is the
intersection graph induced by intervals on the line. The perfect
elimination ordering for intervals is to sort intervals by non-decreasing
finishing times.

Possible project: Whenever we discuss a problem for a graph class, we can
consider online, ROM, or priority algorithms. When there is an online
algorithm, is there a better (wrt approximation) priority algorithm? When
there is a priority algorithm, is there also an online algorithm with a
competitive ratio as good or nearly as good as the priority ratio. And
when can a result for a graph class be extended to a larger class?

| wasn't aware of ROM or recourse results for colouring. So | did a search

and immediately found one paper for colouring trees by Frei et al [2024].
18/20

Coloring trees and Bipartite Graphs

For coloring trees we have the following (almost) optimal online result:

Theorem: Every tree can be online colored with |logn+ 1] colors by the
FirstFit algorithm.

This then shows that the competitve ratio is M since trees are

bipartite graphs and bipartite graphs are precisely the graphs that are
2-colourable. This is (almost exactly) a tight bound since it is shown that:

For every deterministic online colouring algorithm, there is a a graph that
requires Uoéﬂ colours.

The lower bound follows from the following inductive statement that holds
for any deterministic colouring algorithm ALG. :

For every deterministic algorith and for all kK > 1, the adversary can create
disjoint trees Ty, To,... wuch that the akgorithm has used k colours to
colour the roots of these trees T; and the total number of nodes in all
these trees is at most 2K — 1.

19/20

The lower bound proof for online tree colouring.

The base of the induction is k = 1 in which we have a single node tree.
For the induction step, assume true for k and extend to k + 1. Let

T1, To ..., Ty be the trees whose roots are coloried with k different
colors. Call thess colors S. Then after all the nodes corresponding to the
trees { T;} have been colored, create a second list of trees T7, T3, ...
Then one of two cases can occur:

© One of the T/ trees is colored with a color not in S. Then we are
done since the algorithm has used k + 1 colors and the combined size
is at most i 2(2k — 1) < 2kt — 1.

@ The roots r1, r, ... of the T/ trees are colored by the k colors in S.
Then the adversary creates a new vertex connected to each of the r;
so that the algorithm must use a new colour. The total number of
nodes in all the t; and T/ trees (including the new root) is at most
202k —1) +1 =2k 1.

The lower bound on the competitive ratio follows since trees can be
coloured with 2 colours and the algorithm has used k = log(n+ 1)
colours. 20/20

