CSC2421: Online and Other Myopic Algorithms
Fall 2025

Allan Borodin

October 1, 2025

1/22

Week 5

Annoucements

o | have posted the first assignment.. Note that there are many
exercises and open problems at the end of most chapters. Please let
me know if any of the exercises in the text are not clear. This problem
set is due Octoberr 22 and will count for 35% of the final grade. .
We will have another problem set due November 28 and will also
count for 35% of the final grade.

@ The third part of the grading scheme is a project report and short
presentation on a topic within the scope of this course. This can be
done individually or in pairs. | recommend doing the project with
someone. The project report will be due November 21 and the
presentations will begin on November 21
| want to approve each project to insure that there isn't too much
overlap between projects. You are not restricted to topics in the text
but the project has to be directly related to the course.

2/22

Todays agenda

@ Some followup comments regarding David Zhang's presentation.

@ Extensions of online and priority algorithms. Parallel and Multipass
algorithms.

@ Priority algorithms for Set Packing. (Section 18.3.5 of text)

@ MaxSat (chapter 11): Th naive algorithm and its de-randomization to
become Johnson's algorithm; an improved randomized algorithm and
its de-randomization into a two-pass algorithm.

@ Experimental results for Max-Sat.

NOTE: | am departing from the sequence of chapters in the text to gain a
better sense of what we mean by “online and other myopoic algorithms”.
And the results today are all a little surprising.

3/22

Some followup comments relating to David Zhang’s
presentation

The simulation of 1-bit barely random online algorithms by det algorithms
in the ROM model raises many other general questions regarding the
relation betwewen different myopic models.

@ The % competitive barely randm algorithm for the general knapsack
can be thought of as a modification of the barely random priority
algorithm which randomly chooses between greedily sorting by value
and and greedily sorting by value-density.

When can we simulate priority algorithms by online algorithms with
revoking? Ben Cookson has some ideas in this regard.

Note: There is an optimal fixed priority algorithmm for unweighted
interval selection (order by finishing times) whereas in the online (but
not real time) model, it is not possible to obtain a constant ratio by
an online algorithm with revoking.

@ The converse of the previous quesion is “when can we simulate online
with revoking by priority without revoking?”

4/22

Folowup comments continued

@ When can we simulate priority algorithms by ROM algorithms with
revoking?
For the unweighted interval selection problem, we cannot obtain
optimality by a ROM algorithm with revoking but we can get a 2.5
competitive ratio and 12/11 is so far the only negative result.

@ With regard to the converse, Nicholas Pena has shown that we cannot
aymptotically beat the 1/2 ratio for unweighted bipartite matching by
a determinitsic priority algorithm but we know we can achieve a
1-— % ~ .623 ratio by a deterministic algorithm in the ROM model.

@ In general, what does it mean an algorithm to “simulate” another
algorithm?
More specifically, what does it mean to “de-randomize” an algorithm.
@ How many random bits do we need for an online algorithm
proecessing a sequence of n input items?

5/22

Extensions of online and priority algorithms

In discussing more general online frameworks, we already implicitly
suggested some extensions of the basic priority model (that is, the basic
model where we have one-pass and irrevocable decisions). The following
online or priority algorithm extensions can be made precise:

@ Decisions can be revocable to some limited extent or at some cost.
For example, we know that in the basic priority model we cannot
achieve a constant approximation for weighted interval scheduling.
However, if we are allowed to revoke accepted intervals (while always
maintaining a feasible solution), then we can achieve a
4-approximation. (but provably not optimality). The 4-approximation
is a result due to Erlebach and Spieksma

@ While the knapsack problem cannot be approximated by a
deterministic priority algorithm to within any constant, we can
achieve a 2-approximation by taking the maximum of 2 greedy
algorithms. More generally we can consider some “small” number k
of priority (or online) algorithms and take the best result amongst

these k algorithms.
6/22

Extensions of the priority order model continued

@ Closely related to the “best of k online (or priority)" model is the
concept of online (preiority) algoitthms with “advice”. There are two
trusted advice models, a model where one measures the maximum
number of advice bits per input item, and a model where we are given
some number ¢ of advice bits at the start of the computation. The
latter model is what | will mean by “online with advice.” Online with
¢ advice bits is equivalent to the max of k = 2¢ algorithms.

7/22

Extensions of the priority order model continued

@ Closely related to the “best of k online (or priority)" model is the
concept of online (preiority) algoitthms with “advice”. There are two
trusted advice models, a model where one measures the maximum
number of advice bits per input item, and a model where we are given
some number ¢ of advice bits at the start of the computation. The
latter model is what | will mean by “online with advice.” Online with
¢ advice bits is equivalent to the max of k = 2¢ algorithms.

NOTE: This model is a very permissive in that the advice bits can be
a function of the entire input. Of course, in practice we want these
advice bits to be “easily determined or known a-priori” (e.g., the
number of input items, or the ratio of the largest to smallest value)
but in keeping with the information theoretic perspective of online
and priority algorithms, one doesn’t impose any such restriction.

@ There are more general parallel priority based models than “best of k”
algorithms. Namely, parallel algorithms could be spawning or aborting

threads (as in the pBT and oBT models that we discuss later).
7/22

Multipass algorithms

@ Another model that provides improved results is to allow multiple
passes (over the input items) rather than just one pass.

@ This is not a well studied model but there are two relatively new
noteworthy results that we could discuss:

o

There is deterministic 3/4 approximation for weighted Max-Sat that is
achieved by two “online passes” (i.e., the input sequence is determined
by an adversary) over the input sequence whereas there is evidence
that no one pass deterministic online or priority algorithm can acheive
this ratio.

There is a % approximation for bipartite matching that is achieved by

two online passes whereas no deterministic online or priority algorithm

can do asymptotically better than a % approximation.

@ It is not clear how best to formalize these multi-pass algorithms.
Why?

8/22

Multipass algorithms

@ Another model that provides improved results is to allow multiple
passes (over the input items) rather than just one pass.

@ This is not a well studied model but there are two relatively new
noteworthy results that we could discuss:

o

There is deterministic 3/4 approximation for weighted Max-Sat that is
achieved by two “online passes” (i.e., the input sequence is determined
by an adversary) over the input sequence whereas there is evidence
that no one pass deterministic online or priority algorithm can acheive
this ratio.

There is a % approximation for bipartite matching that is achieved by

two online passes whereas no deterministic online or priority algorithm

can do asymptotically better than a % approximation.

@ It is not clear how best to formalize these multi-pass algorithms.
Why? What information should we be allowed to convey between
passes?

8/22

Greedy algorithms for the set packing problem

One of the new areas in theoretical computer science is algorithmic game
theory and mechanism design and, in particular, auctions including what
are known as combinatorial auctions. The underlying combinatorial
problem in such auctions is the set packing problem.

The set packing problem

We are given n subsets Si,...,S, from a universe U of size m. In the
weighted case, each subset S; has a weight w;. The goal is to choose a
disjoint subcollection S of the subsets so as to maximize ZS;GS w;. In the
s-set packing problem we have |S;| < s for all /.

@ This is a well studied problem and by reduction from the max clique
problem, there is an m>~¢ hardness of approximation assuming
NP #£ ZPP. For s-set packing with constant s > 3, there is an
Q(s/ log s) hardness of approximation assuming P # NP.

@ We will consider two “natural” greedy algorithms for the s-set
packing problem and a non obvious greedy algorithm for the set
packing problem. These greedy algorithms are all fixed order priority, .,

The first natural greedy algorithm for set packing

Greedy-by-weight (Greedy,:)

Sort the sets so that w; > wso ... > w,,.
S =0
Fori:1...n
If S; does not intersect any set in S then
S =8SU§S;.
End For

@ In the unweighted case (i.e. Vi, w; = 1), this is an online algorithm.

@ In the weighted (and hence also unweighted) case, greedy-by-weight
provides an s-approximation for the s-set packing problem.

@ The approximation bound can be shown by a charging argument
where the weight of every set in an optimal solution is charged to the
first set in the greedy solution with which it intersects.

10/22

The second natural greedy algorithm for set packing

Greedy-by-weight-per-size; i.e. value density
Sort the sets so that wy/|S1| > wa/|S2| ... > wa/|Sal.
S =0
Fori:1...n
If S; does not intersect any set in S then
S:=8US§S,.
End For

@ In the weighted case, greedy-by-weight provides an s-approximation
for the s-set packing problem.

@ For both greedy algorithms, the approximation ratio is tight; that is,
there are examples where this is essentially the approximation. In
particular, these algorithms only provide an m-approximation where
m = |U].

@ We often assume n >> m and note that by just selecting the set of
largest weight, we obtain an n-approximation. So the goal is to do

better than min{m, n}.
11/22

Improving the approximation for set packing

@ In the unweighted case, greedy-by-weight-per-size can be restated as
sorting so that |S1]| < |S2|... < |Ss| and it can be shown to provide
an /m-approximation for set packing.

@ On the other hand, greedy-by-weight-per-size does not improve the
m-approximation for weighted set packing.

Greedy-by-weight-per-squareroot-size

Sort the sets so that wi/+/|S1]| > wa/\/|S2] ... > wi/+/|Sh].
S =0
Fori:1...n
If S; does not intersect any set in S then
S =8SU§S;.
End For

Theorem: Greedy-by-weight-per-squareroot-size provides a
2+/m-approximation for the set packing problem. And as noted earlier, this
is asymptotically the best possible approximation assuming NP # ZPP.

12/22

Another way to obtain an O(,/m) approximation

There is another way to obtain the same aysmptototic improvement for
the weighted set packing problem. Namely, we can use the idea of partial
enumeration greedy; that is somehow combining some kind of brute force
(or naive) approach with a greedy algorithm.

Partial Enumeration with Greedy-by-weight (PGreedyy)

Let Max, be the best solution possible when restricting solutions to those
containing at most k sets. Let G be the solution obtained by Greedy,
applied to sets of cardinality at most \/m/k. Set PGreedyy to be the best
of Max; and G.

@ Theorem: PGreedyy achieves a 21/ m/k-approximation for the
weighted set packing problem (on a universe of size m)

@ In particular, for k = 1, we obtain a 2,/m approximation and this can
be improved by an arbitrary constant factor vk at the cost of the
brute force search for the best solution of cardinality k; that is, at the
cost of say n*.

13/22

(Weighted) Max-Sat

A Boolean formula is in conjunctive normal form (CNF) if it is a
conjunction of clauses, i.e., ¢ = C; A G A+ -+ A Gy, where each clause

G = \/j'k:1 ¢; j is a disjunction of literals where a literal is a propostional
variable or its complmenet. A CNF formula ¢ is called a k-CNF formula
(respectively, an exact k-CNF formula) if every clause in ¢ is of length at
most (respectively, exactly) k. In a weighted CNF formula there is a
non-negative weight w; associated with every clause C;. We assume that a
clause contains only one literal involving a given variable x.

Given a CNF formula F, the (weighted) Max-Sat problem is to select truth
values for the variables in F so as to maximize the (weight) of clauses that
can be simultaneously satisfied.

14/22

Propostional variables as the input items and how
they are represented

Depending on what information about clauses is available in an input item,
we distinguish 4 different input models numbered 0 to 3.
@ (Input model 0): For each x;, the information is the names and
weights of the clauses in which x; occurs positively and the names
and weights of clauses in which x; appears negatively.

@ (Input model 1): Input model 0O plus the lengths of those clauses.

o (Input model 2): Input model 0 plus the names of the other variables
occurring in each of those clauses but not their signs.

@ (Input model 3): A complete description of each of the clauses in
which x; occurs.
Clearly, input model 3 is the most general input representation and input
model 0 is effectively a minimal representation. In the weighted version of
the problem, we also learn the weight of each clause where x; appears.

15/22

The naive randomized online Max-Sat algorithm

The naive randomized algorithm simply chooses the truth value for each
v(x;) € {True, False} randoml and independently with probability 3. The
algorithm uses input model 0.

For exact Max-k-Sat, the totality ratio of the naive algorithm is 1 — 2—1k
The totality ratio compares the weight of satisfied clauses to the sum of all
clause weights. Clearly the competitive ratio can only be better.

The naive algorithm, can be de-randomized by the method of conditional
expectation. Since the expected behaviour is “good”, then for each
variable, we can determine the effect (i.e., the change in the expected
value) of setting the variable to be True or False and choose the setting (i.e
the branch of the randomzation tree) that has the better expectation. The
result obtains at least the ratio of the naive algorithm but could be better.

Note that because ot unit clauses (with one literal), the expectation will
only be % But of course, unit clauses should somehow be “easy” to
handle.

16/22

The de-randomized nave algorithm is Johnson’s
algorithm

Johnson gave a determnistic algorithm for Max-Sat in 1974 that
maintains, a modified weight w! = w;/2!Gl where | C;| is the current
number of literals in C;. That is, when we set a variable, a clause is either
satsified or one literal is elimniated. This insures that clauses become less
valuable (in terms of expected value) whenever a literal is eliminated.
Joshnson’s algorithm only needs input model 1.

In 1992, Yannakakis showed that the de-randomization of the naive
algorithm is equivalent to Johnson's algorithm and showed that the
2

competitive ratio of Johnson's algorithm cannot be better than £.

In 1999, Chen et al showed that Johnson's algorithm achieves the
competitive ratio %

17/22

A Randomized Max-Sat Algirithm with Competitive
Ratio 2
The underlying idea for improving the % ratio of Johnson's deterministic
algorithm is that in setting the variables, we want to balance the weight of
clauses satisfied with that of the weight of clauses that can no longer be
satisfied. Here we assume that W, the sum of the weights of all clauses is
initially known. (I wonder if this assumption is necessary.)

The improved algorithm uses input model 2 (see Section 11.3). The first 2
competitive algorithm was given by Polyczek and Schnitger in 2011 and
then alternative algorithms due to Buchbinder et al and van Zuylen
appearded culminating in the version (we present in the text) in a 2017
paper by Polyczek et al.

The % ratio is best possible for any online algorithm in input model 2.
This leaves open the optimal deterministic and randomized ratios for input
model 3. Yung [unpublished but verified] shows that 2 is a competitive
limitation for any online Max-Sat algritihm with input model 3. The best

offline approximation (via SDP) is not much better than the 2 ratio. 1822

Very brief sketch of the Max-Sat randomized
algorithm in Polyczek et al

Let 7<; be the assignment to the first i variables and let SAT; be the
weight of satisfied clauses with respect to the partial assignment 7<;. Let
UNSAT; be the weight of the clauses that can no longer be satisfied given
the assignment 7<;; that is, the clauses that are unsatisfied by 7<; and
containing only variables in {x1,...,x;}.

We define B; = %(SAT,- + W — UNSAT;) where W is the total weight of
all clauses. Note that SATyg = UNSATy = 0 so that By = %W; note also
that SAT, = W — UNSAT, = the weight of the clauses satisfied by the
algorithm upon termination which implies B, = SAT,. Also, we have
SAT; < Bi < W — UNSAT; for all i.

19/22

Continued sketch of the Max-Sat algorithm

As in the de-randomization analysis of the naive randomized algorithm, an
online algorithm can calculate the changes in SAT; and UNSAT; and
hence B; when setting x; to True and when setting x; to False. The
algorithm’'s plan is to randomly set variable x; so as to increase

E[B; — Bi_1] where the expectation is conditioned on the setting of the
propositional variables xi,...,x;_1 in the previous iterations.

To that end, let t; (resp. f;) be the value of B; — Bj_; when x; is set to
True (resp., False). In order to ensure that the value of the partial solution
cannot decrease in any iteration, we would first prove f; +t; > 0. If t; > 0
and f; <0, we assign x; = True. If t; < 0 and f; > 0, we assign x; = False.
If both t; > 0 and f; > 0 then we assign x; proportionally; that is,

x; = True with probability t,-if,- and set False otherwise. Thus, we obtain
the randomized % online algorithm.

20/22

De-randomnizing the 2 competitive Max-Sat
algorithm

Polyczek et al also showed how the % algorithm can be “de-randomized”
into a two pass online algorithm by the method of conditional expectations.

The basic idea is to use a first pass to create a probability p; for
determinining the truth value of the it" propositional variable x;, and then
use the method of conditional expectations in a second pass to
determninistically set the truth value for x;.

However, in terms of the randomized computation tree we are trying to
de-randomize, we want to have the same probability for every node at the
it level of the randomized computation tree; that is, not dependent on
the path to that node. In other words, we want to be able to derandomize
based on p; and the previous values given to x1,...,xj_1. This can be
accomplished by a modification of the analysis of the randomized
algorithm.

Can priority order or random order provide improved ratios?
21/22

Experimental results for MaxSat algorithms

Table I. The Performance of Greedy Algorithms

RG JA 2Pass

% Sat 2 Time % Sat @ Time % Sat 2 Time

SC-APP 97.42 0.38s 98.71 0.38s 99.48 1.11s
MS-APP 95.69 0.25s 97.97 0.23s 98.08 0.63s
SC-CRAFTED 97.40 0.17s 98.37 0.17s 99.04 0.46s
MS-CRAFTED 80.33 0.00s 82.69 0.00s 82.97 0.00s
SC-RANDOM 97.58 1.39s 98.72 1.38s 99.19 5.38s
MS-RANDOM 84.61 0.00s 87.30 0.00s 88.09 0.00s

Figure: Table taken from Poloczek and Williamson [2017]. RG is the Poloczek
and Williamson algorithm, JA is Johnson's algorithm

Table II. The Performance of Local Search Methods

NOLS+TS 2Pass+NOLS SA
% Sat @ Time % Sat 2 Time % Sat 2 Time
SC-APP 90.53 93.59s 99.54 45.14s 99.77 104.88s
MS-APP 83.60 120.14s 98.24 82.68s 99.39 120.36s
SC-CRAFTED 92.56 61.07s 99.07 22.65s 99.72 70.07s
MS-CRAFTED 84.18 0.65s 83.47 0.01s 85.12 0.47s
SC-RANDOM 97.68 41.51s 99.25 40.68s 99.81 52.14s
MS-RANDOM 88.24 0.49s 88.18 0.00s 88.96 0.02s

Figure: Table taken from Poloczek and Williamson [2017]. NOLS+TS is
non-oblvious local search initialized by Tabu Search, SA is simulated annealing

22/22

