CSC2421: Online and Other Myopic Algorithms
Fall 2025

Allan Borodin

September 17, 2025

1/20

Week 3

Annoucements

@ No class next week (unless you want to meet as a group and think
about what might be good research projects for individual or groups of
people to work on. | am pleased to say that David Zhang will present
a guest lecture on work that he has been doing with Chris Karavasilis
and myself on randomness extraction from a ROM source. .

@ | plan to post the beginning of the first problem set soon. Note that
there are exercises and open problems at the end of most chapters.

Todays agenda
@ The proportional and general knapsack problem.
@ Priority algorithms
@ Extensions of online and priority algorithms

2/20

The knapsack problem

The {0,1} knapsack problem
@ Input: Knapsack size capacity C and n items Z = {l,..., I} where
li = (v, s;) with v; (resp. s;) the profit value (resp. size) of item ;.
o Output: A feasible subset S C {1,..., n} satisfying > ;.55 < C so
as to maximize V/(S5) = ;s V).

Note: | would prefer to use approximation ratios r > 1 (so that we can
talk unambiguously about upper and lower bounds on the ratio) but many
people use approximation ratios p < 1 for maximization problems; i.e.
ALG > pOPT. For certain topics (e.g., knapsack problems), fractional
approximation and competitive ratios are more the norm.

@ |t is easy to see (i.e., once you have seen the nemesis sequences) that
the most natural deterministic greedy methods (sort by non-increasing
profit densities Z—j sort by non-increasing profits v;, sort by
non-decreasing size s;) will not yield any constant ratio (i.e. greater
than some fixed € > 0).

@ What other orderings could vou imagine? 3/20

Randomized Priority and Online Algorithms for
Knapsack Problems

Negative results motivate new directions

We already have seen that the online deterministic greedy 2 — % lower
bound for the identical machines makespan problem motivated the offline
greedy LPT algorithm.

We will see that no deterministic “greedy algorithm” can obtain a
constant approximation. To prove such a lower bound we need a definition
for greedy algorithms. We will formalize (and generalize) greedy
algorithms by what we call priority algorithms.

But first, let's see some positive and negative results for priority and online
algorithms with regard to the general and proportional knapsack problems.

4/20

A randomized priority algorithm for the general
knapsack

Let A; (respectively Ay) represent the algorithm when sorting by
non-increasing value densities :—j (respectively, sorting by by non-increasing
values v;). While neither A; nor A yield constant approximations, it turns
out that “doing both” is a % -approximation. That is, the sum of the
values provided by A; and A; is at least as good as an optimal solution.
But, of course, this sum will not usually be feasible.

But the fact that the sum can only exceed an optimal solution means that
at least one of these two algorithms must provide a % approximation.

Hence randomly choosing one of these two algorithms is a %

approximation in expectation (but not with “high probability”). We call
this a 1-bit barely random algorithm.

For the proportional knapsack, the algorithm A; and A, are identical and

hence there is a deterministic greedy algorithm that acheieve a 1

2
approximation.
5/20

Online algorithms for the proportional and general
knapsack problems?

Without loss of generality we can assume that the knapsack capacity
C=1. Why?

It is not difficult to see that even for the proportional knapsack problem
there cannot be a constant detertministic competitive ratio. (See Theorem
3.4.3. in text.)

Remember my warning about “not difficult to see”. Same warnings
about “similarly we have ...”, etc.

Can we have a randomized online algorithm to obtain a good comnpetitive
online ratio for the proportional (or general knapsack) problem?

For the proportional knapsack, it is reasonably easy to see that we can
obtain a % competitive barely random algorithm. Then if there is an input
item with value v; > % we would have a half approximation. So we can
use one bit of randomness to choose between accepting greedily or waiting
for an item with value at least %

6/20

Online algorithms for the knapsack problem
continued.

Can we improve upon the % competitive ratio for the proportional
knapsack problem?

7/20

Online algorithms for the knapsack problem
continued.

Can we improve upon the % competitive ratio for the proportional
knapsack problem?

YES. There is a very closely related algorithm (Called TwoBin, Agorithm
3.4.2) which is always trying to fill bin 1 and when an item can't be added
to bin 1, it tries to add it to bin 2.

Can we do better by using more random bits?

7/20

Online algorithms for the knapsack problem
continued.

Can we improve upon the % competitive ratio for the proportional
knapsack problem?

YES. There is a very closely related algorithm (Called TwoBin, Agorithm
3.4.2) which is always trying to fill bin 1 and when an item can't be added
to bin 1, it tries to add it to bin 2.

Can we do better by using more random bits?

NO. Consider two possible input sequences: a single item with value € or a
sequence of 2 items: an ¢ item and an item of value 1. See fact 3.4.6.
Note that this is a lower bound against an oblivious adversary since the
adversary knows the probability with which the algorithm will take the first
€ valued item.

Can we obtain a constant randomized competitive ratio for the general
knapsack?

7/20

Online algorithms for the knapsack problem
continued.

Can we improve upon the % competitive ratio for the proportional
knapsack problem?

YES. There is a very closely related algorithm (Called TwoBin, Agorithm
3.4.2) which is always trying to fill bin 1 and when an item can't be added
to bin 1, it tries to add it to bin 2.

Can we do better by using more random bits?

NO. Consider two possible input sequences: a single item with value € or a
sequence of 2 items: an ¢ item and an item of value 1. See fact 3.4.6.
Note that this is a lower bound against an oblivious adversary since the
adversary knows the probability with which the algorithm will take the first
€ valued item.

Can we obtain a constant randomized competitive ratio for the general
knapsack? NO See Theorem 3.10.2

7/20

Can revoking help?

Online algorithms with revoking are discussed in what is now chapter 16.
(It is chapter 15 in the text draft | originally uploaded. | will upload a
more recent version this week.)

It is not difficult to see that for the proportional knapsack, we can avoid
ramdomization by having the ability to revoke previously accepted items.
We call this the revocable greedy algorithm. Can you guess the algorithm?

With randomization and revoking there is a .7 competitive algorithm

Is there a deterministic (constant) competitive algorithm with revoking for
the general knapsack problem?

8/20

Can revoking help?

Online algorithms with revoking are discussed in what is now chapter 16.
(It is chapter 15 in the text draft | originally uploaded. | will upload a
more recent version this week.)

It is not difficult to see that for the proportional knapsack, we can avoid
ramdomization by having the ability to revoke previously accepted items.
We call this the revocable greedy algorithm. Can you guess the algorithm?

With randomization and revoking there is a .7 competitive algorithm

Is there a deterministic (constant) competitive algorithm with revoking for
the general knapsack problem?

NO. See Fact 16.1.13

8/20

The priority algorithm model and variants

As part of our discussion of greedy (and greedy-like) algorithms, | want to
present the priority algorithm model and how it can be extended in
(conceptually) simple ways to go beyond the power of the priority model.

@ What is the intuitive nature of a greedy algorithm as exemplified by
the algorithmns we discuss in our CSC 373 course? With the
exception of Huffman coding (which we can also deal with), like
online algorithms, all these algorithms consider one input item in each
iteration and make an irrevocable “greedy” decision about that item..

@ We are then already assuming that the class of search/optimization
problems we are dealing with can be viewed as making a decision Dy
about each input item / (e.g. on what machine to schedule job /i in
the makespan case) such that {(h, D1),...,(ln, Dp)} constitutes a
feasible solution.

9/20

Priority model continued

@ Note: that a problem is only fully specified when we say how input
items are represented. (This is usually implicit in an online algorithm.)

@ We mentioned that a “non-greedy” online algorithm for identical
machine makespan can improve the competitive ratio; that is, the
algorithm does not always place a job on the (or a) least loaded
machine (i.e. does not make a greedy or locally optimal decision in
each iteration). It isn't always obvious if or how to define a “greedy”
decision but for many problems the definition of greedy can be
informally phrased as “carpe diem” or “live for today” (i.e. assume
the current input item could be the last item) so that the decision
should be an optimal decision given the current state of the
computation.

10/20

Greedy decisions and priority algorithms continued

@ For example, in the knapsack problem, a greedy decision always takes
an input if it fits within the knapsack constraint and in the makespan
problem, a greedy decision always schedules a job on some machine
so as to minimize the increase in the makespan. (This is somewhat
more general than saying it must place the item on the least loaded
machine.)

@ In the definition of priority algorithms there is no requirement for
being greedy.

@ We have both fixed order priority algorithms (e.g. unweighted interval
scheduling and LPT makespan) and adaptive order priority algorithms
(e.g. the set cover greedy algorithm and Prim's MST algorithm).

@ The key concept is to indicate how the algorithm chooses the order in
which input items are considered. We cannot allow the algorithm to
choose say “an optimal ordering”.

@ We might be tempted to say that the ordering has to be determined
in polynomial time but that gets us into the “tarpit” of trying to

prove what can and can't be done in (say) polynomial time.
11/20

The priority model definition

@ We take an information theoretic viewpoint in defining the orderings
we allow.

@ Lets first consider deterministic fixed order priority algorithms. Since |
am using this framework mainly to argue negative results (e.g. a
priority algorithm for the given problem cannot achieve a stated
approximation ratio), we will view the semantics of the model as a
game between the algorithm and an adversary.

o Initially there is some (possibly infinite) set 7 of potential inputs.
The algorithm chooses a total ordering m on 7. Then the adversary
selects a subset Z C J of actual inputs so that Z becomes the input
to the priority algorithm. The input items /,..., I, are ordered
according to .

@ In iteration k for 1 < k < n, the algorithm considers input item /j
and based on this input and all previous inputs and decisions (i.e.
based on the current state of the computation) the algorithm makes
an irrevocable decision Dy about this input item.

12/20

The fixed (order) priority algorithm template

J is the set of all possible input items
Decide on a total ordering 7 of J
Let Z C J be the input instance

S$:=9 % S is the set of items already seen
i:=0 % i =|S]
while 7\ S # @ do

[:=i+1

Z:=T\S

li :=ming{l € T}
make an irrevocable decision D; concerning /;
5 = 5 U {I,}

end

Figure: The template for a fixed priority algorithm

13/20

Some comments on the priority model

A special (but usual) case is that 7 is determined by a function

f: J — R and and then ordering the set of actual input items by
increasing (or decreasing) values f(). (We can break ties by say using
the input identifier of the item to provide a total ordering of the input
set.) N.B. We make no assumption on the complexity or even the
computability of the ordering 7 or function f.

NOTE: Online algorithms are fixed order priority algorithms where the
ordering is given adversarially; that is, the items are ordered by the
input identifier of the item.

As stated we do not give the algorithm any additional information
other than what it can learn as it gradually sees the input sequence.
However, we can allow priority algorithms to be given some (hopefully
easily computed) global information such as the number of input
items, or say in the case of the makespan problem the minimum
and/or maximium processing time (load) of any input item. (Some
inapproximation results can be easily modified to allow such global

information.)
14/20

The adaptive priority model template

J is the set of all possible input items
T is the input instance

S:=0 % S is the set of items already considered
i:=0 % i=|S]|
while 7\ S # @ do

i:=i+1

decide on a total ordering 7w; of J

Z:=T\S

l; := mingﬂ'_{/ € I}
make an irrevocable decision D; concerning /;
S :=SuU{l}
T =T \A{l:1<; Ii}
% some items cannot be in input set
end

Figure: The template for an adaptive priority algorithm

15/20

Inapproximations with respect to the priority model

Once we have a precise model, we can then argue that certain
approximation bounds are not possible within this model. Such
inapproximation results have been established with respect to priority
algorithms for a number of problems but for some problems much better
approximations can be established using extensions of the model.

© For the weighted interval selection (a packing problem) with arbitrary
weighted values (resp. for proportional weights v; = |f; — s;|), no
priority algorithm can achieve a constant approximation (respectively,
better than a 3-approximation).

@ For the set cover problem, the natural greedy algorithm is essentially
the best priority algorithm.

© As | perhaps previously mentioned, for deterministic fixed order
priority algorithms, there is an Q(log m/ loglog m) inapproximation
bound for the makespan problem in the restricted machines model.

16 /20

More on provable limitations of the priority model

The above mentioned inapproximations are with respect to deterministic
priority algorithms. For an adaptive algorithm, the game between an
algorithm and an adversary can conceptually be viewed as an alternating
sequence of actionst:

@ The adversary eliminates some possible input items

@ The algorithm makes a decision for the item with highest priority and

chooses a new ordering for all possible remaining input items.

However, we note that for deterministic algorithms, since the adversary
knows precisely what the algorithm will do in each iteation, it could
initially set the input Z once the algorithm is known.

17/20

More on provable limitations of the priority model

The above mentioned inapproximations are with respect to deterministic
priority algorithms. For an adaptive algorithm, the game between an
algorithm and an adversary can conceptually be viewed as an alternating
sequence of actionst:

@ The adversary eliminates some possible input items

@ The algorithm makes a decision for the item with highest priority and

chooses a new ordering for all possible remaining input items.

However, we note that for deterministic algorithms, since the adversary
knows precisely what the algorithm will do in each iteation, it could
initially set the input Z once the algorithm is known.

For randomized algorithms, there is a difference between an oblivious
adversary that creates an initial subset Z of items vs an adaptive adversary
that is playing the game adaptively reacting to each decision by the
algorithm.

Unless stated otherwise when discussing randomized algorithms we are

assuming an oblivious adversary.
17/20

Extensions of the priority order model

In discussing more general online frameworks, we already implicitly
suggested some extensions of the basic priority model (that is, the basic
model where we have one-pass and one irrevocable decision). The
following online or priority algorithm extensions can be made precise:

@ Decisions can be revocable to some limited extent or at some cost.
For example, we know that in the basic priority model we cannot
achieve a constant approximation for weighted interval scheduling.
However, if we are allowed to permanently discard previously accepted
intervals (while always maintaining a feasible solution), then we can
achieve a 4-approximation. (but provably not optimality).

@ While the knapsack problem cannot be approximated to within any
constant, we can achieve a 2-approximation by taking the maximum
of 2 greedy algorithms. More generally we can consider some “small”
number k of priority (or online) algorithms and take the best result
amongst these k algorithms. The partial enumeration greedy
algorithm for the makespan and knapsack problems are an example of

this type of extension.
18/20

Extensions of the priority order model continued

@ Closely related to the “best of k online” model is the concept of online
algoitthms with “advice”. (One could also study priority algorithms
with advice but that has not been done to my knowledge.) There are
two advice models, a model where one measures the maximum
number of advice bits per input item, and a model where we are given
some number ¢ of advice bits at the start of the computation. The
latter model is what | will mean by “online with advice.” Online with
¢ advice bits is equivalent to the max of k = 2¢ online model.

19/20

Extensions of the priority order model continued

@ Closely related to the “best of k online” model is the concept of online
algoitthms with “advice”. (One could also study priority algorithms
with advice but that has not been done to my knowledge.) There are
two advice models, a model where one measures the maximum
number of advice bits per input item, and a model where we are given
some number ¢ of advice bits at the start of the computation. The
latter model is what | will mean by “online with advice.” Online with
¢ advice bits is equivalent to the max of k = 2¢ online model.

NOTE: This model is a very permissive in that the advice bits can be
a function of the entire input. Of course, in practice we want these
advice bits to be “easily determined” (e.g., the number of input
items, or the ratio of the largest to smallest weight/value) but in
keeping with the information theoretic perspective of onine and
priority algorithms, one doesn’t impose any such restriction.

@ There are more general parallel priority based models than “best of k"
algorithms. Namely, parallel algorithms could be spawning or aborting

threads (as in the pBT model to be discussed later).
19/20

Multipass algorithms

@ Another model that provides improved results is to allow multiple
passes (over the input items) rather than just one pass.

@ This is not a well studied model but there are two relatively new
noteworthy results that we will be discussing:

o

There is deterministic 3/4 approximation for weighted Max-Sat that is
achieved by two “online passes” (i.e., the input sequence is determined
by an adversary) over the input sequence whereas there is evidence
that no one pass deterministic online or priority algorithm can acheive
this ratio.

There is a % approximation for bipartitie matching that is achieved by

two online passes whereas no deterministic online or priority algorithm

can do asymptotically better than a % approximation.

@ It is not clear how best to formalize these multi-pass algorithms.
Why?

20/20

Multipass algorithms

@ Another model that provides improved results is to allow multiple
passes (over the input items) rather than just one pass.

@ This is not a well studied model but there are two relatively new
noteworthy results that we will be discussing:

o

There is deterministic 3/4 approximation for weighted Max-Sat that is
achieved by two “online passes” (i.e., the input sequence is determined
by an adversary) over the input sequence whereas there is evidence
that no one pass deterministic online or priority algorithm can acheive
this ratio.

There is a % approximation for bipartitie matching that is achieved by

two online passes whereas no deterministic online or priority algorithm

can do asymptotically better than a % approximation.

@ It is not clear how best to formalize these multi-pass algorithms.
Why? What information should we be allowed to convey between
passes?

20/20

