
CSC2421: Online and Other Myopic Algorithms
Fall 2025

Allan Borodin

October 1, 2025

1 / 22

Week 5

Annoucements

I have posted the first assignment.. Note that there are many
exercises and open problems at the end of most chapters. Please let
me know if any of the exercises in the text are not clear. This problem
set is due Octoberr 22 and will count for 35% of the final grade. .
We will have another problem set due November 28 and will also
count for 35% of the final grade.

The third part of the grading scheme is a project report and short
presentation on a topic within the scope of this course. This can be
done individually or in pairs. I recommend doing the project with
someone. The project report will be due November 21 and the
presentations will begin on November 21
I want to approve each project to insure that there isn’t too much
overlap between projects. You are not restricted to topics in the text
but the project has to be directly related to the course.

2 / 22

Todays agenda

Some followup comments regarding David Zhang’s presentation.

Extensions of online and priority algorithms. Parallel and Multipass
algorithms.

Priority algorithms for Set Packing. (Section 18.3.5 of text)

MaxSat (chapter 11): Th naive algorithm and its de-randomization to
become Johnson’s algorithm; an improved randomized algorithm and
its de-randomization into a two-pass algorithm.

Experimental results for Max-Sat.

NOTE: I am departing from the sequence of chapters in the text to gain a
better sense of what we mean by “online and other myopoic algorithms”.
And the results today are all a little surprising.

3 / 22

Some followup comments relating to David Zhang’s
presentation

The simulation of 1-bit barely random online algorithms by det algorithms
in the ROM model raises many other general questions regarding the
relation betwewen different myopic models.

The 1
2 competitive barely randm algorithm for the general knapsack

can be thought of as a modification of the barely random priority
algorithm which randomly chooses between greedily sorting by value
and and greedily sorting by value-density.
When can we simulate priority algorithms by online algorithms with
revoking? Ben Cookson has some ideas in this regard.
Note: There is an optimal fixed priority algorithmm for unweighted
interval selection (order by finishing times) whereas in the online (but
not real time) model, it is not possible to obtain a constant ratio by
an online algorithm with revoking.

The converse of the previous quesion is “when can we simulate online
with revoking by priority without revoking?”

4 / 22

Folowup comments continued

When can we simulate priority algorithms by ROM algorithms with
revoking?
For the unweighted interval selection problem, we cannot obtain
optimality by a ROM algorithm with revoking but we can get a 2.5
competitive ratio and 12/11 is so far the only negative result.

With regard to the converse, Nicholas Pena has shown that we cannot
aymptotically beat the 1/2 ratio for unweighted bipartite matching by
a determinitsic priority algorithm but we know we can achieve a
1− 1

e ≈ .623 ratio by a deterministic algorithm in the ROM model.

In general, what does it mean an algorithm to “simulate” another
algorithm?
More specifically, what does it mean to “de-randomize” an algorithm.

How many random bits do we need for an online algorithm
proecessing a sequence of n input items?

5 / 22

Extensions of online and priority algorithms

In discussing more general online frameworks, we already implicitly
suggested some extensions of the basic priority model (that is, the basic
model where we have one-pass and irrevocable decisions). The following
online or priority algorithm extensions can be made precise:

Decisions can be revocable to some limited extent or at some cost.
For example, we know that in the basic priority model we cannot
achieve a constant approximation for weighted interval scheduling.
However, if we are allowed to revoke accepted intervals (while always
maintaining a feasible solution), then we can achieve a
4-approximation. (but provably not optimality). The 4-approximation
is a result due to Erlebach and Spieksma
While the knapsack problem cannot be approximated by a
deterministic priority algorithm to within any constant, we can
achieve a 2-approximation by taking the maximum of 2 greedy
algorithms. More generally we can consider some “small” number k
of priority (or online) algorithms and take the best result amongst
these k algorithms.

6 / 22

Extensions of the priority order model continued

Closely related to the “best of k online (or priority)” model is the
concept of online (preiority) algoitthms with “advice”. There are two
trusted advice models, a model where one measures the maximum
number of advice bits per input item, and a model where we are given
some number ` of advice bits at the start of the computation. The
latter model is what I will mean by “online with advice.” Online with
` advice bits is equivalent to the max of k = 2` algorithms.

NOTE: This model is a very permissive in that the advice bits can be
a function of the entire input. Of course, in practice we want these
advice bits to be “easily determined or known a-priori” (e.g., the
number of input items, or the ratio of the largest to smallest value)
but in keeping with the information theoretic perspective of online
and priority algorithms, one doesn’t impose any such restriction.

There are more general parallel priority based models than “best of k”
algorithms. Namely, parallel algorithms could be spawning or aborting
threads (as in the pBT and oBT models that we discuss later).

7 / 22

Extensions of the priority order model continued

Closely related to the “best of k online (or priority)” model is the
concept of online (preiority) algoitthms with “advice”. There are two
trusted advice models, a model where one measures the maximum
number of advice bits per input item, and a model where we are given
some number ` of advice bits at the start of the computation. The
latter model is what I will mean by “online with advice.” Online with
` advice bits is equivalent to the max of k = 2` algorithms.

NOTE: This model is a very permissive in that the advice bits can be
a function of the entire input. Of course, in practice we want these
advice bits to be “easily determined or known a-priori” (e.g., the
number of input items, or the ratio of the largest to smallest value)
but in keeping with the information theoretic perspective of online
and priority algorithms, one doesn’t impose any such restriction.

There are more general parallel priority based models than “best of k”
algorithms. Namely, parallel algorithms could be spawning or aborting
threads (as in the pBT and oBT models that we discuss later).

7 / 22

Multipass algorithms

Another model that provides improved results is to allow multiple
passes (over the input items) rather than just one pass.

This is not a well studied model but there are two relatively new
noteworthy results that we could discuss:

1 There is deterministic 3/4 approximation for weighted Max-Sat that is
achieved by two “online passes” (i.e., the input sequence is determined
by an adversary) over the input sequence whereas there is evidence
that no one pass deterministic online or priority algorithm can acheive
this ratio.

2 There is a 3
5 approximation for bipartite matching that is achieved by

two online passes whereas no deterministic online or priority algorithm
can do asymptotically better than a 1

2 approximation.

It is not clear how best to formalize these multi-pass algorithms.
Why?

What information should we be allowed to convey between
passes?

8 / 22

Multipass algorithms

Another model that provides improved results is to allow multiple
passes (over the input items) rather than just one pass.

This is not a well studied model but there are two relatively new
noteworthy results that we could discuss:

1 There is deterministic 3/4 approximation for weighted Max-Sat that is
achieved by two “online passes” (i.e., the input sequence is determined
by an adversary) over the input sequence whereas there is evidence
that no one pass deterministic online or priority algorithm can acheive
this ratio.

2 There is a 3
5 approximation for bipartite matching that is achieved by

two online passes whereas no deterministic online or priority algorithm
can do asymptotically better than a 1

2 approximation.

It is not clear how best to formalize these multi-pass algorithms.
Why? What information should we be allowed to convey between
passes?

8 / 22

Greedy algorithms for the set packing problem

One of the new areas in theoretical computer science is algorithmic game
theory and mechanism design and, in particular, auctions including what
are known as combinatorial auctions. The underlying combinatorial
problem in such auctions is the set packing problem.

The set packing problem

We are given n subsets S1, . . . ,Sn from a universe U of size m. In the
weighted case, each subset Si has a weight wi . The goal is to choose a
disjoint subcollection S of the subsets so as to maximize

∑
Si∈S wi . In the

s-set packing problem we have |Si | ≤ s for all i .

This is a well studied problem and by reduction from the max clique

problem, there is an m
1
2
−ε hardness of approximation assuming

NP 6= ZPP. For s-set packing with constant s ≥ 3, there is an
Ω(s/ log s) hardness of approximation assuming P 6= NP.
We will consider two “natural” greedy algorithms for the s-set
packing problem and a non obvious greedy algorithm for the set
packing problem. These greedy algorithms are all fixed order priority.

9 / 22

The first natural greedy algorithm for set packing

Greedy-by-weight (Greedywt)

Sort the sets so that w1 ≥ w2 . . . ≥ wn.
S := ∅
For i : 1 . . . n

If SI does not intersect any set in S then
S := S ∪ Si .

End For

In the unweighted case (i.e. ∀i ,wi = 1), this is an online algorithm.

In the weighted (and hence also unweighted) case, greedy-by-weight
provides an s-approximation for the s-set packing problem.

The approximation bound can be shown by a charging argument
where the weight of every set in an optimal solution is charged to the
first set in the greedy solution with which it intersects.

10 / 22

The second natural greedy algorithm for set packing

Greedy-by-weight-per-size; i.e. value density

Sort the sets so that w1/|S1| ≥ w2/|S2| . . . ≥ wn/|Sn|.
S := ∅
For i : 1 . . . n

If SI does not intersect any set in S then
S := S ∪ Si .

End For

In the weighted case, greedy-by-weight provides an s-approximation
for the s-set packing problem.
For both greedy algorithms, the approximation ratio is tight; that is,
there are examples where this is essentially the approximation. In
particular, these algorithms only provide an m-approximation where
m = |U|.
We often assume n >> m and note that by just selecting the set of
largest weight, we obtain an n-approximation. So the goal is to do
better than min{m, n}.

11 / 22

Improving the approximation for set packing

In the unweighted case, greedy-by-weight-per-size can be restated as
sorting so that |S1| ≤ |S2| . . . ≤ |Sn| and it can be shown to provide
an
√
m-approximation for set packing.

On the other hand, greedy-by-weight-per-size does not improve the
m-approximation for weighted set packing.

Greedy-by-weight-per-squareroot-size

Sort the sets so that w1/
√
|S1| ≥ w2/

√
|S2| . . . ≥ wn/

√
|Sn|.

S := ∅
For i : 1 . . . n

If SI does not intersect any set in S then
S := S ∪ Si .

End For

Theorem: Greedy-by-weight-per-squareroot-size provides a
2
√
m-approximation for the set packing problem. And as noted earlier, this

is asymptotically the best possible approximation assuming NP 6= ZPP.
12 / 22

Another way to obtain an O(
√
m) approximation

There is another way to obtain the same aysmptototic improvement for
the weighted set packing problem. Namely, we can use the idea of partial
enumeration greedy; that is somehow combining some kind of brute force
(or naive) approach with a greedy algorithm.

Partial Enumeration with Greedy-by-weight (PGreedyk)

Let Maxk be the best solution possible when restricting solutions to those
containing at most k sets. Let G be the solution obtained by Greedywt
applied to sets of cardinality at most

√
m/k . Set PGreedyk to be the best

of Maxk and G .

Theorem: PGreedyk achieves a 2
√

m/k-approximation for the
weighted set packing problem (on a universe of size m)

In particular, for k = 1, we obtain a 2
√
m approximation and this can

be improved by an arbitrary constant factor
√
k at the cost of the

brute force search for the best solution of cardinality k ; that is, at the
cost of say nk .

13 / 22

(Weighted) Max-Sat

A Boolean formula is in conjunctive normal form (CNF) if it is a
conjunction of clauses, i.e., φ = C1 ∧ C2 ∧ · · · ∧ Cm, where each clause
Ci =

∨ik
j=1 `i ,j is a disjunction of literals where a literal is a propostional

variable or its complmenet. A CNF formula φ is called a k-CNF formula
(respectively, an exact k-CNF formula) if every clause in φ is of length at
most (respectively, exactly) k. In a weighted CNF formula there is a
non-negative weight wi associated with every clause Ci . We assume that a
clause contains only one literal involving a given variable x .

Given a CNF formula F , the (weighted) Max-Sat problem is to select truth
values for the variables in F so as to maximize the (weight) of clauses that
can be simultaneously satisfied.

14 / 22

Propostional variables as the input items and how
they are represented

Depending on what information about clauses is available in an input item,
we distinguish 4 different input models numbered 0 to 3.

(Input model 0): For each xi , the information is the names and
weights of the clauses in which xi occurs positively and the names
and weights of clauses in which xi appears negatively.

(Input model 1): Input model 0 plus the lengths of those clauses.

(Input model 2): Input model 0 plus the names of the other variables
occurring in each of those clauses but not their signs.

(Input model 3): A complete description of each of the clauses in
which xi occurs.

Clearly, input model 3 is the most general input representation and input
model 0 is effectively a minimal representation. In the weighted version of
the problem, we also learn the weight of each clause where xi appears.

15 / 22

The naive randomized online Max-Sat algorithm

The naive randomized algorithm simply chooses the truth value for each
v(xi) ∈ {True,False} randoml and independently with probability 1

2 . The
algorithm uses input model 0.

For exact Max-k-Sat, the totality ratio of the naive algorithm is 1− 1
2k

.
The totality ratio compares the weight of satisfied clauses to the sum of all
clause weights. Clearly the competitive ratio can only be better.

The naive algorithm, can be de-randomized by the method of conditional
expectation. Since the expected behaviour is “good”, then for each
variable, we can determine the effect (i.e., the change in the expected
value) of setting the variable to be True or False and choose the setting (i.e
the branch of the randomzation tree) that has the better expectation. The
result obtains at least the ratio of the naive algorithm but could be better.

Note that because ot unit clauses (with one literal), the expectation will
only be 1

2 . But of course, unit clauses should somehow be “easy” to
handle.

16 / 22

The de-randomized nave algorithm is Johnson’s
algorithm

Johnson gave a determnistic algorithm for Max-Sat in 1974 that
maintains, a modified weight w ′j = wj/2|Cj | where |Cj | is the current
number of literals in Cj . That is, when we set a variable, a clause is either
satsified or one literal is elimniated. This insures that clauses become less
valuable (in terms of expected value) whenever a literal is eliminated.
Joshnson’s algorithm only needs input model 1.

In 1992, Yannakakis showed that the de-randomization of the naive
algorithm is equivalent to Johnson’s algorithm and showed that the
competitive ratio of Johnson’s algorithm cannot be better than 2

3 .

In 1999, Chen et al showed that Johnson’s algorithm achieves the
competitive ratio 2

3 .

17 / 22

A Randomized Max-Sat Algirithm with Competitive
Ratio 3

4

The underlying idea for improving the 2
3 ratio of Johnson’s deterministic

algorithm is that in setting the variables, we want to balance the weight of
clauses satisfied with that of the weight of clauses that can no longer be
satisfied. Here we assume that W , the sum of the weights of all clauses is
initially known. (I wonder if this assumption is necessary.)

The improved algorithm uses input model 2 (see Section 11.3). The first 3
4

competitive algorithm was given by Polyczek and Schnitger in 2011 and
then alternative algorithms due to Buchbinder et al and van Zuylen
appearded culminating in the version (we present in the text) in a 2017
paper by Polyczek et al.

The 3
4 ratio is best possible for any online algorithm in input model 2.

This leaves open the optimal deterministic and randomized ratios for input
model 3. Yung [unpublished but verified] shows that 5

6 is a competitive
limitation for any online Max-Sat algritihm with input model 3. The best
offline approximation (via SDP) is not much better than the 3

4 ratio.
18 / 22

Very brief sketch of the Max-Sat randomized
algorithm in Polyczek et al

Let τ≤i be the assignment to the first i variables and let SATi be the
weight of satisfied clauses with respect to the partial assignment τ≤i . Let
UNSATi be the weight of the clauses that can no longer be satisfied given
the assignment τ≤i ; that is, the clauses that are unsatisfied by τ≤i and
containing only variables in {x1, . . . , xi}.

We define Bi = 1
2(SATi + W − UNSATi) where W is the total weight of

all clauses. Note that SAT0 = UNSAT0 = 0 so that B0 = 1
2W ; note also

that SATn = W − UNSATn = the weight of the clauses satisfied by the
algorithm upon termination which implies Bn = SATn. Also, we have
SATi ≤ Bi ≤W − UNSATi for all i .

19 / 22

Continued sketch of the Max-Sat algorithm

As in the de-randomization analysis of the naive randomized algorithm, an
online algorithm can calculate the changes in SATi and UNSATi and
hence Bi when setting xi to True and when setting xi to False. The
algorithm’s plan is to randomly set variable xi so as to increase
E[Bi − Bi−1] where the expectation is conditioned on the setting of the
propositional variables x1, . . . , xi−1 in the previous iterations.

To that end, let ti (resp. fi) be the value of Bi − Bi−1 when xi is set to
True (resp., False). In order to ensure that the value of the partial solution
cannot decrease in any iteration, we would first prove fi + ti ≥ 0. If ti ≥ 0
and fi ≤ 0, we assign xi = True. If ti ≤ 0 and fi > 0, we assign xi = False.
If both ti > 0 and fi > 0 then we assign xi proportionally; that is,
xi = True with probability ti

ti+fi
and set False otherwise. Thus, we obtain

the randomized 3
4 online algorithm.

20 / 22

De-randomnizing the 3
4 competitive Max-Sat

algorithm

Polyczek et al also showed how the 3
4 algorithm can be “de-randomized”

into a two pass online algorithm by the method of conditional expectations.

The basic idea is to use a first pass to create a probability pi for
determinining the truth value of the i th propositional variable xi , and then
use the method of conditional expectations in a second pass to
determninistically set the truth value for xi .

However, in terms of the randomized computation tree we are trying to
de-randomize, we want to have the same probability for every node at the
i th level of the randomized computation tree; that is, not dependent on
the path to that node. In other words, we want to be able to derandomize
based on pi and the previous values given to x1, . . . , xi−1. This can be
accomplished by a modification of the analysis of the randomized
algorithm.

Can priority order or random order provide improved ratios?
21 / 22

Experimental results for MaxSat algorithms
1.6:8 M. Poloczek and D. P. Williamson

Table I. The Performance of Greedy Algorithms

RG JA 2Pass

% Sat ∅ Time % Sat ∅ Time % Sat ∅ Time
SC-APP 97.42 0.38s 98.71 0.38s 99.48 1.11s
MS-APP 95.69 0.25s 97.97 0.23s 98.08 0.63s

SC-CRAFTED 97.40 0.17s 98.37 0.17s 99.04 0.46s
MS-CRAFTED 80.33 0.00s 82.69 0.00s 82.97 0.00s
SC-RANDOM 97.58 1.39s 98.72 1.38s 99.19 5.38s
MS-RANDOM 84.61 0.00s 87.30 0.00s 88.09 0.00s

Therefore, it is even more interesting that the deterministic two-pass algorithm
(2Pass), which is a derandomization of RG and in particular relies on the same algo-
rithmic techniques, outperforms JA (and RG) on all categories. On the instances from
the SAT Competition, it even satisfies more than 99% of the clauses on average. Its
running time is about three times larger than for JA, and 2Pass computes a better
solution than JA in three out of every four instances. The results are summarized in
Table I.

3.2. Nonoblivious Local Search, Tabu Search, and Simulated Annealing
We started the combination of nonoblivious local search with Tabu Search (NOLS +TS)
that was proposed by Pankratov and Borodin [2010] from a random assignment. Its
strengths were the random instances, where it was comparable to JA, and that it also
performed well on MS-CRAFTED. But on the application-based benchmarks it showed a
poor performance: it only averaged 90.5% for SC-APP and 83.6% for MS-APP, which is
surprising because of its good performance reported in Pankratov and Borodin [2010].

A closer examination reveals that NOLS+TS satisfied 98.9% of the clauses on average
for the SC-APP benchmark, if it finished before the timeout. For SC-CRAFTED we observed
a similar effect (98.4%); on the MS-APP the time bound was always violated.

Recall that NOLS+TS and also the other local search methods return the best assign-
ment found in any iteration, if the running time exceeds the time limit; hence, we
interpret our findings that the escape strategy of Tabu Search (with the parameters
suggested in Section 2) does not find a good solution quickly for two-thirds of the SC-APP
instances.

Therefore, we looked at nonoblivious local search, where the initial assignment was
either random or obtained by 2Pass. The latter combination gave better results; there-
fore, we focus on it in this exposition: 2Pass+NOLS achieved a higher mean fraction of
satisfied clauses than NOLS+TS and WalkSat (see later). However, comparing it to 2Pass,
it turns out that the improvement obtained by the additional local search stage itself
is marginal and comes at a high computational cost. For the instances of SC-APP the
average running time was increased by a factor of 40, and for MS-APP even by a factor
of 130 compared to 2Pass.

Spears’s simulated annealing (SA) finds excellent assignments, achieving the peak
fraction of satisfied clauses over all benchmarks: for example, its average fraction of
satisfied clauses is 99.8% for SC-APP and 99.4% for MS-APP. However, these results come
at an extremely high computational cost; in our experiments, SA almost constantly
violated the time bound.

In this context, another series of experiments is noteworthy: when we set the time
bound of SA for each instance individually to the time that 2Pass needed to obtain
its solution for that instance,1 then the average fraction of satisfied clauses of SA
was decreased significantly: for example, for the SC-APP category, its mean fraction

1This analysis technique was proposed by Pankratov and Borodin [2010] and is called “normalization.”

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.6, Publication date: September 2017.

Figure: Table taken from Poloczek and Williamson [2017]. RG is the Poloczek
and Williamson algorithm, JA is Johnson’s algorithm

Fast Approximation Algorithms for MAX SAT 1.6:9

Table II. The Performance of Local Search Methods

NOLS+TS 2Pass+NOLS SA

% Sat ∅ Time % Sat ∅ Time % Sat ∅ Time
SC-APP 90.53 93.59s 99.54 45.14s 99.77 104.88s
MS-APP 83.60 120.14s 98.24 82.68s 99.39 120.36s

SC-CRAFTED 92.56 61.07s 99.07 22.65s 99.72 70.07s
MS-CRAFTED 84.18 0.65s 83.47 0.01s 85.12 0.47s
SC-RANDOM 97.68 41.51s 99.25 40.68s 99.81 52.14s
MS-RANDOM 88.24 0.49s 88.18 0.00s 88.96 0.02s

of satisfied clauses dropped to 99.28%, whereas 2Pass achieved 99.48%. Our empirical
data for local-search-based algorithms is summarized in Table II. Note that local search
methods were allowed to finish the current iteration when the time limit was reached.
That is why their average running time may exceed the time limit of 120s.

3.3. WalkSat, CCLS, and Dist

The random walks of WalkSat typically converged quickly, making it the fastest local
search variant in our line-up. We confirm the observation of Pankratov and Borodin
[2010] that WalkSat performs well on random instances: for SC-RANDOM it found very
good assignments (98.7%) and its running times were particularly short. For the appli-
cation benchmarks, WalkSat’s performance exhibited a large discrepancy: its average
fraction of satisfied clauses for SC-APP was only slightly worse than RG, although at a
higher average running time of about 2 seconds. But for the MS-APP instances it merely
averaged 89.9% satisfied clauses, which is significantly worse than any of the greedy
algorithms.

The sophisticated variable selection strategy of CCLS yielded excellent results on MS-
CRAFTED and MS-RANDOM, thereby confirming the experimental findings of the MAX SAT
Evaluation 2015 [Argelich et al. 2015]. On these sets CCLS even beats SA slightly,
satisfying 85.62% of the clauses on average for MS-CRAFTED and 89.18% for MS-RANDOM.

On the remaining benchmarks, its average number of satisfied clauses is comparable
to WalkSat, and hence in particular is not competitive on industrial instances.

Moreover, CCLS has a considerably higher computational cost. In particular, we note
that even on the tiny instances in MS-CRAFTED and MS-RANDOM, CCLS always uses up the
time budget, which indicates a large time complexity. Thus, its sophisticated strategies
come at the expense of sacrificing scalability, which is the main advantage of the
basic WalkSat.

While Dist was designed for a generalization of MAX SAT, it has been one of the
most successful incomplete solvers in recent MAX SAT evaluations. When applied to
unweighted MAX SAT instances, this algorithm proceeds similarly to WalkSat and
also employs a sophisticated approach for selecting the next variable to be flipped.
Its complexity seems to be the reason that Dist produced a solution only for 71.3% of
the SC-APP instances and for 27.27% in the MS-APP category. Note that Dist periodically
outputs the number of clauses that are unsatisfied with respect to the best assignment
found so far, but on some instances it did not return any value within the time limit;
on others the program refused to run, stating the number of variables was too large. If
Dist does not return any value for an instance, then we count this as 0% of the clauses
satisfied for the respective instance. That is why the fraction of satisfied clauses is
only 70.59% averaged over all SC-APP instances, and merely 25.10% for those in MS-APP.

On the other hand, Dist shows an impressive performance on the MS-CRAFTED and MS-
RANDOM benchmark sets, as had been observed in the MAX SAT Evaluations [Argelich
et al. 2014, 2015]. Here the algorithm essentially matches the extraordinary perfor-
mance of CCLS.

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.6, Publication date: September 2017.

Figure: Table taken from Poloczek and Williamson [2017]. NOLS+TS is
non-oblvious local search initialized by Tabu Search, SA is simulated annealing

22 / 22

