
Online Randomness Extraction
Simulating Barely Random Algorithms in the Random Order Arrival Model

Allan Borodin, Chris Karavasilis, David Zhang

September 28, 2025

1 / 20

Overview

1. Preliminaries

2. Motivation

3. Extracting Randomness

4. Applications

2 / 20

Randomized Online Algorithms

• Randomness from the choices that the algorithm makes, not from the input
sequence, i.e., E[ALG (σ)] is over the random decisions

• Oblivious adversary, i.e., they know the distributions that the algorithm samples but
they do not know the outcome of the coinflips

• Input sequence is adversarially-defined, entirely constructed before the algorithm runs

• 1-bit barely random algorithms use only 1 initial, unbiased bit of randomness. The
algorithms that we study pick one of two deterministic algorithms to execute with a
coin flip, before any inputs arrive

• “If one deterministic algorithm makes a mistake, then the other will do OK. In
expectation we are OK”

3 / 20

Deterministic Random-Order Model (ROM) Algorithms

• Adversary specifies a multiset of n items and the input is a uniform random
permutation (i.e., Pr[sequence σ] = 1

n!)

• Randomness from the input sequence, none from the algorithm’s choices, i.e.,
E[ALG (σ)] is over the permutations

• Removes power from the adversary

• Any algorithm that is ρ-competitive in the ROM is ρ-competitive when each input
item is drawn independently from the same distribution (i.e., i.i.d.)

4 / 20

Motivation

• Deterministic ROM algorithms achieve better (or at least the same) competitive
ratios than randomized online algorithms for all problems that we know

• Can any randomized online algorithm do better than a deterministic ROM algorithm
(for any existing or contrived problem)?

• For the 1-bit barely random algorithms that we know of, we demonstrate how to
construct a deterministic ROM algorithm

5 / 20

Extracting Randomness

• We define the bias β ≥ 1
2 of a bit b to mean Pr[b = 1] ∈ [12 , β]. An unbiased bit is 0

or 1 with equal probability

• Input is stochastic so we should be able to say something about the probability of an
event occurring with respect to the order that items arrive in

• Extract a bit b = 1 if an event occurs and b = 0 otherwise

• If every input item is identical then every permutation is identical – no randomness1

• So assume that there are at least two distinct and comparable items

• Assign subscripts to input items in the order that they arrive, x1, x2, . . . , xn. Does the
first xk 6= x1 arrive when k is even or odd?

• Pr[k even] ∈ (12 ,
2
3], i.e., b = 1 when k even → Pr[b = 1] ∈ (12 ,

2
3]. We extract a bit

with a worst-case bias of 2
3

1Identical items trivialize many of the problems that we consider.
6 / 20

Extracting Randomness

• Strong assumption: what if every input item is distinct?

• Then there is a strict ordering on the input

• Does x1 < x2? Pr[x1 < x2] = 1
2

• b = 1 when x1 < x2 → Pr[b = 1] = 1
2 . We extract an unbiased bit

• More generally, we can extract n
2 unbiased bits from a sequence of n distinct items

7 / 20

Extracting Randomness

• Combine! Assume that there are at least two distinct items

• If the first two input items are distinct then extract an unbiased bit. Otherwise, wait
to see if k is even

• Pr[x1 6= x2] · Pr[x1 < x2|x1 6= x2] + Pr[x1 = x2] · Pr[k is even|x1 = x2] ∈ (12 , 2−
√

2]

• We extract a bit with a worst-case bias of 2−
√

2 ≈ 0.586

8 / 20

Binary String Guessing [Böckenhauer et al., 2014]

• Guess an n-bit binary string, one bit at a time. The true value of a bit is revealed
after each guess. Goal: maximize #correct guesses

• OPT guesses all n bits correctly

• If we guess the bit that appears more than half the time → 2-competitive

• Guess all 0 or all 1 k + 1 times until we make a mistake. Then extract a bit b and
guess it for the rest of the sequence

• E[#correct guesses] ≥ k + (
√

2− 1)(n − k − 1) ≥ (
√

2− 1)(n − 1)

• → OPT
E[#correct guesses] ≤

n
(
√
2−1)(n−1)

• 1√
2−1 ≈ 2.41-competitive. No deterministic algorithm in the adversarial model is

competitive

9 / 20

Knapsack [Han et al., 2015]

• Each item has a weight wi and value vi . In the proportional case, vi = wi . Knapsack
has unit capacity

• Knapsack ratios are typically stated as less than 1

• 1
2 -competitive 1-bit barely random algorithms for general knapsack, and proportional
knapsack with no revoking

• 7
10 -competitive 1-bit barely random algorithm for proportional knapsack with revoking

10 / 20

General Knapsack

• MAX keeps the item with highest value and GREEDY keeps the items with highest
value-density vi

wi
, revoking the least dense items when the knapsack exceeds capacity

• Han et al. run MAX or GREEDY with probability 1
2 each

• De-randomization: Pack initial identical items with GREEDY. If the bit selects MAX
then discard all but the max-value item

• We produce either of their two knapsacks with at least
√

2− 1 probability each

• →
√

2− 1-competitive. No deterministic algorithm in the adversarial model is
competitive

• Needs revoking (allowed in the original model)

11 / 20

Proportional Knapsack

• Maintain two buckets, each with unit capacity. The algorithm attempts to fill the
first bucket and places into the second bucket items too large to fit into the first one.

• Only BIN1 contains items → BIN1 = OPT

• BIN1 and BIN2 both contain items → BIN1 + BIN2 > 1 ≥ OPT

• De-randomization: similar to previous. Once a bit is extracted, revoke items to
match the corresponding knapsack that Han et al. would have packed

• Pick between the two bins each with
√

2− 1 probability →
√

2− 1-competitive

• No deterministic algorithm in the adversarial model is competitive

• Needs revoking (not used in the original randomized algorithm)

12 / 20

Proportional Knapsack

• 7
10 -competitive algorithm is also 1-bit barely random

• An item i is small if wi ≤ 3
10 , medium if 3

10 < wi <
7
10 , and large if wi ≥ 7

10

• Maintain two buckets, each with unit capacity. One algorithm is aggressive and
keeps the heaviest medium items while the other is balanced and keeps lighter
medium (and heavier smaller) items, revoking other items as necessary

• Both pack the same identical items, so once a distinct item arrives we extract a bit
and continue the corresponding deterministic algorithm

• The only loss in the competitive ratio is from the bias in the bit

• Case-by-case analysis: 0.676-competitive in the ROM. We do best when we pick the
aggressive strategy with higher probability

• Needs revoking (allowed in the original model). Beats the tight deterministic bound
of 1

φ ≈ 0.618

13 / 20

Interval Selection [Fung et al., 2014]

• Each interval has a release time ri , processing time pi , deadline di = ri + pi , and
weight wi

• We consider real-time problems in the real-time with random order model

• Ji = (ri , pπ(i), ri + pπ(i),wπ(i)) for a uniform random permutation π

• Arbitrary weights: Single-length (pi = p is fixed), Monotone (ri < rj → di ≤ dj)

• Weights as functions of interval length: C-benevolent (wi is a convex increasing
function of pi), D-benevolent (wi is a decreasing function of pi)

• Problem: We cannot extract randomness from release times... Leads to
pseudo-identical intervals with the same pi and wi

14 / 20

Interval Selection [Fung et al., 2014]

• Single-length algorithm (works in the real-time and online models): Slots s1, s2, s3 . . .
are [0, p), [p, 2p), [2p, 3p), . . .

• No algorithm can schedule two intervals that release in the same slot without conflict

• Fung et al. initially pick even-indexed or odd-indexed slots with 1
2 probability each

and then take the heaviest intervals that release during slots with the chosen parity

• Generalizes to monotone, C-benevolent and D-benevolent instances but slots must
be redefined adaptively online

• De-randomization: Schedule a newly-released pseudo-identical interval if it does not
conflict. When a distinct interval arrives, extract a bit and define slots from the
current time forward

• Fung et al. are 2-competitive in all instances – we are 1√
2−1 ≈ 2.41-competitive in all

instances

15 / 20

Throughput

• Each job has a release time ri , processing time pi , deadline di , and weight wi . Define
slack si = di − ri − pi

• Real time with random-order: Ji = (ri , pπ(i), sπ(i),wπ(i)) for a uniform random
permutation π

• [Kalyanasundaram and Pruhs, 2003]: Unweighted single-processor throughput:
> 100000-competitive 1-bit barely random algorithm (no det. alg is competitive)
• Both deterministic algorithms behave identically on pseudo-identical intervals →

O(1)-competitive de-randomization by choosing between them once a distinct interval
arrives

• [Chrobak et al., 2007]: Unweighted single-processor single-length throughput:
5
3 -competitive 1-bit barely random algorithm (det. lower bound of 2)
• De-randomize by greedily taking pseudo-identical intervals and beginning their

(synchronized) deterministic algorithms once a distinct interval releases. Fair bit
→ 5

3 -competitive, (worst case) biased bit → 1.77-competitive

16 / 20

Job Shop [Kimbrel and Saia, 2000]

• Scheduling on 2 machines. Goal: minimize makespan

• Each job has some number of operations. Only the first operation is known initially
and a subsequent operation is revealed on the completion of its predecessor

• Processing times per operation are not known until they complete

• If a job has operations o1, o2, o3, . . . , odd-indexed operations are requests to machine
1 and even-indexed operations are requests to machine 2; o1 can be a dummy entry
if the job requests machine 2 first

• An operation may be preempted and resumed later

• Assign priorities to jobs arbitrarily. One deterministic algorithm runs jobs in priority
order on machine 1 and in the reverse order on machine 2. The other deterministic
algorithm runs jobs in the reverse order on machine 1 and in priority order on
machine 2

• De-randomization is difficult because we need to reverse priorities on the machines

17 / 20

Makespan [Albers, 2002]

• Each job has a processing requirement pj , jobs revealed sequentially

• 1-bit barely random is 1.916-competitive by picking between two strategies – one
aggressive (keeping more machines lightly loaded) and one passive (distributing jobs
more evenly)

• Strategies behave very differently on identical jobs (simulations suggest that Ω(m)
job relocations are required to move from one state to the other)

• De-randomization: Competitive ratio of at least 2 if we uniformly spread identical
jobs before we can extract a bit (using no recourse)

• 1.8478-competitive deterministic ROM algorithm due to [Albers and Janke, 2021]

18 / 20

References I

Albers, S. (2002).

On randomized online scheduling.

In Reif, J. H., editor, Proceedings on 34th Annual ACM Symposium on Theory of Computing, May
19-21, 2002, Montréal, Québec, Canada, pages 134–143. ACM.

Albers, S. and Janke, M. (2021).

Scheduling in the random-order model.

Algorithmica, 83(9):2803–2832.

Böckenhauer, H., Hromkovic, J., Komm, D., Krug, S., Smula, J., and Sprock, A. (2014).

The string guessing problem as a method to prove lower bounds on the advice complexity.

Theor. Comput. Sci., 554:95–108.

Chrobak, M., Jawor, W., Sgall, J., and Tichỳ, T. (2007).

Online scheduling of equal-length jobs: Randomization and restarts help.

SIAM Journal on Computing, 36(6):1709–1728.

19 / 20

References II

Fung, S. P., Poon, C. K., and Zheng, F. (2014).

Improved randomized online scheduling of intervals and jobs.

Theory of Computing Systems, 55(1):202–228.

Han, X., Kawase, Y., and Makino, K. (2015).

Randomized algorithms for online knapsack problems.

Theoretical Computer Science, 562:395–405.

Kalyanasundaram, B. and Pruhs, K. R. (2003).

Maximizing job completions online.

Journal of Algorithms, 49(1):63–85.

Kimbrel, T. and Saia, J. (2000).

On-line and off-line preemptive two-machine job shop scheduling.

Journal of Scheduling, 3:335–364.

20 / 20

	Preliminaries
	Motivation
	Extracting Randomness
	Applications

