
CSC2421: Online and Other Myopic Algorithms
Fall 2025

Allan Borodin

October 8, 2025

1 / 26

Week 6

Annoucements

First problem set is due October 22 at noon.

Todays agenda

Some project suggestions

The deterministic and randomized two-side online algorithms for
unconconstrained non-monotone submodular maximization (USM)

De-randomizing the two-side algorithm into a parallel online program

When greediness is not good. We will look at some examples where a
greedy solution is too simple. And we will also look at some cases
where being greedy is more than we want.

Discussion of some algorithms in chapters 5 and 7.
1 k server on the line metric
2 Bipartite matching: priority choice of next items vs random order
3 Min cost perfect matching for arbitrary metrics and min cost perfect

matching for the line metric.

2 / 26

Some possible project topics

Note: I do not expect projects to have new results. Of course, that would
be great but is definitely not expected. But for a given topic, what is
expected is a good sense of what has been done, what are open problems,
and possible future directions. A project could make a nice contribution by
setting up some experiments on “real data” or synthetic data.

Going through the chapters while thinking of later topics.

I only briefly mentioned the line search problem. That is one example
of a navigation problem. Good to understand more about naivigation
problems. Games as navigation problems; e.g., WORDLE

Temporary items. See section 2.8. Besides the identical machines
model, consider other machine models (e.g., related and restricted
machines) for makespan

Bounded memory and memoryless algorithms. (See section 3.13.)
Memory constraints apply to both deterministic and randomized
algorithms.

3 / 26

More project suggestions

Since chapter 4 discusses some classical problems, open problems
have been around for a while. But for sure, not all the classical
problems have been studied with regard to the ROM and priority
models. One of the first priority results was a lower bound for a fixed
order priority algorithm with regard to the makespan problem for the
restricted machines model. It is not quite a tight result and no lower
bounds for adaptive priority for this problem. I am not aware of ROM
and priority algorithms for the other machine models.
Chapter 5 is a more abstract chapter dealing with metric space
problems and the MTS model. There is a relation between the MTS
model and expert learning in chapter 6. In general these are well
studied problems. There are some open problems concerning variants
of the k-server problem and these might be worth more study. See
also section 8.3 for k-server extensions. As for the randomized
k-server conjecture, it would be interesting to know for what metric
spaces can we obtain O(log` k) competitive ratios. The line metric is
of special interest.

4 / 26

And more possible project suggestions

The min cost matching (for arbitrary and specific metric spaces) and
min colouring problems could be interesting projects. Even the line
metric is not fully understood for randomized min cost matching.
More generally, there are a number of open problems mentioned in
chapter 7. And here we explicitly raise the issue of how many random
bits are needed to obtain various competitive ratios. When delqing
with metric space results there often a gap between what is known for
specific metric spaces and arbnitrary metric spaces. Similarly for
graph problem, results for arbitrary graphs are mostly quite negative
but more positive results can often be obtaied for various classes of
graphs.

I welcome any project that can simplify and make resuilts more
understandable. One such result is the competitive ratio for vector
bin packing by the FirstFit algorithm. So far we just state the First
Fit competitive ratio result for vector bin packing in Theorem 8.2.10
without proof.

5 / 26

Online mechanism design and social choicd theory

In chapter 9, we discuss online mechansim design and social choice
thoery. In both of the topics, we have self interested agents who are
either providing inputs (which they may not do truthfully) or making
decisions (which may be good for themselves but bad for the more
general ”social good”. (This tension between indiviudal actions and
overall social objecives is often referred to as the tragedy of the
commons. Online fair division and more generally online, ROM,
real-time and priority in the context of mechanism design and social
choice theory is a relatively new topic with regard to online algorithms.
Since we moved this chapter forward we have not yet spent the time
it deserves and that makes chapter 9 a good source for a project.
One section that needs to be redone is section 9.3. Here online
decisions are being made by agents. Drivers want a parking spot and
will find the closest spot upon arrival This is simplified and modelled
as a min cost on the line problem where now a mechanism will
dynamically charge prices for parking spots to insure an overall good
matching.

6 / 26

And still more project suggestions

Chapter 11 will become chapter 10. It includes the max-sat problem
which we discussed last class. The competitive ratio for Max-Sat (or
other constraint satisfaction problems) with regard to online, ROM
and priority algorithms is of interest especially for max-sat and input
model 3. Today we will talk about the “two-sided online greedy”
algorithm. Not sure what other problems can be viewed in this
extended framework.
We are planning to make chapters 1-9 + 11 into volume 1 and rhe
remaining chapters will become volume 2.
The current chapter 10 will become chapter 11. This chapter
concerns online primal dual algorithms in general. The chapter also
returns to the bipartite max matching problem and provides an
elegant way to understand the ranking algorithms and the pertubed
ranking algorithm (for offline vertex weighted bipartitie matching).
What other well studied problems can be elegantly understood within
this framwework? (There is a great monograph concerning online
primal dual algorithms.)

7 / 26

The two sided online algorithm for non-monotone
submodular maximization

There are alternative ways to define submodular functions. The definition
that leads itself to online and priority algrotihms is one of diminishing
marginal gains. More precisely, a function f is submodular if it satisfies the
following property for all S ⊆ T ⊆ U and x /∈ T : f (S ∪ {x}) ≥ f (T ∪ {x}.
In considering submodular functions, we usually have the additional
properties that the functions are normalized (i.e., f (∅) = 0) and monotone
(i.e. f (S) ≤ f (T) whenever S ⊆ T) . A common optimization problem is
to find a subset S that maximizes f (S) subject to some constraint. There
are also examples of non monotone submodular functions and in the
non-monotone case, it is also meaningful to study the unconstrained
maximization problem. The two most prominent examples of
non-monotone submodular functions are finding maximum cuts in graphs
and directed graphs; that is, given a graph (or digraph) G = (V ,E), find a
subset S that maximizes |{(u, v) ∈ E : u ∈ S , v ∈ V \ S}|.

8 / 26

How to represent submodular functions

For a universe U of n elements, the input for the problem consists of the
2n possible subset values. Hence to be able to consider more efficient
algorithms, we need to have a model that allows access to information
about the function f without having to explicitly list all subset values.

The most common type of access is called a value oracle which allows an
algorithm to ask for the value of f (S) for any specified subset S . The
complexity of algorithms that utilize a value oracle is often measured by
the number of oracle calls, ignoring other computational steps.

For an explicitly defined function (such as max cut), we do not have to
assume access to an oracle and time is measured in the usual way by
counting all time steps. For Max-Cut and Max-Di-Cut, substantially better
offline apporoximations based on SDP are known than for arbitrary
non-monotone submodular function algorithms.

9 / 26

Two natural priority algorithms that fail for
maximizing non-monotone submodular functions

We first note that the natural greedy algriththms that provides a 1
2 ratio

for monotone submodular maximization (subject to a matroid constaint)
does not provide a constant ratio for the unconstrained submldular
maximization (USM) problem. Namely, let Si be the solution at the start
of the i th. The natural greedy (adfaptive order priority) algorithm would
select an element to maximize f (Si ∪ {x})− f (Si)).

Another natural algorithm would be to start with S0 = U and keep
eliminating the element than gave the least gain. That also fails to achieve
a constant ratio.

In the offline line world it is known that for arbitrary non-monotone
submosular maximization, any algorithm using value oracles requries
exponentially many oracle calls to obtain a ratio better than 1

2 . There is
also a complexity assumption that shows that no polynomial time
algorithm can beat the 1

2 ratio.

10 / 26

The deterministic two-sided online algorithm for the
unconstrained non-monotone submodular
maximization (USM)

There was a series of results for improving offline approximation results
but the best known ratio was below 1

2 until ...

Buchbinder et al derived an elegant 1
3 deterministic algorithm which I will

call the determnistic two sided greedy online algorithm and then showed
that the natural randomization of that algorithm obtains a 1

2 ratio. If the
following sketch sounds similar to the MaxSat 3

4 randomizedI algorithm,
this is because the ramdomized two-sided algorithm becomes the Max-Sat
algorithm when properly applied. I obviously really like this algorithm.
Why?
Because is is elegant, it beat the existing offline algorithms, and it is
optimal for non-monotone submodular maximization.

11 / 26

The deterministic two-sided online algorithm for the
unconstrained non-monotone submodular
maximization (USM)

There was a series of results for improving offline approximation results
but the best known ratio was below 1

2 until ...

Buchbinder et al derived an elegant 1
3 deterministic algorithm which I will

call the determnistic two sided greedy online algorithm and then showed
that the natural randomization of that algorithm obtains a 1

2 ratio. If the
following sketch sounds similar to the MaxSat 3

4 randomizedI algorithm,
this is because the ramdomized two-sided algorithm becomes the Max-Sat
algorithm when properly applied. I obviously really like this algorithm.
Why?

Because is is elegant, it beat the existing offline algorithms, and it is
optimal for non-monotone submodular maximization.

11 / 26

The deterministic two-sided online algorithm for the
unconstrained non-monotone submodular
maximization (USM)

There was a series of results for improving offline approximation results
but the best known ratio was below 1

2 until ...

Buchbinder et al derived an elegant 1
3 deterministic algorithm which I will

call the determnistic two sided greedy online algorithm and then showed
that the natural randomization of that algorithm obtains a 1

2 ratio. If the
following sketch sounds similar to the MaxSat 3

4 randomizedI algorithm,
this is because the ramdomized two-sided algorithm becomes the Max-Sat
algorithm when properly applied. I obviously really like this algorithm.
Why?
Because is is elegant, it beat the existing offline algorithms, and it is
optimal for non-monotone submodular maximization.

11 / 26

Brief sketch of the two sided algorithms for the
USM problem

We maintain two partial solutions Xi and Yi based on the first i elements
in U. X0 = 0 and Y0 = U. Xi will be non-decreasing and Yi will be non
increasing.

For i ≤ n = |U|
ti = f (Xi−1 ∪ {ui})− f (Xi−1);
fi = f (Yi−1 \ {ui})− f (Yi−1)

t If ti ≥ fi then Xi = Xi−1 ∪ {ui};Yi = Yi−1;
otherwise Xi = Xi−1;Yi = Yi−1 \ {ui}

s The solutions Xi and Yi agree on the first i elements in U. Thus

Xn = Yn is the solution. This yields a 1
3 ratio.

We obtain a randomized 1
2 algorithm by randomly assigning ui

proportionally as in the Max-Sat algiorithm. And as in that analysis, we
have to prove that ti + fi ≥ 0.

12 / 26

Can we de-randomize the 1
2 ratio?

What do we mean by de-randomize?

Ideally, we would like to simulate a
randomized algorithm by the same (or closely related) online or myopic
algorithm. Norman Wang and I gave evidence that “a large class of
algorithms resembling the two-sdied algorithms” cannnot achieve the 1

2
ratio for arbitrary non-monotone submodular functions even if we use a
priority ordering for the elements of ui .

One naive way to de-randomize the algorithm is to form the randomized
tree which creates a levelled tree of depeth n = |U|where the width of
nodes at the i th leavel is 2i .

Buchbinder and Feldman use linear programming and extremal solutions to
show that they can replace the 1

2 randomized tree by a levelled DAG. In
their DAG, the (i + 1)st level will only have 2 more nodes than the i th level.
This then is a polynomial time algorithm (with value oracles). Similarly,
there is a width 2n parallel algorithm achieving a 3

4 ratio for MaxSat.
This is the kind of parallel online algorihms I was alluding to at the start of
the last class.

13 / 26

Can we de-randomize the 1
2 ratio?

What do we mean by de-randomize? Ideally, we would like to simulate a
randomized algorithm by the same (or closely related) online or myopic
algorithm. Norman Wang and I gave evidence that “a large class of
algorithms resembling the two-sdied algorithms” cannnot achieve the 1

2
ratio for arbitrary non-monotone submodular functions even if we use a
priority ordering for the elements of ui .

One naive way to de-randomize the algorithm is to form the randomized
tree which creates a levelled tree of depeth n = |U|where the width of
nodes at the i th leavel is 2i .

Buchbinder and Feldman use linear programming and extremal solutions to
show that they can replace the 1

2 randomized tree by a levelled DAG. In
their DAG, the (i + 1)st level will only have 2 more nodes than the i th level.
This then is a polynomial time algorithm (with value oracles). Similarly,
there is a width 2n parallel algorithm achieving a 3

4 ratio for MaxSat.
This is the kind of parallel online algorihms I was alluding to at the start of
the last class.

13 / 26

Greed is good, or is it?

”Greed, for lack of a better word, is good. Greed is right, greed works.
Greed clarifies, cuts through, and captures the essence of the evolutionary
spirit. Greed in all of its forms – greed for life, for money, for love,
knowledge – has marked the upward surge of mankind”.
Source: This iconic line is spoken by the character Gordon Gekko, played
by Michael Douglas, in the 1987 film Wall Street.

Bust not for some problems in the context of online and priority algorithms

First what do we mean by “greedy”? As I suggested early in the course,
our intuitive meaning of greedy is “live for today” in the following sense:
Just before the i th item σi arrives, we are in some state Si−1 of the
computation. Based on Si−1 and the current and σi , an algorithm makes
an optimum decision disregading what future items might arrise (even if
we know that more items are going to arrive). An adaptive order priority
algorithm can be greedy in both its choice of the next item and the
decision it will make for that item.
Note: Often there is more than one greedy choice.

14 / 26

Some examples where it is not good to be greedy

Although greedy decisions can be good decisions, there are many instances
of online and greedy algorithms where greedy decisions are not optimal
and can somethimes be provably extremely bad.

Note: I just became aware of an August 2025 paper “Approximate
Proprotionality in Online Fair Division” by Choo et al where the authors
show that various greedy strateiges do not acheive a notion of fairness
called Prop1. This motivated me to want to mention some examples
where greedy decisions are provably bad.

We just mentioned that for maximizaing a non-monotone submodular
function, it is not good to be greedy in the sense of a priority
algorithm choosing the next item to be one that maximizes the
marginal gain. Instead we hedge our bets and pursue two greedy
strategies simultaneously for the elementis ui arriving online.

15 / 26

More examples where it is not good to be greedy

The k-server problem on the line and deterministic online algorithms.
Here we have a line metric. We can consider the case of the
continuous line (an infinite metric space) or the finite metric space
induced by N points on the line. We have k servers that at any time
are located at k (not necessarily distinct) points in the metric space.

A greedy decision would be to serve an online request xi by a server
closest to xi . This greedy strategy will result in a competitive ratio
that is arbitrarily bad in terms of the competitive ratio. The
DoubleCoverage presented in Section 5.2 algorithm moves two servers
at equal speeds until one reaches the request. DoubleCoverage
achieves a k-competitive ratio which is the optimal ratio. Note: For
every metric space on N ≥ k + 1 points, the cruel adversary forces
every deterministic online algorithm be at best k-competitive. (We
use the term greedy (instead of stingy) for minimization as well as
maximization problems.)

The DoubleCoverage algorithm extends to tree metrics.
16 / 26

Bipartite Matching and Greediness

Consider deterministic online and priority algorithms for the unweighted
one sided n × n bipartite matching problem.

The seminal Ranking algorithm is a greedy algorithm usually expressed as
a randomized online algorithm. It can also be viewed as a deterministic
ROM algorithm making greedy decision when we have random order
arrivals. This random order ignores any information we might have of the
names of the adjacent offline vertices for each online vertex and achieves a
1− 1

e competitive ratio. It seems reasonable to believe that we should be
able to “intelligently” use some deterministic fixed or adaptive priority
ordering to at least achieve the same approximation.

Along with many other results, Nicholas Pena in his MSc thesis/project
showed that any determinstic adapative priority algorithn wil not be
(asymptotically) better than 1

2 . More precisely, the algorithm will be
forced to match at most dn+1

2 e online vertices while there is a perfect
matching of the n online vertices. His thesis and our paper would be good
to look at for anyone interested in max-sat and bipartite matching.

17 / 26

A sketch of the priority inapproxiamtion for bipartite
graph matching

The adversary will construct a bipartite graph where every online vertex
has degree (n + 1)/2 (ignoring ceilings). This alone would seem to defeat
fixed order priority as every online node looks the same. Since the
algorithm knows the names of vertices, this is not quite a formal proof.
We are interested in defeating deterministic adaptive order algorithms.

Using the notation in the paper, the adverary keeps track of the offline
vertices M that have been matched as well as offline vertices U that can no
longer be matched because of previous online matches, and offline vertices
R that can no longer be matched because of online vertex rejections.

The adversary maintains the invariant that |M| = |U| after each onine
vertex has been processed. There will always be enough potential online
vertices available so that whatever new online vertex v is chosen by the
algorithm, and whether or not v is matched, the adversary will be able to
maintain the invariant.

18 / 26

Returning to the paper that motivated me to
decidee to talk about greediness. Alternativeky,
making up an analogy when it doesn’t exist.

I view fact that no adaptive prioirty algorithm can beat the naive greedy 1
2

competitive ratio for deterministic online algiorithms whereas naively
random ordering the inout itenms to be similar in spirit to the fact that
greediness can fail to give good results. As I said, one would think that
greedily trying to choose (within the limitations) of priority ordering) the
order of arrivals shoudl be better than randomly choosing an orderimng.

The Prop1 fairness paper exhibits the same phenomena with respect to a
fairness objective. I’ll read what the abstract says.

Similarly no deterministic online algorithm can obtain Envy Freeness (EF)
for additive valuations but naively tandomly allocationg an online item to
any (offline) agent who has some positive value for the item does achieve
EF ex-ante (i.e., in expectation).

19 / 26

The min cost (perfect) matching problem

Let M = (U, d) be a metric space with distance function d . Suppose we
have k ≥ n known servers s1, s2, . . . , sk located in U and a sequence of n
online requests r1, r2, . . . , rn in U. We need to match the k servers to the
n requests with the objective being to minimize the total cost∑n

i=1 d(sπ(i), ri) where sπ(i) is the server matched to ri .

Note the similarity to the setting of the k server problem. But here we
only move each server once to do the matching. The problem formulation
also resembles one-sided maximum matching problem but now the edges
are weighted (but restricted to be a metric) and this is a minimization
problem.

The problem is most commonly formulated with k = n and then called the
perfect min cost matching problem.

The natural greedy algorithm is again to server a request with the closest
server breaking ties in some determnistic way.

20 / 26

The greedy algorithm for min const perfect
matching is pretty bad

Fact: For the real line metric space, the natural greedy algorithm is no
better than 2k − 1 and this is the precise competitve ratio for the greedy
algorithm.

Here is the argument for the lower bound inapproximation.
The adversary positions the servers as follows: s1 = 0 and si = 2i−1 for
2 ≤ i ≤ k. Now consider a sequence of online requests {ri} where
ri = 2i−1. If we break ties in favor of the server to the right, it is easy to
see that the nearest server algorithm will serve ri with server si+1 for
1 ≤ i ≤ k − 1 and rk will be served by s1. This results in a total cost of
2k − 1. The offline optimal solution would serve ri by si for 1 ≤ i ≤ k with
cost 1. We can avoid the tie-breaking rule by letting s1 = −ε.

21 / 26

What is known about min cost matching problem?

The status for deterministic algorithms and arbitrary metric spaces is well
determined. We use k(= n) to be consistent with the literature.

There is an algorithm (Permutation) that obtains the competitive
ratio 2k − 1 for every metric space. See Algorithm 7.7.1.
For all k ≥ 2, there is a metric space such that such that for all
deterministic algorithms ALG , there is a sequence of k requests that
forces ALG to have competitive ratio 2k − 1.

The lower bound is for the star (tree) graph with one center and k leaves.
The distance to the center from each leaf is 1 which induces a distance 2
between any pair of leaves. As in the k-server lower bound, we use a cruel
adversary. We place the k servers on the leaves. The first request is for
the center node. For each of the remaining requests, there is always one
leaf that is not occupied. The cruel adversary requests the unoccupied
leaf. The total cost to ALG is 1 + 2(k − 1) = 2k − 1. After k − 1 leaaf
nodes have been requested, there is exactly one leaf node that has not
been requested. The optimum solution has cost 1 by serving the center
node with the server that is on the one leaf node that was not requested.

22 / 26

The Permutation algorithm and a sketch of its
competitive ratio

We first note that algorithm will be approximatng the cost of a maximum
matching for any k and n. Furthermore, the algorithm does not need to
know the metric space in advance.

Let Ri = r1, r2, . . . , ri be the initial i requests; Si will be the algorithm
server matched to Ri . . Consider, a sequence of matchings matchings
M0,M1, . . . ,Mn that an offline OPT min cost solution matching can have
between Ri and the servers in S . Here M0 = ∅ and Mn is an optimum
min cost maximum matching. We can follow the evolution of the Si and
the goal is to try to have the two sequences {Mi} and {Ri} be as close as
possible under the online constaint of irrevocable decisions.

The algorithm will have the property that the set of servers matched to Ri

by the final OPT is a permutation of the final algorithm servers matched
to Ri . OPT can be seen as modifying Mi−1 to Mi by as modifying the
edges in an alternating path in Mi ⊕Mi−1starting at ri . Here Mi ⊕Mi−1 is
the symmetric difference between the edges in Mi and Mi−1.

23 / 26

Continuation of the sketch for algorthm Permutation

We would like to follow this evolution of the {Mi} but cannot change
previous edges in the algorithm’s match. But this alternating path will end
in a server sj and then sj will be matched to ri .

Note: I am skipping the analysis that shows that there is a unique
alternating path in Mi ⊕Mi−1 that we can define.

The competitive bound can be shown by an induction on i . Namely,
letting Ai be the algorithm solution for the first i requests, we can show
w(Ai) ≤ (2i − 1)w(Mi) where w(Ai) (respectively, w(Mi)) is the weight
(i.e. total cost of edges) in Ai (respectively Mi).
C = (Mi ∪ {(ri , sj)} ⊕Mi−1 is a simple alternating cycle. By the triangle
inequality, it follows that
w(ri , sj) ≤ w(C \ {(ri , sj)}) ≤ w(Mi) + w(Mi−1) ≤ 2w(Mi) so that finally
(using the induction hypothesis), we have:
w(Ai) ≤ w(Ai−1) + 2w(Mi) ≤ ((2i − 1)− 1)w(Mi−1) + 2w(Mi) ≤
(2i − 1)w(Mi).

24 / 26

Randomized algorithms for min cost matching on
arbitrary metric spaces

The situation for randomized algorithms is less clear for both arbitrary
metric spaces and the line metric. In both cases we have a gap between
the known upper and lower bounds.

For the min cost perfect matching with respect to arbitrary metric spaces,
there is a randomized algorithm with competitiev ratio O(log2 k). The
bound uses the radnomized embedding of an arbitrary metric space onto
an HST as defined in Chapter 5. The boud inproves to O(log k) if the
metric space is a 2-HST.

An Ω(log k) lower bound can be proven (perhaps surprisingly) for both the
star graph metric and the uniform metric.

This leaves a gap between the Ω(log k) lower bound and the O(log6 k)
competitive algiorithm.

25 / 26

The line metric and a “magical” parameterized
algorithm RobustMatching(t)

The robust algorithm (Algorithm 7.7.6) in the text provides the following
competitive bounds;

For the line mytric when the parameter t = 3, the competitive ratio is
Θ((log k)

NOTE: This is a doubly exponential improvement over the greedy
algorithm for the line metric.
When t = k2 + 1, the competitive ratio is 2k + 1, the ratio of the
optimal online algorithm Permutation. Like Permutation, the
algorithm also uses an alternating path analysis.
For the random order model, with t = kHk + 1, the competitive ratio
is Θ(log k) + o(1)

For randomnized algoeithms, the current best competitive ratio for the line
metric is O(log k) and so no better than the deterministic ratio.

For the line metric, the current lower bound is Ω(
√
k). This then leave a

gap between the known upper and lower bounds.
26 / 26

