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On the Power of Randomization in On-Line Algorithms 1 

S. Ben-David, a A. Borodin, 3 R. Karp, 4 G. Tardos, s and A. Wigderson 6 

Abstract. Against in adaptive adversary, we show that the power of randomization in on-line 
algorithms is severely limited! We prove the existence of an efficient "simulation" of randomized 
on-line algorithms by deterministic ones, which is best possible in general. The proof of the upper 
bound is existential. We deal with the issue of computing the efficient deterministic algorithm, and 
show that this is possible in very general cases. 
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1. Introduction and Overview of Results. Beginning with the work of Sleator and 
Tarjan [173, there has recently been a development of what might be called a 
Theory of On-Line Algorithms. The particular algorithmic problems analyzed in 
the Sleator and Tarjan paper are "list searching" and "paging," both well-studied 
problems. However, the novelty of their paper lies in a new measure of perfor- 
mance, later to be called the "competitive ratio," for 0n-line algorithms. This new 
approach, called "competitive analysis" in [11], seems to have been first motivated 
by earlier attempts to understand the behavior of so-called self-organizing or 
self-adjusting data structures. However, as evident in the discussion provided by 
Karlin et al. [113 the issue transcends particular problems in data structures or 
paging. 

Briefly stated, competitive analysis attempts to finesse the issue of what request 
sequences are likely in such environments (i.e., average-case analysis but one that 
has to account for distributions that reflect phenomena such as "locality of 
reference") by taking the following pessimistic approach in analyzing the perfor- 
mance of an on-line algorithm: an on-line algorithm is good only if its performance 
on any sequence of requests is within some (desired) factor of the performance of 
the optimal off-line algorithm. In particular, a good algorithm would certainly 
perform well in the presence of an unknown distribution. 

Following these studies of specific algorithmic problems, Borodin et al. [2] gave 
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an abstract formulation (called task systems) and a formal definition for the study 
of this new measure. Manasse et al. [12] introduced another abstract formulation, 
called K-server problems. In both the task system and K-server models, an on-line 
player is presented with a sequence of requests which must be satisfied by choosing 
amongst an allowable set of moves, each move having some nonnegative cost. 
(Raghavan and Snir [16] call these "games with moving costs.") 

We present a more general framework for studying on-line algorithms--the 
request-answer 9ames. In such a game an adversary again makes a sequence of 
requests, which are served (answered) one at a time by the on-line algorithm. The 
added generality is that now an arbitrary real-valued function determines the cost 
of any sequence of requests and answers. This framework includes previous ones 
(e.g., K-server games [12] and task systems [2]) as special cases. 

An on-line algorithm is called c-competitive if 

cost(algorithm) < c �9 cost(adversary) + O(1), 

for every possible request sequence that is generated. 
The Borodin et al. [2] and Manasse et al. [12] papers primarily dealt with 

deterministic on-line algorithms, in which case the definition of being c-competitive 
is a rather routine matter. However, it was soon realized (see [3], [15], and [7]) 
that randomization could possibly offer the on-line player signicantly more 
power; or perhaps it should be said that the adversary now has relatively less 
power since the moves of the one-line player are no longer certain. In the case of 
randomized on-line algorithms, costs are taken to be expected values of the 
associated random variables and the definition of competitiveness becomes a more 
subtle issue, depending primarily on the nature of the adversary. 

The related results of Borodin et al. [3] and Fiat et al. [7] assume an oblivious 
adversary (following the terminology to be adopted here and in the revised version 
by Raghavan and Snir [16]). 

OBLIVIOUS ADVERSARY. One who must construct the request sequence in advance 
(based only on the description of the on-line algorithm but before any moves are 
made!), but pays for it optimally. 

The Fiat et al. [7] paper provides a dramatic example of the advantage provided 
by randomization against this adversary. Namely, it shows that for the paging or 
cache problem with a cache of size K (i.e., the K-server problem on the uniform 
metric space), there is a randomized algorithm (relative to any oblivious adversary) 
which achieves a competitive ratio of O(log K). (An optimal ratio of HK is 
developed in [14], where HK is the Kth harmonic number.) On the other hand, 
every deterministic algorithm can at best achieve a ratio of K. (This is the lower 
bound demonstrated for any K-server problem by Manasse et al. [12].) 

The K-server conjecture of Manasse et al. [12] (which states that for every 
K-server problem there is a deterministic on-line algorithm with competitive ratio 
K) is still open. Fiat et al. [8] have made substantial progress on this conjecture 
by showing that, for every K-server problem, the competitive ratio is bounded by 



4 S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson 

a (exponential) function of K. The "random walk" approach, initiated by [15] 
and further developed in [5] and [1], gave O(K)-competitive probabitistic algo- 
rithms for a variety of K-server problems, and possibly works for all of them. 
Recently, Grove [10] has been able to prove that the Harmonic algorithm given 
in [15] is O(K2K)-competitive for every K-server problem. The interesting thing 
about these algorithms is that they achieve the same performance even against 
the following, much stronger, adaptive adversary. 

ADAPTIVE ON-LINE ADVERSARY. One who makes the next request based on the 
algorithm's answers to previous ones, but serves it immediately. 

It is obvious that, for deterministic algorithms, this adversary is equivalent to 
the oblivious one, since the algorithm's answers are completely predictable. To 
understand just how much randomization helps against it, we introduce a yet 
stronger adversary (see also [16]). 

ADAPTIVE OFF-LINE ADVERSARY. One who makes the next request based on the 
algorithm's answers to previous ones, but serves them optimally at the end. 

As might be conjectured, this adversary is so strong, that randomization adds 
no power against it! 

THEOREM 2.1. I f  there is a randomized algorithm that is or-competitive against any 
adaptive off-line adversary, then there also exists an a-competitive deterministic 
algorithm. 

On the other hand, we can relate the performance of randomized algorithms 
against the three types of adversaries. 

THEOREM 2.2. I f  G is a c-competitive randomized algorithm against any adaptive 
on-line adversary, and there is a randomized d-competitive algorithm against any 
oblivious adversary, then G is a randomized (c. d)-competitive algorithm against any 
adaptive off-line adversary. 

Our Theorems 2.1 and 2.2 together imply a deterministic algorithm whose 
performance is not much worse than the probabilistic ones. It shows that the 
results of [1], [5], and [10] have deterministic counterparts with at most 
quadratically worse performance. In particular, using [10] we obtain the best- 
known deterministic competitive ratio for an arbitrary K-server system. 

Unfortunately, the proof of Theorem 2.1 only guarantees the existence of a 
deterministic algorithm, and there is no general way to construct it even when the 
probabilistic one is given. We attack this problem from two directions. 

In the first we show how to construct explicitly a deterministic algorithm in 
Theorem 2.1, for a class of games that includes all finite K-server games and task 
systems. We lose a bit on performance: rather than a c-competitive algorithm 
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whose existence is guaranteed, we construct a ((1 + e)c)-competitive algorithm, for 
every e > 0. 

In the second we finesse Theorem 2.1 altogether by explicitly constructing a 
deterministic algorithm in Theorem 2.2 with the same performance as the guar- 
anteed probabilistic one. This can be achieved whenever the proof of c-competitive- 
ness of the assumed algorithm against an adaptive on-line adversary is based on 
a computable potential function. Observing that all known proofs have this nature, 
this assumption at present does not lose much generality. 

Though the game we define is infinite, every play terminates in a finite number 
of moves (since our adversaries are restricted to generate finite request sequences). 
This allows our definitions to be consistent with most of the initial papers 
concerning competitive analysis. Alternatively, Raghavan and Snir [16] formulate 
the concept of competitiveness in terms of infinite games. They develop analogues 
of our Theorem 2.1 (using classical results concerning determinacy in infinite 
games--see [9] and [13]) and Theorem 2.2. Raghavan and Snir [-16] discuss 
the relation between these two approaches; in particular, they give a suffi- 
cient condition for when the alternative definitions of competitiveness are 
equivalent. 

2. Definitions and Results. We study the performance of on-line algorithms in 
the general framework of request-answer games. In this game an on-line algorithm 
has to answer a sequence of requests trying to minimize its cost (as determined 
by the sequence of requests and answers). The algorithm is on-line, in the sense 
that it answers each request before seeing the following requests, and without 
knowing how long the sequence is. In some games not all answer sequences are 
allowed. 

A request-answer game consists of a request set R, a finite answer set A, and 
the cost functions f, :  R" x A" ~ R w {oo} for n = 0, 1 , . . . .  Let f denote the union, 
over all nonnegative integers n, of the functions f , .  Let us fix such a game. 

A deterministic on-line algorithm G is a sequence of functions gi: Ri ~ A for i = 1, 
2 . . . . .  For  any sequence of requests r = (ri . . . .  , r,) we define G(_0 = (al, . . . ,  a,) c A" 
with a i = gi(rl . . . . .  ri) for i = 1 . . . . .  n. The cost of G on r is CG(0 = f,(_(, G(0). 
We compare this to the optimal cost for the same sequence of requests: e(0 = 
min{f,(L a_)la e A"}. 

In this paper a and fl mean linear functions a,/3: R ~ R. (Some of the theorems 
generalize to nonlinear functions, but linear are the important ones). We call the 
deterministic algorithm G a-competitive if, for every request sequence r, we have 
co(_0 _< a(c(0). In case a(x) = dx + e for some d > 0, G is sometimes said to have 
competitive ratio d. 

A randomized on-line algorithm G is a probability distribution over deterministic 
on-line algorithms Gx (x may be thought of as the coin tosses of the algorithm G). 
For  any request sequence r the answer sequence G(O and the cost co(_() are random 
variables. We call a randomized on-line algorithm a-competitive if for any r we 
have E~(eox(r)) < a(e(O). 

Since we require good performance of a competitive algorithm for every request 
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sequence _r we can think of r as being given by an adversary. The adversary serves 
the requests in the optimal way, so his cost is c(_0. To distinguish this kind of 
adversary from the following more powerful adversary we call it an oblivious 
adversary. 

An adaptive adversary is one that makes requests depending on the algorithm's 
answers to previous requests. This adversary comes in two flavors, according to 
the way it serves its own requests. The adaptive off-line adversary answers the 
requests optimally when the whole request sequence is known. The adaptive on-line 
adversary however answers every request as soon as he makes it, before the 
algorithm does. For  deterministic algorithms adaptive adversaries are not more 
powerful than the oblivious ones since the algorithm's moves can be foreseen. 
However, for randomized algorithms it is worth introducing the :c-competitiveness 
against adaptive adversaries. We call the :c-competitive algorithms :c-competitive 
against any oblivious adversary for contrast. 

An adaptive off-line adversary Q is a sequence of functions q,: A" ~ R u (stop}, 
where n = 0, 1 . . . . .  dQ and qdQ only takes the value "stop." For  a deterministic 
algorithm G and an adaptive adversary Q we define the actual request and 
answer sequences _r(G, Q) = ( r l , . . . ,  r,) and a(G, Q) = (al . . . . .  a,) together with 
n = n(G,Q) recursively with ri+ 1 =qi(al . . . . .  ai) for i = 0 ,  1 , . . . , n - 1 ,  while 
a(G, Q) = G~(G, Q)) and q,(a_(G, Q)) = stop. Note that these objects are uniquely 
defined in the order rl, al, r2, a2, . . . ,  r,, a,, n. The value n = n(G, Q) is bounded 
by dQ for any G. We define the cost of the algorithm G against the adversary Q 
to be c~(Q)= f,(r_(G, Q), a(G, Q)). The cost of the adaptive off-line adversary Q 
against the algorithm G is cQ(G) = c(r(G, Q)). 

An adaptive on-line adversary S = (Q, P) is an off-line adaptive adversary Q, 
supplemented with a sequence P of functions p,: A" --* A for n = 0, 1 . . . . .  dQ. Since 
r(G, S) is independent of P, we have r(G, S) = r(G, Q), a(G, S) = _a(G, Q), and 
cc(S ) = c~(Q). We can also define the answer sequence of the adversary S to be 
b (G,S)=  (bD. . . ,b , )  where n = n ( G , Q )  and b i + l = p i ( a l  . . . . .  ai) for i = 0  . . . . .  
n - 1. We define the cost of S against the algorithm G to be cs(G ) = f,(f.(G, S), 
h(G, S)). 

We define all these sequences and costs for a randomized algorithm G. In this 
case all these objects will be random variables. 

We call a randomized algorithm G :c-competitive against any off-line (resp. 
on-line) adaptive adversary if for any off-line adaptive adversary Q (resp. on-line 
adaptive adversary S) we have Ex(cG(Q) ) <_ Ex(:c(cQ(Gx))) (resp. E~(cox(S))<_ 
E~(:c(cs(G~)))). Note that a commutes with E~. 

REMARK. We imposed the requirement that the answer set is finite and the 
number of requests an adaptive adversary can put to one algorithm is bounded 
to ensure that all the expected values exist. Thus for any given randomized 
algorithm and adversary there are only finitely many possible request and answer 
sequences, and therefore the expected values are just weighted averages. It is 
possible to ensure the same by having an infinite answer set, but for any request 
declaring only finitely many answers "valid." 
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Our first theorem says that the adaptive off-line adversary is so strong, that 
randomization does not help against it. 

THEOREM 2.1. I f  there is a randomized strategy that is a-competitive against any 
off-line adaptive adversary, then an or-competitive deterministic algorithm also exists. 

PROOF. Consider the request-answer game as a two-person game between two 
players R and A such that in every step R gives A a request which A answers. A 
position in the game is a pair (.(, a_). Call a position immediately winning for R if 
f,(_(, a_) > ~(c(s Call a position (r, a_) winning for R if there exists an adaptive rule 
for selecting requests, and a positive integer t such that, from the starting position 
(~, _a_), an immediately winning position for R will be reached within t steps 
regardless of how A plays. In particular, the initial position, in which r and _.a are 
both the empty string, is winning for R if and only if an adaptive off-line adversary 
Q exists such that, for any deterministic algorithm G, cG(Q) > c~(cQ(G)). 

Suppose for the purpose of contradiction that R has a winning strategy 
corresponding to Q. If G is a randomized algorithm distributed over deterministic 
algorithms Gx then, taking the expected value of this inequality over all the choices 
of Gx, one obtains Ex(CG~(Q)) > E~(ct(ctl(G~))), which gives E(c~(Q)) > E(ct(cQ(G)). 
Therefore, no randomized algorithm can be a-competitive against the off-line 
adaptive adversary Q. This contradicts our assumption that a randomized algo- 
rithm exists that is a-competitive against any adaptive off-line adversary. It follows 
that R does not have a winning strategy. 

To complete the proof, we show that if R does not have a winning strategy, 
then A must have a winning strategy; i.e., a deterministic algorithm that is 
c~-competitive against every adaptive off-line adversary. Note that a position (s a_) 
is a winning position for R if and only if there exists a request r, + 1 such that, for 
every answer a,+l,  (~r,+l, _aa,+0 is again a winning position for R. (The validity 
of the "if" part of this statement depends on the finiteness of A. For, if A were 
infinite, it might be the case that, although each of the infinitely many positions 
(r_r,+l, as,+l) was winning for R, there would be no fixed upper bound on the 
number of steps needed to force an immediately winning position from the starting 
position (s 3 ,  and hence no (finite) adversary would be able to force a win from 
that position.) Hence, if (s a_) is not a winning position for R, then for every request 
r ,+l an answer a,+ 1 which is not a winning position for R exists. Thus, if any 
position is not winning for R, A can counter any request by R with an answer 
that will lead to another position that is not winning for R; it follows that, if A 
plays in this manner, an immediately winning position for R will never be reached. 
Thus, there is a winning strategy for A. [] 

Next we relate the power of the three kinds of adversaries. 

THEOREM 2.2. Suppose G is ~-competitive against any on-line adaptive adversary 
and there is a fl-competitive randomized algorithm against any oblivious adversary. 
Then G is ~ o fl-competitive against any off-line adaptive adversary. 
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PROOF. Fix any adaptive off-line adversary Q, and assume G is distributed over 
deterministic algorithms Gx. Our task is to prove Ex[ca~(Q)] < E:~[o:(fl(co_(G~)))]. 

Let H be a randomized algorithm which is E-competitive against any oblivious 
adversary. If y denotes the coin flips of H, i.e., H = {Hr}, then we have, for every 
n, r e R n, Ex(cn (,r_)) < f(c r(r.)). 

For each fixed y, define an adaptive on-line adversary S r = (Q, Px) in such a 
way that, for any deterministic on-line algorithm F, b(F, St) = Hr(r_(F, Q)). This is 
a very simple-minded adaptive on-line adversary, which satisfies its own requests 
according to Hy and independently of the answers of the on-line algorithm F (i.e., 
all functions (Pr)~ are constants). Intuitively, G is a-competitive against this on-line 
adversary which itself (when considered as an algorithm) is/3-competitive against 
any off-line adversary. 

As G is a-competitive against adaptive on-line adversaries, we have that, for 
every fixed y, E~[cGx(Sr)] < Ex[e(Cs,(Gx))], and taking expectations with respect to 
y gives ErE~[c~(Sr) ] <_ ErE~[c~(Cs,(G~))]. 

For every y note that r(G~, Sy) = r(G~, Q) = rx. Then 

e~[%(Q)] = E, ex[%(s,)] _< E,[c~(Ex[cse(rx)])] 

= a ( E ~ E y [ c n , ( r ~ ) ~ )  = o~(E~[cn(rx)])  < c~(E~[fl(c(rx))])  

= E: ,[a( f l (cQ(Gx)) )] .  [] 

The algorithm R A N D O M  for the K-server paging or cache problem shows that 
the bound of Theorem 2.2 is best possible in general. For, as observed by Karlin 
(see [16]), d is H~ for paging [14], c is K for R A N D O M  against any adaptive 
on-line adversary [15], and the optimal adaptive off-line adversary can force a 
ratio of K H  K (Karlin). 

In fact, Theorem 2.2 is tight in the following stronger sense: for any pair of 
positive numbers a and fl with 1 < f < a, and any C less than aft, a request-answer 
game can be constructed such that: 

�9 There is an algorithm G that is 0~-competitive against any on-line adaptive 
adversary and fl-competitive against any oblivious adversary. 

�9 For every algorithm K, there is an adaptive off-line adversary against which 
K's competitive ratio is at least C. 

Given a, fl, and C, the request-answer game is defined in terms of a positive 
integer parameter t, and positive real quantities m and M determined by the 
following pair of simultaneous equations: 

3 = 
( 2 t -  2)m + M + 1 

2t 

1 + ( 2 t -  1)M 
a =  

2 + (2t - 2)m" 
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The parameter t is chosen sufficiently large that M > max(m 2, C). This is possible 
since, by inspection of the equations, we see that, as t tends to infinity, m tends 
to fl and M tends to aft. The request-answer game is specified as follows: 

�9 The request set R is equal to the answer set A. Each of these sets consists of t 
disjoint pairs of elements. The two elements of any pair are called mates. 

�9 The cost of the request-answer sequence pair (r l, r2, . . .  , rn) , ( a l ,  a 2 . . . . .  an) is 
completely determined by a, and r2, as follows: if a 1 = r2, then the cost is 1; 
if a 1 is the mate of r2, then the cost is M; otherwise, the cost is m. 

The algorithm G simply draws its first answer, a 1, from the uniform distribution 
over A; its other answers are irrelevant. To see that G is fi-competitive against 
any oblivious adversary note that, no matter how the adversary chooses rz, G's 
cost will be 1 with probability 1/2t, M with probability 1/2t, and m with probability 
(2t - 2)/t, giving an expected cost of ((2t - 2)m + M + 1)/2t, which is equal to ft. 
Since the oblivious adversary's cost is at least 1, G is fl-competitive. To see that 
G is a-competitive against any adaptive on-line adversary, note that, regardless of 
how the adversary chooses its first answer b I, there will be exactly a 1/2t chance 
that a 1 = b 1 and a 1/2t chance that al and bl will be mates. A simple case analysis 
shows that the adversary does best to choose r 2 equal to a 1 when a 1 = b,, and 
to the mate of aa in all other cases. With this policy the adversary's expected cost 
per step is (2 + (2t + 2)m)/2t and G's expected cost per step is (1 + (2t - 1)M)/2t, 
giving a competitive ratio of (1 + (2t - 1)M)/(2 + (2t - 2)m), which is equal to a. 
Finally, regardless of how an on-line algorithm chooses a,, an adaptive off-line 
algorithm can set its first answer, b~, and its second request r2, equal to the mate 
of aa. Thus, the algorithm's cost will always be M and the adversary's cost will 
always be 1, giving a competitive ratio of M, which is at least C. 

COROLLARY 2.1. I f  an a-competitive randomized strategy against any adaptive 
on-line adversary and a fl-competitive randomized on-line strategy against any 
oblivious adversary exists, then an a o fl-eompetitive deterministic strategy exists. 

COROLLARY 2.2. I f  an a-competitive randomized strategy against any adaptive 
on-line adversary exists, then it is a o a-competitive against any adaptive off-line 
adversary and thus there is a deterministic a o a-competitive strategy. 

COROLLARY 2.3. Consider the metric space defined by arbitrarily placing n nodes 
on a circle. For any K < n, there is a deterministic 4K 2 competitive algorithm for 
the K-server problem defined on this metric space. 

PROOF. This corollary follows immediately from Corollary 2.2 and the random- 
ized 2K competitive algorithm of Coppersmith et al. [5]. [] 

The corollaries above prove the existence of a good deterministic on-line 
algorithm. We now turn to the question of constructing a deterministic algorithm 
from given randomized ones. In general, Deng and Mahajan [6] show that 
Theorem 2.1 and Corollary 2.1 cannot be made constructive. In particular, they 
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show that there is a request-answer game for which there is a 1-competitive 
randomized computable on-line strategy, but there is no a-competitive computable 
deterministic on-line algorithm for any e > 0. However, the following sections 
show that in many important  cases, there is a constructive version of Corollary 2.1. 

3. A C o n s t r u c t i v e  V e r s i o n  o f  C o r o l l a r y  2.1 

DEFINITION 3.1. Let G be a randomized on-line algorithm. (It helps to think of 
G as playing against an adaptive on-line adversary. After n steps, r e R" denotes 
the requests so far, a e A" the algorithm's answers, and _b e A" the adversary's 
answers.) Call a family �9 = {q),: R" x A" x A" ~ R},> 0 an augmented potential 
function for a function e: R --* R and the randomized on-line algorithm G, if the 
following holds: 

(1) �9 o = 0. 
(2) For  every n and configuration (s _a, b_) e R" x A" x A", 

o, ( r ,  a, b_b) <_ e(L(r ,  b_b3) - L(~, a_q). 

(3) For  every n, and every configuration (_(, _a, b_)e R" x A" x A", every r,+ 1 s R, 
b,+ 1 cA,  and a,+ 1 distributed on A according to g,+l(r_r,+t, a_) we have 

E[@,+ 1(1r. + 1, __aa. + 1, bb,+ 1)] -> @,(~, _a, b). 

We can think of an augmented potential function as being composed of a 
"residue part," e(f,(_(, _b)) - f,(L a_q), minus a pure potential function which reflects 
the difference between the configurations of the on-line player and that of the 
adversary. Potential functions play an essential role in the analysis of deterministic 
and randomized on-line algorithms. Theorem 1 of [12] suggests the following 
observation: 

LEMMA 3.1. Algorithm G is a-competitive against any adaptive on-line adversary 
if and only if an augmented potential function for e and G exists. 

PROOF. Let G be distributed over deterministic algorithms {Gx}. For  any fixed 
adaptive on-line adversary S, let n, = n(G~, S), rx = _r(G~, S), a~ = a(Gx, S), and 
b~ = b(G~, S). 

(if) Let @ = (@,} be a potential function for a and G. First observe that, for 
every S, E~[O,~(r~, a~, bx) ] >_ 0. This follows from property (3) and induction on 
d o when S = (Q, P). Now fix S. From property (2) we get 

E~Ec~(Q)] - e(ExEeQ(Gx)]) = ExEf~.(r x, ax) - e(f,,x(r ~ ,  b~))] 

___ --E~[@.fr~,  a~, b J ]  

< 0 .  
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(only if) Assume G is a-competitive against on-line adversaries. Informally, 
@(_(, a, b_) will be SUPs[CG(S) - a(Cs(G))] with costs updated as if the game starts 
at this configuration, as S ranges over all adaptive on-line adversaries that reach 
this configuration against G. []  

THEOREM 3.1. If@ = {@,) is an augmented potential function for ct and a rando- 
mized on-line algorithm G, and H is a randomized on-line algorithm that is 
fl-competitive against any oblivious adversary, then the following deterministic 
algorithm M = {m,} is ~ofl-competitive against an adaptive off-line adversary. 
Assume we defined k s, k 2 . . . . .  m, (and hence M r(r(r(O for all r e R"), and let r" = 
rt ~ R "+ 1. Then m,+ i~') is chosen to satisfy 

EYE@,+ ~(f', M(f_)m,+ 1(1'), Hy(_())] _> EYE@,(_(, M(_0, Hy(D)]. 

PROOF. Note that m,+~(_() exists, since we can construct an on-line adversary 
Sr,.y = (Q((), H r) which asks the sequence r' and serves it using Hy. @ is a potential 
function for �9 and G. 

By induction on n, the configuration (r_, M(r_), Hy(r)) is reachable when G plays 
against Hy. By property (3) 

Ex[@,+ x(_(', M(r_)(g,+ x)x(_(), Hy(r'))] > @,(_(, M(0, Hy(r)). 

Taking expectations with respect to y on both sides, m,+ ~(_(') can be chosen to be 
(g,+ 0x(s for the value of x which maximizes the potential @,+ 2- 

This proves inductively that, for each n, r ~ R", Ey[@,(~, M(_0, Hy(s > 0, and 
by property (2) that M is a deterministic on-line algorithm that is a-competitive 
against the (randomized) adaptive on-line adversary S = (Q, H). 

As in the proof of Theorem 2.2, the fact that H is fl-competitive against any 
oblivious adversary implies that M is ~ o fl-competitive against any adaptive off-line 
adversary. Of course, since M is deterministic, there is no difference between 
oblivious and adaptive adversaries. []  

COROLLARY 3.1. In the statement of Theorem 3.1,/f @ is computable and if G and 
H are computable algorithms (i.e., for every configuration and request the algorithms 
answer is a computable probabilistic function), then M is computable. 

Corollary 3.1 is somewhat imprecise in that we have not specified a precise 
notion of computability (say, for real-valued functions). We claim the corollary 
holds for any reasonable notion. The complexity of M (i.e., its next answer function) 
is obviously determined by the complexity of computing the expected value of the 
potential function relative to some fixed randomized algorithm H (which may be 
G itself). We claim that all potential functions presently used in the analysis of 
randomized on-line algorithms are indeed efficiently computable (for example, see 
[15], [5], [1], and [10]). More specifically, for all of the above K-server algorithms 
when applied to a v node graph, the expected value of the given potential function 
can be computed with cost bounded by a low degree polynomial in v and K. In 
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particular, using Grove's [10] proof, we can construct an efficient deterministic 
0(K24 r) competitive algorithm for all K-server systems. 

4. A Constructive Version of Theorem 2.1. In this section we assume that the 
cost functions f ,  satisfy two special properties: monotonicity and locality. Mono- 
tonicity means that extending a request-answer sequence cannot cause the cost 
to decrease; more formally, the requirement is that, for all n, r_ ~ R ~, t E R, a ~ A", 
b ~ A, we have f,+l(r_t, ab)> f~(f_, a_). Locality means that, for every positive real 
number h, only finitely many request sequences are of cost less than or equal to 
h; more formally, for all h, {_r: c(_0 < h} is finite. All K-server games and task 
systems satisfy the monotonicity property. All K-server games on finite graphs, 
or on infinite graphs of bounded dgree with finite edge costs, can be formulated 
so as to satisfy the locality property. 

Let _r, a and r', _a' be elements of the union, over all n, of R" x A". The discrepancy 
at (~, a, _r', _a') is defined as 

6((E, a__), ~', a')) = f r(FZ', aa') -- f(s a__) -- f(E', a'). 

The diameter of the game F is defined as 

D(F) = sup{16(~, ~ ,  ((, _a'))]: (E, a_) r ~ (R" • A") and ~', a') E ~ (R" x A")}. 
n n 

The diameter puts an upper bound on how much the sequence of past requests 
and answers can affect the incremental cost of a request-answer sequence. The 
diameter is finite, for example, in K-server games on finite graphs. 

THEOREM 4.1. Let F be a game with a finite diameter D(F), a finite set R of possible 
requests and a computable cost function satisfying the monotonicity and locality 
properties. Assume a randomized on-line algorithm that is s-competitive against every 
off-line adaptive adversary exists. Then, for every e > O, there is a computable 
deterministic on-line algorithm that is ((1 + e)7)-competitive against every off-line 
adaptive adversary. 

PROOF. Since there is a randomized on-line algorithm that is s-competitive 
against any off-line adaptive adversary, Theorem 2.1 establishes that there is a 
deterministic on-line algorithm that is a-competitive against any off-line adaptive 
adversary. For any positive real number H, let R n be the set of all request sequences 
_r such that, for every prefix _r' of _r such that _r' ~ r, c(s _< H. By the locality 
property, R H is a finite set, and, by monotonicity and the computability of the 
cost function, and the finiteness of the request set R, the request sequences in RH 
can be effectively listed. Thus, for each H, there is a computable deterministic 
on-line algorithm A H that is a-competitive against any adaptive off-line adversary 
that is required to choose its request sequence from the finite set Rn. For any 
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request sequence _r e RH, let Anr(O be the answer sequence produced by algorithm 
A n in response to r. 

The required (1 + 0e-competitive algorithm involves a parameter H given by 
H = (2 + e)D(F)/e. The algorithm decomposes any request sequence r as the 
concatenation of subsequences _r(1), _r(2) . . . .  , r(t), where r(1) is the longest prefix of 
_r in R n, r(2) is the longest prefix in R o of the suffix of r obtained by deleting the 
prefix r(1), and so forth. The answer sequence produced by the algorithm is then 
An(r(1)), An(r(2)) . . . . .  An(s The algorithm operates by repeatedly simulating the 
algorithm An; however, as soon as the request sequence is no longer in R n the 
algorithm starts over, as if it had not received any previous requests. 

Let c(i) = c(r(i)). Let r = r(1), _r(2), . . . ,  r(t). By the properties of the diameter D(F), 

we have 

i=t  

c( 0 _> c(s + ~ (c(s -- D(F)). 
i = 2  

On the other hand, by the e-competitiveness of A n and the definition of the 
diameter D(F), the cost incurred by the algorithm is at most 

i= t  

e(c(1)) + y~ (e(c(i)) + D(F)). 
i = 2  

Also, by the definition of the decomposition of r into r(1), r(2) . . . . .  r(t), c(i) > H, 
i = 1, 2 . . . . .  t - 1. Putting the inequalities together, we find that the algorithm is 
(1 + ~)e-competitive. [] 

Returning to the example of a K-server problem on a finite graph (say with 
minimum distance = 1), we observe that A n  can be constructed initially with cost 
O(KKH). Then the complexity of the resulting algorithm is dominated by the 
O(KnZ), n < K H ,  dynamic programming cost (see [4]) for computing each c((). 

Acknowledgments. We thank Sandy Irani for helping with the construction 
showing that Theorem 2.2 is tight. 
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