
CSC2421: Online and Other Myopic Algorithms
Fall 2025

Allan Borodin

November 12, 2025

1 / 37

Week 10

Annoucements

I want to try to schedule some project talks for next week so please
volunteer if you think you can be ready to give a high level view of
the project next week. The written project does not have to be
submitted until the last day of classes (December 2). Projects not
presented next Wednesday, the 19th will be presented on the 26th.
Feedback from the presentatations should help the written project.

So far, I have two voluteers for presenting next Wednesday, November
19. Namely, David and Nadim will talk about the k-taxi problem, and
Tristan and Raghav will talk about perpetual voting. Is there another
volunteer?

In addition to these two projects, I think Michael will talk about
throughput scheduling, Jacob and Reina will discusss various aspects
of online graph colouring and Jiaqi and Yifan will discuss online
algorithms in the context of reinforcement learning.

Who has not told me about their project?
2 / 37

Extensions of three basic online problems

Chapter 8 discusses extensions to the ski rental, (one-dimensional) bin
packing and k-server problems. The extensions to the ski rental problem
arguably provide more meaningful applications than the basic ski rental
problem. But the basic buy or rent paradigm in ski rental is apparent in all
these applications.

One dimensional bin packing is already a problem with real applications as
are all the given extensions.

The k-server problem is of great importance in terms of the concepts that
evolved from the problem and its analysis. The given k-server extensions
are mainly of theoretical interest and have no immediate applications
although like the basic k-server problem, the extensions may provide a
basis for new ideas in online analysis. There is also the possibility of a
more applicable k-taxi problem than what is discussed in the text.

We will start with extensions to ski-rental that allow for multiple buying
options.

3 / 37

The File Migration problem

In multiprocessor and distributed systems, there is a need for different
processes to share data. As in standard paging/caching where a page
consists say of many words of memory, we have to move data in blocks
(e.g., files) while a process may only want a small amount of data within
the block. We now consider moving blocks of data between nodes in an
undirected edge-weighted network. Such problems are called distributed
file or page management problems.

Given an edge-weighted network of processors, we will assume that when a
data management system is responding to a request from node vj (i.e.,
from a process executing on node vj) for a piece of data in a file located at
node v`, it will pay a cost c(vj , v`), the min cost of a path between vj and
v`. If the data management system also wants to move an entire file from
node v` to node vj , it will pay a cost of D · c(vj , v`) where D is some large
constant. The objective is to minimize the total cost of file accesses and
file transfers.

4 / 37

File management problems

There are different distributed file managment problems. The most basic
problem is what we have called the file migration problem. In this
problem, there is one copy of a file and the management system has to
respond to each request by first paying the cost of the access and then
deciding if it wants to move the file. We note that the way this problem is
formulated is that the algorithm has “0-lookahead” (as it is for expert
learning) whereas the convention for online algorithms (i.e., as in the
request-answer framework) is “1-lookahead” where the algorithm can
make its decsion after seeing the request.

In the k-migration problem there are k copies of the file. We note that in
the single file migration problem, we do not have to distinguish between
read and write requests as each incurs the same cost. However, in the
k-migration problem, a write request requires updating the k different
copies.

A more general problem is the file allocation problem where copies of a file
can be replicated or deleted in response to read and write requests.

5 / 37

Two file management considerations

In a dynamic network, the costs of communication between adjacent nodes
can change and in the extreme a link might fail for some period of time.

One final consideration is whether or not the nodes (i.e., the processors)
have unlimited or bounded memory. In the case of bounded memory, file
allocation can be naturally viewed as an extension or modification of
traditional paging/caching systems

We will only consider file migration in the setting of a static network and
we will assume unbounded memory so as to focus on the communication
aspect of data management. We will consider arbitrary networks, noting
that as in any graph theoretic problem, one can often obtain improved
competitive results for some specific networks.

One can view file migration as an extension of the ski rental problem
where now a access is like a day of renting. Indeed for a network of two
nodes the problem (deciding when to move a file) is equivalent to deciding
when to buy in the ski rental problem (ignoring the issue of 0 lookahead).

6 / 37

A simple randomized algorithm

We begin with a simple 3-competitive randomized algorithm motivated by
the randomized ski rental algorithm. We will see that no deterministic file
migration algorithm can be better than 3-competitive whereas in the
ski-rental problem we have an optimal 2-competitive algorithm. This
inconsistency is reconciled by the difference between the 0-lookahead for
file migration and 1-lookahead for ski rental. We need to extend ski rental
to an arbitrary network with metric edge costs.

Consider the following randomized memoryless CoinFlipp algorithm: After
a request at a node v∗ , with probability p, if the server is not on v∗,
migrate the file from its current location to node v∗. Otherwise, just
access the required data. We define CoinFlip to be CoinFlipp for p = 1

2D .

Theorem:
Algorithm CoinFlip is 3-competitive against an adaptive adversary. This is
the best possible ratio for any randomized online algorithm ALG against
an adaptive online adversary. It follows that no deterministic algorithm can
be better than 3-competitive.

7 / 37

The lower bound against an adaptive adversaary

For the lower bound against an adaptive online adversary, it suffices to
consider the simplest network, a single edge with edge cost c(u, v) = 1.
The file migration cost is then D · c(u, v) = D. Consider an input
sequence of length n. The adversary knows at all times where the file is
located and therefore the adversary can simply request the file at the node
where the file is not currently located.

Let ALG be any online algorithm. The adversary knows the distributions
that any ALG will use to service each request and therefore knows at what
nodes each request will be made when the algorithm will migrate the file.
More precisely, the adversary can simulate the algorithm on all possible
instantiations of the random distributions and determine the expected
number of requests at each of the nodes u and v .

8 / 37

Continuation of lower bound for CoinfFlip against an
adaptive adversary

If D > n/2, the adversary will initially place the file at the node most often
requested (in expectation) and never move the file again. The expected
cost of the adversary is D + n/2 while the expected cost of ALG is at least
3n/2 so that the asymptotic competitive ratio is at least 3.

If D ≤ n/2, the adversary will always insure that the file is requested at
the node that does not contain the file. Now the expected cost of the
adversary is D while ALGs expected cost is D + n ≥ 3D so that once
again the competitive ratio is at least 3.

9 / 37

Analysis of the CoinFlip algorithm

The analysis uses a potential function argument. We have a game between
the adversary and the algorithm. The adversary possibly moves the file,
initates a request at a node vr and then services this request. The
algorithm services the request, and possibly moves the file.

Let vc (respectively, va) denote the current location of the file
(respectively, the current location of the adversary) just prior to a request
for the file at node vr . Noting that the CoinFlip (ALG) algorithm is
independent of both vc and va, we define the potential function
Φ = 3D · d(vc , va).

We want to show that E[ALGi + ∆Φi] ≤ 3 ·∆OPTi where ALGi is the
algorithms cost for the i th request, ∆Φi = Φi − Φi−1 is the change in
potential due to the i th request and OPTi is the cost of OPT for the i th

request.

10 / 37

Expected algorithm cost and possible change in
potential

We bound the costs and the change in the potential function in terms of
two events.

1 The algorithm serves a request.
The expected cost to the algorithm is
E[ALGi] = d(vr , vc) + 1

2D · Dd(vr , vc) = 3
2d(vr , vc).

The potential for this event changes if and only if the algorithm
migrates the file to the request vr so that
E[∆Φi] = 1

2D [3Dd(vr , va)− 3Dd((vc , va)]. Then
E[ALGi + ∆Φi]] = 3

2 [d(vr , vc) + d(vr , va)− d((vc , va)] ≤
3
2 [d(vr , va) + d(vr , va)] = 3OPTi using the trangle inequality.

2 The adversary moves the file.
Suppose the adversary moves the file from va to v ′a. The algorithm
ALG incurs no cost while OPTi = Dd(va, v

′
a). The change in

potential is
∆Φ = 3Dd(d(vc , v

′
a)− 3Dd(vc , va) ≤ 3D(.(v ′a, va) = 3OPTi

where again the inequality follows by the triangle inequality.
11 / 37

The lower bound for the CoinFlip algorithm

The CoinFlip algorithm is no better than 3-competitive against an oblivious
adversary for any choice of the probability p > 0 for moving the file.

Consider the CoinFlipp algorithm where the probability of moving the file
is p. We will use the fact that 1

p is the expectation of a random variable
with probability p of success for each trial. Consider the single edge two
node network with edge cost c(u, v) = 1. Assume that both the algorithm
and the adversary start at node v .

Suppose p ≤ 1/2D. Let the input be a sequence σ consisting of n requests
by node u. The optimum cost for σ is D + 1. As n→∞, the probability
= 1 that the algorithm eventually moves the file. In the limit, the
expected cost for the algorithm is then D + 1

p ≥ (D + 2D) where the 1
p is

the cost of accesses until the file is moved. This implies that the lower
bound converges to 3 as n→∞.

12 / 37

Finishing the lower bound argument for Coinflipp

Suppose p ≥ 1/2D. Let the input be a sequence σ consisting of a single
request by node u followed by n requests by node v . The optimum cost
for σ is 1. The expected cost (in the limit as n→∞) for the algorithm is
p · (1 + D + 1/p + D) + (1− p) · 1 = 2 + 2p · (2D) which is ≥ 3D for
p ≥ 1

2D .

This again implies that the lower bound converges to 3.

Note that the competitive ratio is greater than 3 for any choice of p 6= 1
2D .

13 / 37

The best known randomized algorithm for the file
migration problem

We consider a randomized algorithm motivated by a Markov process. The
RandomReset algorithm maintains a counter with value C ≥ 1. When an
access request is made to a file in node v , the counter is decremented by
1. If the counter reaches value 0, the page is transfered to the node v and
the counter is randomly reset to value i with probability αi where
D = (α1, α2, . . . , αk) is an appropriately chosen finite distribution and
k = maxi{i : αa > 0}.
For an appropriately distribution D, the RandomReset algorithm obtains a

competitive ratio 1 + φ ≈ 2.618 (φ = 1+
√
5

2) in the limit as the file transfer
factor D increases. Furthermore, there is an appropriate distribution D for
which only αk−1 and αk are non-zero.

Currently the best known lower bound is 2 + 1
D for all D ≥ 1. In fact, the

lower bound already holds for a two node network. We note that the
2 + 1

D ratio can be obtained for the special classes of trees, hyper-cubes,
meshes, and uniform networks.

14 / 37

The best known deterministic algorithm for the file
migration problem

Bartal et al [2001] provide the following MoveToLocalMinimum algorithm
which acheives the current determinstic ratio 4.086 for file migfration:
Partition the input sequence into phases of η · D requests for some
appropriatley chose constant η. Suppose vb is the node at the start of the
phase. During a phase, the file remains at vb. At the end of the phase,
transfer the file to node v∗ = argminv [

∑D
i=1 d(v , vi) + δDd(vb, v)] for

another appropriately chose constant δ, and then begin a new phase. The
additional term δDd(vb, v)] helps to insure that the move to node v∗ will
not be too expensive.

The current best deterministic lower bound for file migration is 3.164 due
to Matsubayashi and Kawamura [2008]

15 / 37

The Capital Investment problem

There are different variations for this problem. In its generality, the
problem is defined as follows: There is a sequence of buying options
{O1,O2, . . .} where Oi = (ti , bi , ri) and ti (respectively, bi , ri) is the
monotonically non-decreasing time step in which the i th option becomes
available (respectively, the buying cost of the i th option, the rental or
production cost of the i th option.

The motivation is that of a company that wishes to produce some fixed
number of goods each day i = 1, 2, . . . at a cost of ri using some machine
available before or at time ti and has been bought.

We will assume that at least one option is available at time 1. We will
purchase one of the available machines at time i = 1 For i = 2, . . ., an
algorithm can choose to continue renting with any available purchased
machine or rent with the last machine purchased.

In the capital investments problem we study in section 8.1.1 of the text,
we assume that rj < rk implies bj ≥ bk .

16 / 37

Other variants

There are a number of variants of the problem we are calling Capital
Investement. See Azar et al [1999] and Lotker, et al [2012].

Time can be continuous instead of discrete.

We can let the purchasing cost be an incremental cost (i.e trading-in
for a new machine). In this case we would just assume that the cost
to buy machine Mj is bj − bj−1 > 0 and rj < rj−1.

The classic ski rental problem starts with one option at day 1 and there
are no new options.

In the problem we call multi-slope ski rental, time is continuous and we
have all options initially available. The muti-slope ski rental is also studied
for incremental buying costs.

17 / 37

The Capital Investment algorithm

Theorem
There is a 1 + (α + 1

β)-competitive deterministic algorithm for the capital
investments problem.
The algorithm has two parameters α and β which we will set later.

The algorithm starts by buying a machine thar minimizes bj + rj amongst
all machines availabe at time i = 1. We can call this option O1 = (b1, r1).
For the puposes of the analysis we will refer to b1 + r1 the production
costs for day 1. After day 1, we will keep track of the buying and
production costs separately.

We have two conditions for buying a new machinei Mj at some time i . (Of
course, Mj must be available at time i .) These conditions define the
algorithm.

After buying Mj at some time i , we must spend at least βbj on
production costs before being able to purchase another machine.
The buying cost bj is at most α times the total production costs thus
far.

18 / 37

The Captial Investments algorithm continued

If there are several machines at time time i that meet these conditions,
then we choose one with the smallest production cost. If no such option
exists we stay with the current machine.
Here follows the pseudo code:8.1. SKI RENTAL EXTENSIONS 251

Algorithm 8.1.1 Deterministic algorithm for Convex Capital Investment problem.
procedure ConvexCapitalInvestment(↵, �)

M1 the machine that minimizes bj + rj for machines that are available at time i = 1
. We can assume that at least one machine is available initially.

k 1 . k will be the index of the current machine Mk being used.
R0 0 . Ri will be the amount spent on production costs up to and including day i.
R1 r1 + b1 . For the purpose of the proof, we include the buying cost b1 in the production

cost for day 1.
ĩ 1 . ĩ will be the time step when the current machine M was bought.
i 2
while there is a demand for production on day i do

if Ri�1 � Rĩ�1 � � · bk and there exists an available machine Mj on day i (i.e., tj  i)
such that bj  ↵ · Ri�1 then

k arg minj [rj |bj  ↵ · Ri�1] . We will now be using the machine Mk at a higher
buying cost but lower rental cost.

ĩ i
Ri = Ri�1 + rk

Ci = Ci�1 + bk

else
Ri = Ri�1 + rk . We stay with the current machine.

Proof. The buying cost for the last machine bought is at most ↵ times the total production costs.
For all other machines, the production cost during the time interval from when this machine M
was bought until the next machine M 0 is bought is at least � times the buying cost of machine M .
These time intervals do not overlap so that the total buying costs of all purchased machines (except
for the last purchased machine) is at most 1

� times the total production cost.

Lemma 8.1.3. For ALG = ConvexCapitalInvestment we have:

ALGr
t  OPTt.

Proof. This lemma will be proved by induction on i, the number of time steps. For i = 1, the
lemma holds since we have defined the production cost as R1 = b1 + r1 and we chose M1 to be the
machine that minimizes r1 for the first day.

For the induction step, we assume the lemma is true for all time steps before i and then establish
the bound for time step i. Let Mk = (tk, bk, rk) be the machine used by the algorithm to produce
during time step i and let M 0 = (t0, b0, r0) be the machine used by OPT to produce during time step
i. Note that tk, t

0  i.
If r0 � rk, then ALGr

i = ALGr
i�1 + rk  OPTi�1 + r0  OPTi using the induction

hypothesis.
If r0 < rk, then the algorithm did not buy the OPT machine M 0 before production on day i.

Also b0 � bk by our assumption that we are considering convex version of the problem. We now
consider why the algorithm did not buy machine M 0 before renting on day i. One of the following
must hold:

Case 1 : the buying cost of M 0 was too high; that is, less than b0
↵ was spent on the total of renting

costs so far. In this case, we have

ALGr
i = ALGr

i�1 + rk  2ALGr
i�1  2

b0

↵
 OPTi,

19 / 37

Sketch of analysis for Captial Investments algorithm

Repeating the theorem, we want to show that ALG ≤
(

1 + α + 1
β

)
OPT .

To do so, we need two lemmas:

Lemma 1: ALGb ≤
(
α + 1

β

)
· ALG r where ALGb is the total buying cost

and ALG r is the total production or rental cost.

Lemma 2 By induction on t, ALG r
≤t ≤ OPT≤t where ALG r

≤t (respectively
OPT≤t) is ALG s total production costs (repsectively OPT s total cost) up
to and including time step t.

20 / 37

The Bahncard problem

This problem is motivated by discount passes for the German railway
system. Passes are purchased on any given day and a pass is good for some
fixed number T of days. There is a known buying cost b for buying a pass,
and a known discount factor β for traveling while the pass is valid. That
is, if the full cost of a travel request is p, then the discounted cost is β · p.

The input to the Bahncard problem is an online sequence of
{(p1, t1), (p2, t2), . . . , (pn, tn)} where pi is the full fare for the i th request
and ti is the time step of the i th request. We assume 0 ≤ β < 1 since
there would be no point in purchasing a pass if β ≥ 1. We also assume
that t1 < t2, . . . < tn.

We will assume without loss of genetality (as long as a pass is valid on the
day of purchase) that a new pass is only bought when the last pass has
expired.

The basic ski rental problem is the special case of the Bahncard problem
when β = 0, ti = i and T =∞. We could have had arbitrary ti as the i th

day of skiing (rather than the i th day). 21 / 37

Extending the optimal competitive ratio for ski
rantal to the Bahncard problem

As in the ski rental problem, the idea is to keep paying full cost until it
would have been better to have purchased a pass some time before. In ski
rental, the critcal renting cost for buying is b. For the Bahncard problem,
the critical cost is b

1−β . We will then show that the optimal deterministic
competitive ratio is 2− β. Since for β = 0, we have the ski rental
problem, and the Bahncard ratio is the ski rental ratio. We will now
assume 0 < β < 1 ignoring β = 0. .

For the lower bound it is sufficient to just consider travel requests until the
first purchase of a pass. By making a request every ε steps, we can force
thew algorithm to buy a pass since otherwise the competitive ratio would
be 1

β > 2− β for 0 < β < 1.

We then let s be the time when the pass is purchased and argue by cases
that the ratio is 2− β as ε→ 0.
Case 1: s + ε < b

1−β
Case 2: s + ε ≥ b

1−β 22 / 37

The Bahncard algorithm

Theorem: The following deterministic algorithm achieves competitive ratio
2− β

8.1 Ski Rental Extensions 265

⇢ with respect to s and simplifying, we obtain @⇢

@s
=

b(1��)��2✏

(b+�(s+✏)2) > 0 if ✏ is small enough.
Thus, the minimum of ⇢ is achieved at the smallest value of s. Since s + ✏ � b

1�� , the
competitive ratio in minimized at s = b

1�� � ✏ . Plugging this value of s into ⇢, we obtain
ALG(x)
OPT (x) � 2 � � � ✏ (1��)2

b
! 2 � � as ✏ ! 0.

⇤

Motivated by this 2� � lower bound based on the threshold of b
1�� , and by the competitive

algorithm for the Ski Rental problem we now formally state an algorithm achieving com-
petitive ratio 2 � �. Like the Ski Rental solution, this algorithm retrospectively looks to see
if the cost of not having purchased a bahncard now justifies buying one. When there is no
current bahncard, the algorithm will look back T units of time to see if its cost has reached
the critical cost.

Algorithm 8.1.2 The deterministic algorithm for the Bahncard problem based on the critical
cost threshold.

procedure BreakEvenBahncard
k 0; ⌧0 �T
. ⌧k (for k � 1) will be the time of purchasing the k th bahncard
i 1
while i  n do

I (⌧k + T, ti] \ (ti � T, ti] . time interval not covered by last bahncard within
last T time units, could be empty

if Õ
j:tj 2I pj � b

1�� then . the non-discounted cost of tickets during I meets or
exceeds the critical cost

k k + 1; ⌧k = ti . buy a new bahncard
return {⌧1, . . . , ⌧k}

Theorem 8.8.
⇢(BreakEvenBahncard)  2 � �.

Proof We analyze the performance of the algorithm in terms of time blocks (⌧k, ⌧k+1]; that is,
the time following the purchase of the last card up to and including the current card purchase.
Note that the algorithm buys one card in any block. Since we are proving an asymptotic ratio,
we can ignore the first and last blocks. It is su�cient show that the competitive ratio in any
other block is 2 � b

1�� .
Each such block consists of two time intervals, namely I1 = (⌧k, ⌧k + T) and I2 = [⌧k +

T, ⌧k+1]. During I1, the algorithm’s ticket price is at most that of an optimal algorithm so we
need only to consider the competitive ratio I2.During I2 the algorithm pays the full-price of
all tickets, except for the last one, at which point it purchased the bahncard. Let s1 denote the
total cost of full-price tickets, and let s2 denote the full-price of the last ticket. Then, during
I2 the algorithm accumulates cost b + s1 + �s2. By the definition of the algorithm s1  b

1�� ,
while s1 + s2 � b

1�� , and the duration of I2 is at least T .
Thus, on one hand, if OPT does not purchase a bahncard during I2 then the competitive

23 / 37

Sketch of analysis for Bahncard competitive ratio

The analysis is in terms of blocks of time where a block is the time
following the purchase of a pass up until and including the purchase of a
new pass. Since we are considering the asymptotic ratio we can ignore the
first and last block.

Each such block consists of two time intervals, namely I1 = (τk , τk + T)
and I2 = [τk + T , τk+1]. During I1, the algorithm’s ticket price is at most
that of an optimal algorithm so we need only to consider the competitive
ratio I2.

During I2 the algorithm pays the full-price of all tickets, except for the last
one, at which point it purchased the bahncard. Let s1 denote the total
cost of full-price tickets, and let s2 denote the full-price of the last ticket.
Then, during I2 the algorithm accumulates cost b + s1 + βs2. By the
definition of the algorithm s1 ≤ b

1−β , while s1 + s2 ≥ b
1−β , and the

duration of I2 is at least T .

The analysis is completed by considering the cost of OPT when it
purchases a pass and when it doesn’t purchase a pass. 24 / 37

Extensions of bin packing

There are two reasonably obvious extensions to bin packing. The most
obvious extension is multi-dimensional (also called geometric) bin packing;
that is, packing rectangles in R2 into unit dimensional squares and, more
generally, packing hyper-rectangles in Rd into d-dimensional hyper-cubes.
This is a very well studied research area with special interest in two and
three dimensions. There are different variants of geometric bin packing
where the most commmonly stuided case is axis-aligned hyper-rectangles
and hyper-cubes.
Aside: In answer to Jacob’s question about “gravity’ making some
solutions infeaible, we can always fo what Amazon,etc do, namely use
“still” to fill up and cushon the boxes.

Another very natural extension is vector bin packing; that is packing
d-dimensional vectors vi into bins {Bj} so that sum of vectors in each bin
Bj satisfies

∑
vi∈Bj

≤ 1 where 1 denotes the all 1’s vector.

A perhaps less obvious extension of bin packing is renting servers in the
cloud. We will start with this extension.

25 / 37

Renting servers in the cloud (RSIC)

The inputs for the RSIC problem are a sequence of jobs xi = (ai , fi , si)
where ai (respectively, fi , si) is the arrival time (respectively, the finishing
time, the size of the job). We assume the real time model so that
a1 ≤ a2 . . . ≤ an). We assume that the job sizes (e.g. memory
requirements) si ∈ (0, 1]. Each cloud server is viewed as a bin of size 1.
We will assume an unlimited number of servers as in bin packing.

Similar to the standard bin packing problem, jobs have to be packed into
servers so that at any point in time, the server capacity is not violated. A
new server needs to be opened if no server has capacity for a newly
arriving jobs. A server is active if it is hosting any job that has not yet
finished. If all jobs are finished on a server, the server becomes inactive.

There are two natural objective functions:
(1) The objective is to minimize the total (over all servers) amount of time
that servers are active.
(2) The objective is to minimize the number of servers that are active at
any time.

26 / 37

Renting servers in the cloud continued

We shall only consider the first objective which relates to the amount of
energy being consumed by the servers.

There are two settings for RSIC. In the clairvoyant setting, we know the
finishing time of a job when the job arrives. In the non-clairvoyant version,
we only find out about termination when the job finishes. The optimum
solution is the same for both versions since the adversary knows the
finishing times.

We shall see that there is no constant competitive ratio for the clairvoyant
(and hence non-clairvoyant) settings. We can expect that the performance
in the clairvoyant setting will be significantly bettter than in the
non-clairvoyant setting.

We will start with the non-clairvoyant setting as that is closer to the
classical bin packing problem where jobs have infinite duration.

27 / 37

End of Wednesday, November 12 class

We ended here but I am including the rest of the slides for the RISC
problem since I am not sure if there will be any more time for me to speak
given that we have 9 projects presentations.

28 / 37

Measuring the competitive ratio in terms of the
ratio of the maximum to minimum duration of jobs

.
Let di − fi − si be the duration of job i , Define µ = maxi di

mini di
. Without loss

of generality, we can assume that mini di = 1 to simplfy the discussion so
that µ = maxi di ≥ 1.

Theorem: Consider any µ and any ε > 0, In the non-clairvoiyent setting,
every online algorithm ALG has competitive ration Ω(µ). More precisely,
the determinstic competitve ratio is no better than µ

1+ε(µ−1) .

An adversary can force the competitive ratio by choosing a set of (1ε)2 jobs
each of size ε. This forces the algorithm to open at least 1

ε servers. The
algorithm observes which jobs are on each server. For each server, the
adversary will set one job to be a long duration job with duration µ, all
other jobs have short duration = 1.

By placing all long duration jobs on one server, the optimal cost is
µ+ (1ε − 1). Alg’s cost will be at least 1

εµ.
29 / 37

Deterministic Algorithms having competitive ratio
O(µ)

As we mentioned the non-clairvoyant setting is quite simular to bin
packing (having no job durations) so we can apply almost any bin packing
algorithm to non-clairyoyant RSIC. ‘ It turns out that First Fit and the

MTF algorithm (desicribed in the text) have ratio O(µ). Strangely, Best
Fit does not have a constant bound for any µ. We show that a modified
Next Fit algorithm has a precise ratio of at most µ+ 2. (I don’t know if
Next Fit is also O(µ).) The Next Fit opens a new whenever a new job
doessn’t fit on the most recently openied (and still active) server.

The modified Next Fit algorithm is parameterized with parameter K . We
apply Next Fit separately to large jobs of size at least 1/K and to small
jobs having size less that 1/K .
Theorem:
For any K ≥ 2, the competitive ratio of Modkified Next Fit is at most
K max{1, µ

K−1}+ 1 = O(µ). For K = µ+ 1, the competitive ratio is µ+ 2,

30 / 37

Sketch of analysis for Modified Next Fit RSIC
algorithm

First we state a lower bound on any algorithm including OPT . These hold
for both clairvoyent and non-clairvotant algorithms.

Fact:
For any onliine sequence x, OPT (x) ≥ max(span(x), util(x) where
span(x) = |⋃i [ai , fi)| and util(x) =

∑
i sid(xi).

We want to separately bound Next Fit on the large jobs xL and small jobs
xS . Clearly ModifiedNextFit(x) = NextFit(xL) + NextFit(x)S .

NextFit(xL) ≤∑xi∈xL d(xi) ≤
∑

xi∈xL K · si · d(xi) = K · util(xL)
The first inequlaity follows from the observation that the the highest cost
comes from assigning each large job to a new server.

31 / 37

Finishing the proof for Modified

It remains to bound NextFit(xS).

We need to distinguish between a server being closed and a server being
released. In the former case, we may close a server if its current size is at
least 1− 1/K meaning that the algoirhtm is not allowed to assign any
more jobs to this server. Released servers are not part of the objective
function. We will refer to a server as being replaced if some job caused it
to be closed before being released.

Suppose that the algorithm uses m servers to serve xS Let Si be any server
used to serve small jobs. We can break the duration of Si into the duration
d−(Si) from the opening of the server until it is closed, and d+(Si), the
duration from the time Si was closed until it was released. Then

NextFit(xS) =
∑m

i=1 d(Si) =
∑m

i=1 d−(Si) + d+(Si)

32 / 37

Continuing the bound for NextFit(xS)

Since NextFit has at most one open server at any time, we have∑m
i=1 d−(Si) ≤ span(xS).

And now to bound
∑m

i=1 d+(Si), let there be m′ replaced servers. Since
the duration of each job is at most µ, we have
NextFit(xS) ≤ span(xS) + m′µ.

And since the size of a closed server is at least 1− 1/K and the duration
of each job is ≥ 1, we have

m′ ≤ util(xS)
1−1/K .

33 / 37

Combining all the inequalities

Combining all the inequalities we have

ModifiedNextFit(x) = NextFit(xL) + NextFit(xS)

≤ K · util(xL) + span(xS) +
util(bfxS)

1− 1/K
· µ

≤ max

(
K ,K

µ

K − 1

)
(util(xL) + util(xS)) + span(xS)

≤ K max

(
1,

µ

K − 1

)
OPT (x) + OPT (x).

And as we already said, if µ is known, we can set K = µ+ 1 to claim a
competitive ratio of at most µ+ 2.

34 / 37

A brief discussion of the clairvoyant setting for the
RSIC problem

We will just state the algorithm and result for the clairvoyant settin witout
any proofs. As we will see the clarivoyant setting affords a much improved
ratio.

Theorem:
There is a deterministic algorithm (which the paper and text calls HA but
I will call ModifiedFirstFit although we may have used that term before)
for the clairyoyant setting with comptitive ratio O(

√
logµ). Furthermore,

this is the optimal competitive ratio; that is, for every deterministic
algorithm ALG , the competiive ratio is Ω(

√
logµ)

Recall that an input to RSIC is a tuple (a, f , s) When a job arrives, we
know the duration of every size and now in the clairvoyant case we also
know the duration of the job. we can break the set of inputs into logµ
types. A type ((k , c) job ix is such that duration d(x) ∈ [2k − 1, 2k] and
the arrival a(x) ∈ [(c − 1) · 2k , c · 2k). Since 1 ≤ d(x) ≤ µ for every job x ,
we have logµ types.

35 / 37

The ModifiedFirstFit algorithm

ModifiedFirstFit uses two kinds of servers, CD and GN. Each CD server is
associated with a particular job type (k , c). GN servers can contain
different types. We first give an informal description of the algorithm (with
the pseudo code to follow).

When a new job of type (k , c) arrives, if there is an open server with
associated with this type we assign it using FirstFit (possibly opening a
new (k , c)CD server if necessary. If there are no open CD servers, we
assign the job using First Fit to a GN server as long as the total size of
active jobs of size (k, c) is at most 1√

k
(possibly opening a new GN server

if necessary). if the total size of active (k , c) jobs is more than 1√
k

we

open a new CD server.

36 / 37

The pseudo code for ModifiedFirstFit

8.2 Bin Packing Extensions 285

an item, the algorithm checks if there are CD servers alive corresponding to the type of the
item, say, (𝐿 , 𝑀). If so, the algorithm packs the new item into the corresponding CD servers
using 𝑁𝑂𝑃𝑄𝑅𝑁𝑂𝑅, opening a new CD server of type (𝐿 , 𝑀) if necessary. If not, the algorithm
checks if the total size of items of type (𝐿 , 𝑀) alive at the present moment is at most 1

2
→
𝐿

. If
so, the new item is scheduled on GN servers using 𝑁𝑂𝑃𝑄𝑅𝑁𝑂𝑅 and opening a new GN server if
necessary. Otherwise, a new CD server of type (𝐿 , 𝑀) is opened and the new item is packed
into it. The pseudocode appears in Algorithm 8.2.2.

Algorithm 8.2.2 A clairvoyant algorithm for the RSiC problem that achieves 𝑆 (
√

log 𝑇)-
competitiveness.

procedure 𝑈𝑉

𝑂 ↑ 1
while 𝑂 ↓ 𝑊 do

new input item 𝑋
𝑀
arrives

(𝐿 , 𝑀) ↑ type of 𝑋
𝑀

if ↔ an open CD server of type (𝐿 , 𝑀) then
pack 𝑋

𝑀
into CD servers of type (𝐿 , 𝑀) using 𝑁𝑂𝑃𝑄𝑅𝑁𝑂𝑅

if necessary, open a new CD server of type (𝐿 , 𝑀)
else

𝑄 (𝐿,𝑁) ↑ total size of all active items of type (𝐿 , 𝑀)
if 𝑄 (𝐿,𝑁) ↓ 1

2
→
𝐿

then
pack 𝑋

𝑀
into GN servers using 𝑁𝑂𝑃𝑄𝑅𝑁𝑂𝑅

if necessary, open a new GN server
else

open a new CD server of type (𝐿 , 𝑀) and pack 𝑋
𝑀
into it

We state the following result without the proof.

Theorem 8.41
𝑌(𝑈𝑉) = 𝑆 (

√
log 𝑇).

Before we prove the lower bound on competitiveness of algorithms for the clairvoyant
version of RSiC, we state a surprising result regarding the power of repacking for o!ine
𝑆𝑍𝑎 . Consider an input sequence x and let 𝑆𝑍𝑎

𝑂
(x, 𝑅) denote the minimum number of

servers that are needed to pack only those jobs that are alive at 𝑅. Note that the schedule
corresponding to 𝑆𝑍𝑎

𝑂
(x, 𝑅) may be incompatible with the schedule corresponding to

𝑆𝑍𝑎
𝑂
(x, 𝑅 + 1) – this is because subproblems of jobs alive at time 𝑅 and jobs alive at time

𝑅 + 1 are solved independently of each other. This leads to the definition of a repacking
optimum, denoted by 𝑆𝑍𝑎

𝑂
(x), and defined as follows:

𝑆𝑍𝑎
𝑂
(x) =

∫
𝑆𝑍𝑎

𝑂
(x, 𝑅) 𝑏𝑅.

Observe that 𝑆𝑍𝑎
𝑂
(x) still counts total duration of “servers“ but the jobs can be repacked at

any time. It is clear that 𝑆𝑍𝑎
𝑂
(x) ↓ 𝑆𝑍𝑎 (x). The next result shows that repacking cannot

help much.

37 / 37

