CSC2421: Online and Other Myopic Algorithms
Fall 2025

Allan Borodin

September 10, 2025

1/23



Week 2

We ended last week including the last few slides to complete the
discussion of the chapters.

We will just briefly go over the listing of Chapters 12-19. (I am not certain
if | discussed Chapters 12 and 13.)

Then | will present a little more motivation for this course.

And then (at long last) we will proceed with some technical discussion of
the makespan problem.

2/23



Why Study Online and Other Myopic Algorithms?

In many applications, there is an inherent online requirement. For
example, paging (also called caching) algorithms have to decide what page
to evict when the cache (or some level of the memory hierarchy) is full.

Some auctions need to be run in an online fashion. One very important
example is online advertising (i.e. selling ads deriving from online search to
advertisers).

In other applications it may not be a requirement but rather a desireable
property. Moreover, online and other myopic algorithms tend to be
conceptually simple and very efficient.

Even when online algorithms do not provide solutions that are
“competitive” in performance with more complex algorithms, they can
serve as a benchmark or initial solution when an initial solution is needed
quickly.

3/23



The difference between online/myopic algorithm
analsyis and more standard algorithm analysis as in
approximation algorithms and complexity theory.

The seminal work of Cook-Karp-Levin on NP-completeness strongly
suggests that there are many related problems that cannot be solved
efficiently (i.e., in polynomial time). But this is still a conjecture.

Although “we” strongly believe P #£ NP, we do not have explicit problems
f in NP for which we can prove that f is not computable in linear time for
a sufficiently general model of computation.

In contrast, in the analysis of online and other myopic algorithms, we
restrict the class of algorithms and prove negative results without any
complexity (or even computability) assumptions. We use what are called
information theoretic arguments to establish negative results. That is,
because the algorithm is working with incomplete information, there are
limitations to what such an algorithm can do. Aside: This is one reason
why we have debated whether or not to include Streaming and

Dynamic Algorithms. 4/23



Comments and disclaimers on the course perspective

@ | consider this course to be a “foundational graduate course” even
though online and other myopic algorithms are a small part of the
field of algorithm design and analysis.

@ Although the topic seems focused, the analysis of these algorithms
often introduces analysis methods used more generally in algorithmic
analysis.

Most graduate algorithms courses are biased towards some research
perspective. Given that CS might be considered (to some extent) The
Science and Engineering of Algorithms, one cannot expect any
comprehensive introduction to algorithm design and analysis in any
course.

@ | already mentioned that online algorithms is currently an active part
of TCS. The reason is mainly that the number of online applications
keeps expanding and new algorithmic ideas and results continue to be
developed. Furthermore, there is increasing interest in the many
variants of online algorithms and analysis that address current

applications.
5/23



Rest of todays agenda

| have posted a somewhat current draft of the text on the web page.

Pleaase do not distribute.

The text is constantly changing but the first 7 chapters are pretty stable. |
will update the text draft in a few weeks.

So... before we really begin, are there any questions or comments?

6/23



Rest of todays agenda

| have posted a somewhat current draft of the text on the web page.
Pleaase do not distribute.

The text is constantly changing but the first 7 chapters are pretty stable. |
will update the text draft in a few weeks.

So... before we really begin, are there any questions or comments?
We start with a little history and the makespan problem.

I will more or less start by following the chapter sequence but will
interject some more recent developments.

6/23



Greedy and online algorithms:
Graham'’s online and LPT makespan algorithms

o Let's start with these two greedy algorithms (one online and one
“semi-online” ) that date back to Graham’s 1966 and 1969 papers.

@ These are good starting points since (preceding NP-completeness)
Graham conjectured that these are hard (requiring exponential time)
problems to compute optimally but for which there were worst case
approximation ratios (although he didn't use that terminology).

@ This might then be called the start of worst case approximation
algorithms. One could also even consider this to be the start of online
algorithms and competitive analysis (although one usually refers to a
1985 paper by Sleator and Tarjan as the seminal paper in this regard).
As pointed out in Chapter 1, there are other works that precede even
the Graham paper.

@ There are some general concepts to be observed in Graham’s work
and (even after more than 50 years) still open questions concerning

the many variants of makespan problems.
7/23



The makespan problem for identical machines

The input consists of n jobs J = J; ..., J, that are to be scheduled
on m identical machines.

Each job Jx is described by a processing time (or load) p.

The goal is to minimize the latest finishing time (maximum load) over
all machines.

That is, the goal is a mapping 0 : {1,...,n} — {1,..., m} that

minimizes maxy (Z&U(Z):k pe)-

makespan

i

[picture taken from Jeff Erickson’s lecture notes|
8/23



Redux: The Many Variants of Online Algorithms

As | indicated, Graham'’s algorithm could be viewed as the first example of
what has become known as competitive analysis (as named in a paper by
Manasse, McGeoch and Sleator) following the paper by Sleator and Tarjan
which explicitly advocated for this type of analysis. Another early (pre
Sleator and Tarjan) example of such analysis was Yao's analysis of online
bin packing algorithms.

In competitive analysis we compare the performance of an online algorithm
against that of an optimal solution. The meaning of online algorithm here
is that input items arrive sequentially and the algorithm must make an
irrevocable decision concerning each item. (For makespan, an item is a job
and the decision is to choose a machine on which the item is scheduled.)

But what determines the order of input item arrivals?

9/23



The Many Variants of Online Algorithms continued

@ In the “standard” meaning of online algorithms (for CS theory), we
think of an adversary as creating a nemesis input set and the ordering
of the input items in that set. So this is traditional worst case analysis
as in approximation algorithms applied to online algorithms. If not
otherwise stated, we will assume this as the meaning of an online
algorithm and if we need to be more precise we can say online
adversarial input model.

@ We will also sometimes consider an online stochastic model where an
adversary defines an input distribution and then input items are
sequentially generated. There can be more general stochastic models
(e.g., a Markov process) but the i.d. and i.i.d models are common in
analysis. Stochastic analysis is well studied in OR.

@ In the i.d. and i.i.d models, we can assume that the distributions are
known by the algorithm or unknown.

@ In the random order model (ROM), an adversary creates a size n
nemesis input set and then the items from that set are given in a

uniform random order (i.e. uniform over the n! permutations)
10/23



More general online frameworks

In the standard online model (and the variants we just mentioned), we are
considering a one pass algorithm that makes one irrevocable decision for
each input item.

There are many extensions of this one pass paradigm. For example:
@ An algorithm is allowed some limited ability to revoke previous
decisions.
@ There may be some forms of lookahead (e.g. buffering of inputs).
@ The algorithm may maintain a “small’ number of solutions and then
(say) take the best of the final solutions.
@ The algorithm may do several passes over the input items.
@ The algorithm may be given (in advance) some advice bits based on
the entire input.
Throughout our discussion of algorithms, we can consider deterministic or
randomized algorithms. In the online models, the randomization is in
terms of the decisions being made. (Of course, the ROM model is an

example of where the ordering of the inputs is randomized.)
11/23



Other measures of performance

The above variants address the issues of alternative input models, and
relaxed versions of the online paradigm.

Competitive analysis is really just asymptotic approximation ratio analysis
applied to online algorithms. Given the number of papers devoted to
online competitive analysis, it is the standard measure of performance.

However, it has long been recognized that as a measure of performance,
competitive analysis is often at odds with what seems to be observable in
practice. Therefore, many alternative measures have been proposed. An
overview of a more systematic study of alternative measures (as well as
relaxed versions of the online paradigm) for online algorithms is provided in
Kim Larsen’s lecture slides that | have placed on the course web site.

See, for example, the discussion of the accommodating function measure
(for the dual bin packing problem) and the relative worst order meaure for
the bin packing coloring problem.

12/23



Returning to Graham'’s online greedy algorithm

Consider input jobs in any order (e.g. as they arrive in an online setting)
and schedule each job J; on any machine having the least load thus far.

@ We will see that the approximation ratio for this algorithm is 2 — %;

that is, for any set of jobs 7, Cgreedy(J) < (2 — %)COPT(j).
» Cx denotes the cost (or makespan) of a schedule A.

» OPT stands for any optimum schedule.

o Basic proof idea: OPT > (3_; p;)/m; OPT > max;p;
What is Cgreedy in terms of these requirements for any schedule?

makespan

< OPT

< OPT

i

[picture taken from Jeff Erickson’s lecture not@%3



Graham’s online greedy algorithm

Consider input jobs in any order (e.g. as they arrive in an online setting)
and schedule each job J; on any machine having the least load thus far.

@ In the online “competitive analysis” literature the ratio Cgﬁr

the competitive ratio and it allows for this ratio to just hold in the
limit as Copr increases. This is the analogy of asymptotic
approximation ratios.

is called

NOTE: Often, we will not provide proofs in the lecture notes but rather
will do or sketch proofs in class (or leave a proof as an exercise).

@ The approximation ratio for the online greedy is “tight” in that there
is a sequence of jobs forcing this ratio.

@ The negative result (i.e. there is “bad" input sequence for the
algorithm) is not an asymptotic result. s there a “meaningful”
asymptotic result?

@ This bad input sequence suggests a better algorithm, namely the LPT

(offline or sometimes called semi-online) greedy algorithm.
14/23



Graham’s LPT algorithm

Sort the jobs so that p; > po... > p, and then greedily schedule jobs on
the least loaded machine.

The (tight) approximation ratio of LPT is (5 — 3%7)
It is believed that this is the best “greedy” algorithm but how would

one prove such a result? This of course raises the question as to what
is a greedy algorithm.

We will present the priority model for greedy (and greedy-like)
algorithms. | claim that all the algorithms mentioned on the next
slide can be formulated within the priority model.

Assuming we maintain a priority queue for the least loaded machine,

» the online greedy algorithm would have time complexity O(nlog m)
which is (nlog n) since we can assume n > m.
» the LPT algorithm would also have time complexity O(nlog n).

15/23



Greedy algorithms in CSC373

Some of the greedy algorithms we study in different offerings of CSC 373

The optimal algorithm for the fractional knapsack problem and the
approximate algorithm for the proportional profit knapsack problem.
The optimal unit profit interval scheduling algorithm and
3-approximation algorithm for proportional profit interval scheduling.
The 2-approximate algorithm for the unweighted job interval
scheduling problem and similar approximation for unweighted
throughput maximization.

The Kruskal and Prim optimal algorithms for minimum spanning tree.

@ Huffman’s algorithm for optimal prefix codes.

@ Graham's online and LPT approximation algorithms for makespan

minimization on identical machines.

The 2-approximation for unweighted vertex cover via maximal
matching.

The "natural greedy” In(m) approximation algorithm for set cover.

16/23



Makespan: Some Additional Comments

@ There are many refinements and variants of the makespan problem.

@ There was significant interest in the best competitive ratio (in the
online setting) that can be achieved for the identical machines
makespan problem.

@ The online greedy gives the best online ratio for m = 2,3 but better
bounds are known for m > 4. For arbitrary m, as far as | know,
following a series of previous results, the best known approximation
ratio is 1.9201 (Fleischer and Wahl) and there is 1.88 inapproximation
bound (Rudin). Basic idea: leave some room for a possible large job;
this forces the online algorithm to be non-greedy in some sense but
still within the online model.

@ Makespan has been actively studied with respect to three other
machine models.

@ Randomization, ML-advice, and recourse can provide better
competitive ratios for makespan applications (and other applications).

17/23



A Not So New Result for the Makespan problem on
Identical machines

In 2002, Susanne Albers gave a randomized algorithm that uses only one
initial unbiased random bit to decide between two deterministic algorithms.
This results in a randomized algorithm that (in expectation wrt to this
random bit) is 1.916 competitive beating the best known deterministic
algorithm. This is still currently the best randomized algorithm for the
makespan problem on identical machines. Albers also gave a ﬁ lower
bound for all m. This ratio limits to 5 ~ 1.5819 as m — oo.

Why | am interested in a result that makes such a small improvement and
probably is not the final word on randomized makespan algorithms?

18/23



A Not So New Result for the Makespan problem on
Identical machines

In 2002, Susanne Albers gave a randomized algorithm that uses only one
initial unbiased random bit to decide between two deterministic algorithms.
This results in a randomized algorithm that (in expectation wrt to this
random bit) is 1.916 competitive beating the best known deterministic
algorithm. This is still currently the best randomized algorithm for the

makespan problem on identical machines. Albers also gave a lower

_1
1=
bound for all m. This ratio limits to 5 ~ 1.5819 as m — oo.
Why | am interested in a result that makes such a small improvement and
probably is not the final word on randomized makespan algorithms?

| am generally interested in results that lead to more general observations.
For example, | am interested in when a randomized algorithm can be
simulated by a deterministic algorithm that extracts randomness from the
random input string in the random order model. Can we obtain better
bounds using more than 1 bit of randimness?

18/23



Two Relatively New Results for the Makespan
Problem on Identical Machines

Randomness extraction from a ROM input sequence is an issue that Chris
Karavasilis and | began to recently study. David Zhang is looking at the
Albers paper with regard to this kind of online random bit extraction.

The issue here is how soon can we extract the random bit and use that to
simulate the “barely random” algorithm.

In a 2021 paper, Albers and Janke show that for the makespan problem on
identical machines there is a deterministic algorithm in the ROM model
that in expectation (over the randomness in the input sequence) is 1.8478
competitive provably beating the determnistic lower bound that holds for
adversarial input sequences and better than the best known randomized
ratio. Osborn and Torng [2008] show that Graham’s online greedy
algorithm is not better than 2 in ROM (asymptotically as m — o).

Note: We will see examples (e.g., the Secretary problem) where ROM can
even more significanty beat randomized algorithms acting on adversarial

sequences.
19/23



The uniformly related machine model

@ Each machine i has a speed s;

@ As in the identical machines model, job J; is described by a
processing time or load p;.

@ The processing time to schedule job J; on machine i is p;/s;.

@ There is an online algorithm that achieves a constant competitive
ratio.

@ | think the best known online ratio is 5.828 due to Berman et al
following the first constant ratio by Aspnes et al.

@ Ebenlendr and Sgall establish an online inapproximation of 2.564
following the 2.438 inapproximation of Berman et al.

20/23



The restricted machines model

Every job J; is described by a pair (pj, S;) where S; C {1,..., m} is
the set of machines on which J; can be scheduled.

This (and the next model) have been the focus of a number of papers
(for both online and offline) and there has been some relatively recent
progress in the offline restricted machines case.

Even for the case of two allowable machines per job (i.e. the graph
orientation problem), this is an interesting (and still not well
undderstood) problem.

Azar et al show that log,(m) (resp. In(m)) is (up to £1) the best
competitive ratio for deterministic (resp. randomized) online
algorithms with the upper bounds obtained by the “natural greedy
algorithm”.

It is not known if there is an offline greedy-like algorithm for this
problem that achieves a constant approximation ratio. Regev [IPL
2002] shows an Q(logﬁ)gm) inapproximation for “fixed order priority
algorithms” for the restricted case when every job has 2 allowable

machines.
21/23



The unrelated machines model

@ This is the most general of the makespan machine models.

@ Now a job J; is represented by a vector (pj 1, ..., pj,m) Where p; ; is
the time to process job J; on machine i.

@ A classic result of Lenstra, Shmoys and Tardos [1990] shows how to
solve the (offline) makespan problem in the unrelated machine model
with approximation ratio 2 using LP rounding.

@ There is an online algorithm with approximation O(log m). Currently,
this is the best approximation known for greedy-like (e.g. priority)
algorithms even for the restricted machines model although there has
been some progress made in this regard.

@ NOTE: Any statement | make about what we will do later should be
understood as intentions and not promises.

22/23



Makespan with precedence constraints; how much
should we trust our intuition

Graham also considered the makespan problem on identical machines for
jobs satisfying a precedence constraint. Suppose < is a partial ordering on
jobs meaning that if J; < Ji then J; must complete before Ji can be
started. Assuming jobs are ordered so as to respect the partial order (i.e.,
can be reordered within the priority model) Graham showed that the ratio
2 — % is achieved by “the natural greedy algorithm”, call it G.

23/23



Makespan with precedence constraints; how much
should we trust our intuition

Graham also considered the makespan problem on identical machines for
jobs satisfying a precedence constraint. Suppose < is a partial ordering on
jobs meaning that if J; < Ji then J; must complete before Ji can be
started. Assuming jobs are ordered so as to respect the partial order (i.e.,
can be reordered within the priority model) Graham showed that the ratio
2 — % is achieved by “the natural greedy algorithm”, call it G.

Graham's 1969 paper is entitled “Bounds on Multiprocessing Timing
Anomalies” pointing out some very non-intuitive anomalies that can occur.

Consider G and suppose we have an algorithm A and a given input
instance for the makespan with precedence problem. Which of the
following should never lead to an increase in the makepan objective?

@ Relaxing the precedence <

@ Decreasing the processing time of some jobs

@ Adding more machines

23/23



Makespan with precedence constraints; how much
should we trust our intuition

Graham also considered the makespan problem on identical machines for
jobs satisfying a precedence constraint. Suppose < is a partial ordering on
jobs meaning that if J; < Ji then J; must complete before Ji can be
started. Assuming jobs are ordered so as to respect the partial order (i.e.,
can be reordered within the priority model) Graham showed that the ratio
2 — % is achieved by “the natural greedy algorithm”, call it G.

Graham's 1969 paper is entitled “Bounds on Multiprocessing Timing
Anomalies” pointing out some very non-intuitive anomalies that can occur.

Consider G and suppose we have an algorithm A and a given input
instance for the makespan with precedence problem. Which of the
following should never lead to an increase in the makepan objective?

@ Relaxing the precedence <

@ Decreasing the processing time of some jobs

@ Adding more machines

In fact, all of these changes could increase the makespan value.
23/23



