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1 I n t r o d u c t i o n  

This chapter presents a survey of three types of results concerning on-line graph 
coloring: The first type deals with the problem of on-line coloring k-chromatic 
graphs on n vertices, for fixed k and large n. The second type concerns fixed 
classes of graphs whose on-line chromatic number can be bounded in terms of 
their clique number. Examples of such classes include interval graphs and the 
class of graphs that do not induce a particular radius two tree. The last type deals 
with classes of graphs for which First-Fit performs reasonably well in comparison 
to the best on-line algorithms. Examples of such classes include interval graphs, 
the class of graphs that do not induce the path on five vertices, and d-degenerate 
graphs. 

An on-line graph (digraph) is a structure G "< = (V, E, <), where G = (V, E) 
is a graph (digraph) and < is a linear order on V. (Here V will always be finite.) 
The ordering < is called an input sequence. Let G~ denote the on-line graph 
induced by the <-first n elements Vn = {vl -~ ""  < vn) of V. An algorithm A 
that properly colors the vertices of the on-line graph G "< is said to be an on-line 
coloring algorithm if the color of the n-th vertex vn is determined solely by the 
isomorphism type of G~. Intuitively, the algorithm A colors the vertices of G 
one vertex at a time in the externally determined order vl -4 . . .  < vn, and at 
the time a color is irrevocably assigned to vn, the algorithm can only see Gn. 
For example, the on-line coloring algorithm First-Fit (FF) colors the vertices of 
G "< with an initial sequence of the colors 1, 2 , . . .  by assigning the vertex v the 
least color that has not already been assigned to any vertex adjacent to v. The 
number of colors that an algorithm A uses to color G "< is denoted by XA (G "<). 
For a graph G the maximum of XA (G "<) over all input sequences < is denoted 
by XA(G). If/~ is a class of graphs, the maximum of XA(G) over all G in/1 is 
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denoted by XA(F) .  The on-line chromatic number of F,  denoted by Xol(F), is 
the minimum over all on-line algorithms A of XA (F) .  

For a graph G = (V, E),  the chromatic number, clique number, and in- 
dependence number of G are denoted by x (G) ,  w(G),  and a(G) .  Let u and 
v be vertices in G. If u and v are adjacent, we may write u ~ v. Let 
N(v)  = {w E V :  v ~ w}  and d(v) = IN(v)l. If G-< = (V, E,-~) is an on-line 
graph, then N-<(v) = {w E V : v  ~ w and w -~ v} and d-< (v) = IN "<(v)]. If G 
is isomorphic to H we may write G ~ H.  The set {1, 2 , . . . ,  n} is denoted by 
[n]. For a sequence a = (~q , . . . ,  an) a subsequence of the form e = ( e l , . . . ,  cq) 
is called an initial sequence of a and a subsequence of the form (cq , . . . ,  an) is 
called a final sequence of cr. Let ]e] be the length of a. 

Our goal is to find on-line coloring algorithms that  perform well on various 
classes of graphs. To see what this might mean, we begin by considering some 
simple examples. In later sections we explore in more detail the issues raised by 
these examples. We will include some illustrative proofs. 

Example 1. (Gys and Lehel [9]). 
For every positive integer k there exists a tree Tk on 2 k-  1 vertices such that  for 
every on-line coloring algorithm A, XA (Tk) > k. 

Proof. We begin by defining the tree Tk. Let D = {or : cr is a strictly decreasing 
sequence of positive integers}. For (r E D, let Va = {r  E D : ~r is an initial 
segment of r}.  Let Ta be the tree on the vertex set Vo such that  r is adjacent 
to r '  iff Irl + 1 = Ir'l and r '  E Vr or vice versa. We shall call ~ the root of To 
and abbreviate T(tl,...,t~) by Ttl ..... t~. In particular Tk = T(k). Note that  if r is a 
final segment of c~, then there exists an isomorphism from Tr to Ta that  maps 
r a p  to cr^p. So Tk -- (k) = Tk,1 + . . .  + Tk,k-1. Putt ing (k) back, we see that  (1) 
Tk ~ Tk-1 + Tk-1 + e, where e is an edge joining the roots of the two copies of 
Tk-1, and the root of Tk-1 + Tk-1 + e can be either one of the endpoints of e. 
In particular, ]Vk] = 2 k-1. 

Let Sk,i = Tk,1 -4- �9 �9 + Tk,i. The key property of Tk that  we exploit is that  
(2) for any i < k, there exists an embedding of Sh,~ into Tk that  maps (k, i) 
to (k) and is extendible to an automorphism of Tk. It follows that  an on-line 
algorithm that  has only seen a subgraph isomorphic to Sk,~ cannot distinguish 
between (k, i) and (k). Property (2) is easily proved by induction on k - i. The 
base step k " i = 1 follows immediately from (1). The induction step follows 
from the induction hypothesis applied to the pair {k - 1, i} and from the base 
step. 

Let Pk be a partial ordering on Sk,k-1 such that  x Pk Y iff z E Tk,i, y 6 
Tkj ,  and i < j .  We claim that for every positive integer k and on-line coloring 
algorithm A, there exists a total ordering -~k of Sk,k-1 such that  -~k extends Pk 
and A assigns each of the vertices (k, 1 ) , . . . ,  (k, k - 1 )  a distinct color when S~,k-1 
is presented in the order -%. It then follows that  if (k) is presented last, then A 
uses a k-th color to color (k). Arguing inductively, assume that  we have shown 
this for the case k = m and consider the case k = m + l .  Since Sk,m-1 ~ S in ,m- l ,  
there exists an ordering -~,~ such that  when A is applied to Sk,,~-1 in the order 
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-~,n, A uses distinct colors on the set Q = {(k, 1 ) , . . . ,  (k, m - 1)}. Let B be an 
on-line algorithm that  colors Te,m in the same way that A colors Te,r~ ~ Tm 
after first coloring Se,m-1 in the order ~ , , .  By the induction hypothesis applied 
to B, instead of A, there exists an ordering 4"  of Te,m extending the preimage of 
P,~, such that  when A is applied to Sklm in the order ~rn + -~*, A uses distinct 
colors on the se t /~  = {(k, m, 1 ) , . . . ,  (k, m, m -  1)}. I fA  uses the same colors on 
both Q and R, then (k, m) gets a new color and we are done. Otherwise some 
root (k, m, i) gets a new color a. Because -~* extends the preimage of Pro, at 
the t ime (k, m, i) is colored by the algorithm B has only seen a subgraph of 
Te,m ~-, Tm which is isomorphic to Sm,i. So by (2) we can reorder Ve,m so that  
(k, m) looks like (k, m , m  - 1) and is colored with a by A. [] 

This example shows that we cannot bound the on-line chromatic number of 
a graph solely in terms of its chromatic number, even in the case of trees. In 
Section 2 we will obtain non-trivial bounds on the on-line chromatic number of 
graphs on n vertices in terms of their chromatic number and n. Because of the 
following example, our emphasis will be on fixed k and large n. 

Example e. (Szegedy [34]). 
For every on-line algorithm A and positive integer k, there exists an on-line 
graph G "~ on n vertices such that  x ( G  "~) <_ k, n <_ k2 e, and XA (G "<) >_ 2 e - 1. 

Proof. We construct G "~ in stages; G~ is constructed at the s-th stage, which 
consists of three steps. First we introduce a new vertex vs together with all 
edges from v8 to previous vertices. Next we determine the color A(vs) = c, that 
A assigns v~. We may assume that c E { c l , . . . ,  c2k_1}. Finally we assign a color 
f (vs) E { r l , . . . ,  re} to v,. Let Cj be the set of vertices that A has colored cj, 
R/ be the set of vertices that we have colored ri, and Xij  = Ri tq Cj. We shall 
try to maintain the following induction hypothesis: 

(1) f is a proper k-coloring and 
(2) IX,~l <_ 1, for all i E[k] and j E [2 k - 1]. 

By (1) G "~ is k-colorable and by (2) G "~ has less than k2 e vertices. Thus it 
suffices to show that  we can maintain (1) and (2) until A uses 2 e - 1 colors. 

Let S C [k]. We say that  S is represented if there exists j such that  i E S iff 
Xij  ~ ~. If every non-empty subset of [k] is represented then A has already used 
2 e - 1 colors and we are done. Otherwise, suppose S is a non-empty subset of [k] 
which is not represented. Let v, be adjacent to v iff v E Ri and i ~ S. Suppose 
A colors v, with cj. Then Xij  = ~) for all i ~ S. Thus, since S is neither empty 
nor represented, there exists i E S such that Xij  = I~. Let f (vs) = i. [] 

After the first two negative examples one might wonder whether there are 
any interesting on-line coloring algorithms. Our next example is a simple on-line 
coloring algorithm with a nontrivial performance bound. 

Example3. (Kierstead [13]). 
For every positive integer n, there exists an on-line algorithm B such that  
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xB(G) < 2n 1/2, for any graph G on n vertices that  contains neither C3 nor 
C5. 

Proof. Consider the input sequence Vl -~ v2 -< " "  -< vn of an on-line graph 
G "< that  contains neither C3 nor C5. Initialize by setting W~ = ~ for all i E 
[2n 1/2] - [ n l / 2 ] .  At the s-th stage the algorithm processes the vertex v, as 
follows. 

1. If there exists i E [2n 1/2] such that  vs is not adjacent to any vertex colored 
i, then let j be the least such i and color v, with j .  

2. Otherwise, if there exists i > n 1/2 such that  vs E N (Wi), then let j be the 
least such i and color vs with j .  

3. Otherwise, let j be the least integer i > n 1/2 such that  W~ = 0. Set Wj = 
{v E g < (vs) : the color ofv  is at most n 1/2} and color vs with color j .  (Note 
that  [Wjl >_ n 1/2, since Case 1 does not hold. Also, for all i < j,  W~NWj = O, 
since Case 2 does not hold.) 

Suppose for a contradiction that  two adjacent vertices x and y, with x -~ y, 
have the same color j .  Clearly y is not colored by Step 1. Thus j > n 1/~, and 
thus x is 'not  colored by Step 1. Since only the first vertex colored j can be 
colored by Step 3, y must be colored by step 2. If x is colored by Step 3, then 
Wj C g ( x )  and y E g (Wj), and so x and y have a common neighbor in Wj. 
But then G contains C3, a contradiction. If x is colored by Step 2, then both 
x and y are in N (Wj) and so either they have a common neighbor in Wj, and 
we are done as before, or they have distinct neighbors in Wj, each of which is 
adjacent to the first vertex colored j .  In this case G contains C~, a contradiction. 
So B produces a proper coloring. At most n 1/2 colors are used in Step 1. Since 
the Wj are disjoint and have size at least n 1/~, at most n 1/2 colors are used for 
Steps 2 and 3 combined. Thus XB (G "<) <_ 2n 1/~. [] 

In Section 3 we study special classes of graphs that  have the property that  
the on-line chromatic number of any graph in the class can be bounded in terms 
of its chromatic number, in fact even in terms of its clique size. The following 
was probably the first such result. 

Example 4. (Kierstead and Trotter [25]). 
There exists an on-line coloring algorithm A such that  for any interval graph 
G, XA(G) < 3w(G) - 2; moreover for any on-line coloring algorithm A and any 
positive integer k, there exists an interval graph G such that  w(G) = k and 
x~(G) > 3k - 2 .  

Proof. We shall only prove the first statement. First we prove by induction that  
for all k there exists an on-line algorithm Ak such that  if G ~ is an on-line interval 
graph with w(G) = k then XA~ (G "~) <_ 3w(G) - 2 .  The base step k = 1 is trivial, 
so consider the induction step k > 1. Consider the input sequence vl -~ . . .  -~ v,~ 
of G. The algorithm Ak will maintain an on-line parti t ion of V. When a new 
vertex vs is presented, Ak puts v, into a set of B, ifw (B U {v,}) < k; otherwise 
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Ak puts v8 into C. If v8 is put into B, it is colored by Aa-1 applied to B using 
the set of colors [ 3 k -  5]; otherwise v~ is colored by First-Fit applied to C using 
colors greater than 3k - 5. It suffices to show that  First-Fit uses at most 3 colors 
on C. To prove this, we will show that  the maximum degree of C is at most 2. For 
each vertex x of G, let I= be the interval that corresponds to x in some interval 
representation of G. If x E C, then x is in a k-clique K such that  K - {x} C B. 
Let p= be a point in the intersection of all intervals corresponding to vertices 
in K.  Note that  p~ ~ Iy for any other vertex y E C, since otherwise K tJ {y} 
would be a (k + 1)-clique in G. Suppose for a contradiction that  x is adjacent 
to three vertices in C. Without loss of generality we can assume that  for two of 
them, say y and z, Px < Py < Pz. Then Iy C Ix LJ I~, since Ix intersects I~ and 
Iy is contained in the interval from p~: to p~. But then py E Ix U Iz, which is a 
contradiction. 

The algorithm A guesses that  w(G) < k and uses Ak to color G until a vertex 
v8 is presented that  forms a (k + 1)-clique. At this time the algorithm switches 
to Ak+l. This does not cost any colors because Ak+l would have also used Ak 
to color the first s - 1 vertices anyway. [] 

In Section 4, we shall study classes of graphs for which First-Fit performs 
well. The next two examples show that  the class of trees has this property, but 
the class of 2-colorable graphs certainly does not. 

Example 5. (Gys163 and Lehel [9]). 
For any tree T, Xol(T) = XFF (T). 

Proof. Notice that  the maximum degree of the tree Tk constructed in Example 
1 is k - 1. Thus XFF(Tk) ~ k, and so by Example 1, XFF (T )  = k. We shall show 
by induction on k, that  for any tree T, if First-Fit colors a vertex of v of T with 
color k, then T contains a copy of Tk with root v. It follows that  First-Fit is an 
optimal on-line coloring algorithm for trees. The base step is trivial, so consider 
the induction step. If First-Fit colors v wi th  k + 1, then for all positive integers 
i < k, v is adjacent to a vertex vi that  First-Fit has colored i. By the induction 
hypothesis, vi is a root of a copy Ui of Ti in T - v. Since T is acyclic, distinct 
Ui are in distinct components of T - v. It follows that  {v} U (Ji<k Ui is a copy 
of Tk + l . [] 

Example 6. For every positive integer n there exists a 2-colorable graph G on n 
vertices such that  X F F ( G )  -- n/2.  

Proof. Let Bn = K,~,,~ - M,  where M = {aibi : i E [n]}, i s a  perfect matching 
in K~,n. Let -< be the input sequence (al, bl, a2, b2, . . . ,  as, bn). Then First-Fit 
colors each ai and bi with the color i. [] 

2 P e r f o r m a n c e  b o u n d s  f o r  g e n e r a l  g r a p h s  

In this section we consider the problem of finding good on-line coloring al- 
gorithms for the class of all graphs. Let r n) be the least integer t (< n) 
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for which there exists an on-line algorithm A such that  XA(G) <_ t, for any 
k-colorable graph G on n vertices. We have already seen in Example 2 that  
r (k, k2 k) _ 2 k - 1. Here we shall be interested in the case where k is fixed and 
n is much larger than k2 k. In the definition of r the algorithm A is allowed to 
depend on n. In other words, the algorithm knows the number of vertices of G 
ahead of time as in Example 3. This makes the statement of some algorithms 
simpler, but does not change the order of r as the following doubling technique 
shows. 

L e m m a  1. Let F be a class of graphs and g be an integer valued function on the 
positive integers such that g(x) < g(z + 1) _< g(x) + 1, for all z. I f  for every n, 
there exists an on-line coloring algorithm A~ such that for every graph G E F on 
n vertices, XA, (G) <_ g(n), then there exists a fixed on-line coloring algorithm 
A such that for every G E F on n vertices, XA(G) < 4g(n). 

Proof. Choose a sequence of integers co = 1,cl, c2 , . . ,  such that  2g (ci) = 
g (ci+l). Color the first Co vertices using Aeo, then color the next cl vertices, 
using At1 and a new palette, then color the next c2 vertices, using At2 and a 
new palette, etc. This algorithm will color every graph G E F on E0<h<i Ch 

vertices, with at most 2g(ci) colors. To see this, argue by induction on-'L-The 
base step i = 0 is trivial, so consider the induction step i = j + 1. We use at most 
2g(cj) = g (ci) colors on the first ~0<h<j  Ch vertices by the induction hypoth- 
esis, and at most g (ci) colors on the "[as~ cl vertices. So we use at most 2g (ci) 
colors in all. 

Now suppose that  G E /" is a graph on n vertices with ~-'~0<h<i Ch < n < 
~--~0<h<i Ch. After coloring E0<h<i Ch vertices we guess that  ther-e are going to 
be EO<h<i Ch vertices, which w~ will be able to color with the allotted number of 
colors,-be~ause by the claim we have accumulated a surplus of 2g (cl-x) = g (ci) 
colors. Thus we use at most 4g (ci-1) _< 4g(n) colors. [] 

We begin our study of r with the case k = 2. In Example 1 we saw that  
r n) _< lg n. The next theorem shows that r n) = O(log n), a quite satisfac- 
tory answer. 

T h e o r e m  2. (Lovs Saks, and Trotter [27]). 
There exists an on-line algorithm A such that for every on-line 2-colorable graph 
G on n vertices, XA(G) _< 2 lg n. 

Proof. Consider the input sequence Vl -< v2 -< .-- -< vn of an on-line 2-colorable 
graph G "~ . When vi is presented there is a unique partit ion (/1,12) of the con- 
nected component of G [  to which vi belongs, into independent sets such that  
vi E 11. The algorithm A assigns vi the least color not already assigned to some 
vertex of 12. 

It suffices to show that  if A uses at least t colors on any connected component 
of G f ,  then that  connected component contains at least 2 [t/2j vertices. We argue 
by induction on i and note that  the base step is trivial. For the induction step, 
observe that  if A assigns vl color k + 2, then A must already have assigned 
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color k to some vertex vp E I2 and color k + 1 to some other vertex in I2. 
Thus A must  have assigned color k to some vertex vq E /1. Since A assigned 
vp and vq the same color, vp and vq must be in separate components of G~,  
where r = max{p, q}. Thus by the induction hypothesis, each of these connected 
components  must  have at least 2 [k]xj vertices and so the component  of v~ in G [  
has at least 2 [(k+2)/2j vertices. [:] 

The situation is not nearly as clear for k > 2. Vishwanathan generalized the 

lower bound in the case k = 2, showing that  r n ) =  ~2 (log k-1 n ) .  

T h e o r e m 3 .  (Vishwanathan [36]). 
For all integers k and n, r n) > (lgn/(4k)) k-1. 

Proof. In order to simplify calculations, we will prove the weaker result that  
for every k, there exists ek > 0 such that  for all n, r  _> ~k(lgn) k-1. The 
key idea of the proof  is to show that  there exists a function f(k,  n) satisfying 
the initial conditions f(2,  n) > e2 log(n), f(k,  k) = k, and recurrence relation 
f (k  + 1, 3n) = f (k  + 1, n) + i f ( k ,  n), such that  for every on-line algorithm A, 
there exists an on-line k-colorable graph G "< on n vertices and a proper k-coloring 
c of G such that  A uses at least f(k,  n) colors on some color class of c. It  then 
follows that  r n) > f(k,  n) > Sk(logn) k-l ,  for the some constant sk > 0. 

We argue by double induction on k and then n. Fix an on-line algorithm 
A. Using Example  1, the base steps follow easily. We shall construct a (k + 1)- 
colorable on-line graph G "< on 3n vertices and a proper (k + 1)-coloring c* of G 
such that  A uses at least f(k,  n) + I f (k ,  n) colors on some color class of c*. By 
the secondary induction hypothesis there exists a (k + 1)-colorable on-line graph 
X < o n  n vertices and a proper (k + 1)-coloring c of X such that  A uses at least 
f (k  + 1, n) colors on some color class I of c. Let A' be the on-line algorithm 
that  colors an on-line graph H ~ in the same way tha t  A would color H after 
first coloring a disjoint copy of X "< . Then again using the secondary induction 
hypothesis, there exists an on-line (k + 1)-colorable graph Y~ on n vertices so 
that  Y'< is disjoint from X "< and there exists a proper (k + 1)-coloring c ~ of 
Y such that  A' uses at least f (k  + 1, n) colors on some color class I ~ of e ~. 
Then when A is presented with X "< followed by Y'<, A uses a set C of at least 
f (k  + 1, n) colors on I and another set D of at least f (k  + 1, n) colors on I ' .  I f  
IV U D I > f (k  + 1, n) + i f ( k ,  n), then we are done since I U I '  is a color class 
of the (k + 1)-coloring c* = c U c'. Otherwise, IV N D I > f (k  + 1, n) - i f ( k ,  n). 
Let A" be the on-line algorithm that  colors an on-line graph H "~ in the same 
way that  A would after first coloring a disjoint copy of X < followed by a disjoint 
copy of Y'~, if every vertex in H were adjacent to every vertex in I.  By the 
pr imary  induction hypothesis there exists a k-colorable on-line graph Z < on n 
vertices and a proper k-coloring c" of Z such that  A" uses at least f(k,  n) colors 
on some color class I "  of c ' .  Let G ~ be X "~ followed by Y< followed by Z ~ 
together with all possible edges from Z to I .  Then none of the colors A uses on 
I "  are used on I ,  and so A uses at least f (k  + 1, n) + I f (k ,  n) colors on I '  U I " .  
Since G has a proper (k + 1)-coloring c* with a color class containing I ~ U I ' ,  we 
are done. [7 
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Until recently, the best upper bound on r n) was given by the following 
theorem, where lg (k) is the lg function iterated k times. 

T h e o r e m 4 .  (Lov~sz, Saks, and Trotter  [27]). 
There exists an on-line algorithm A such that for every k-colorable on-line graph 

on n vertices, XA (G "~) = O (n lg  (2k-s) n / l g  (2k-4) n) .  
% 

[] 

Their proof made use the following combinatorial lemma, whose proof follows 
easily from Inclusion-Exclusion or Lovdsz [26]. 

L e m m a  5. Let n be a positive integer and let 5 be a positive real less than one. 
I f  F is a family of subsets of [n] such that for all distinct D, E E F, ]El > (in 
and In f'l E[ < 52n/2, then IFI < 2/5. [] 

Very recently the author used the same lemma to obtain a 0 (n 1-1/kr) upper  
bound on r n). 

T h e o r e m 6 .  (Kierstead [131). 
For every positive integer k, there exists an on-line algorithm Ak and an in- 
teger N such that, for every on-line k-colorable graph G "~ on n > N vertices, 
xA~ (G ~) < n l-l/k!. 

Proof. To avoid messy calculations, we shall prove a somewhat weaker statement,  
but the full strength of the theorem can be obtained from the proof we give by 
being a little more careful with the details and initial conditions. We shall show 
that for all positive integers k there exist positive constants C and r such that  
for all positive integers n there exists an on-line coloring algorithm Ak,, such 
that for all k-colorable graphs G on n vertices XAk,,(G) ~ Cn 1-~. We argue 
by induction on k. The base step is trivial; for the induction step assume that  
we have proved that  there exist positive constants C and e such that  for all 
i < k, there exists an on-line algorithm Ai,n such that  XA~,,(G) ~ Cn 1-~, for 
ali-i-colorable graphs G on n vertices. 

Fix n. We shall describe A = Ak+l,~ in terms of two parameters a ann 5, 
where 0 < a, 5 < 1. For i _< ki let Ai = Ai,n', where n' = n ~. Set 5i = 2-i5,  
so = n, and si = ai-lsi-1,  for i _< k. Later we shall apply Lemma 5 with n = si 
and 5 = &. Let G ~ = (V, E,-<) be an on-line (k + 1)-colorable graph on n 
vertices, and let Z be a subset of V. 

First we describe a dynamic data structure in terms of the life cycle of the 
strange mythical species of witnesses. Male witnesses are witness vertices in 
V - Z. Female witnesses are certain witness sets contained in Z. A witness tree  
records the female genealogy of witnesses starting from the original witness set 
Z (Eve). From time to time witness sets will spawn large litters of daughters. 
Each of the daughters in a litter is a subset of her mother. Each daughter D in 
the litter has a distinct (!) father F(D),  who is a witness vertex that  is adjacent 
in G to every vertex in D. Once a witness set is spawned, it  will never gain 
or lose elements. However Eve is special in that  Eve was not spawned and will 
gain, but not lose, elements. The witness sets form a tree with Eve at the 0-th 
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level, the daughters of Eve at the 1-st level, their daughters at the 2-nd level, 
and so on, through the k-th generation. A witness set at the i-th level is called 
an/-witness  set. For all i > 0, an/-witness set has size si. At some times some 
of the witness sets may die. Once they die, they will never live again. If they 
never die, they are immortal; otherwise they are mortal. If all the daughters in 
a single litter die, then the mother also dies (of grief). 

Next we describe the on-line coloring algorithm A, using the above data  
structure. For any/-witness set W, with i < k, let N*(W) = {v E V - Z  : IN(v)n 
W[ > si+l}. If W is a k-witness, then N*(W) = N(W).  The algorithm will 
maintain a parti t ion {Sw : W is a witness set} of V - Z such that  each Sw C 
N*(W). Each Sw will be partitioned by Pw - {Xw( j )  : j E [tw]}. The last part 
X w  (tw) of this parti t ion is called the active part. When new elements enter Sw 
they will be put in the active part. Let X -- U {Pw : w is a witness set}. Call 
X w  (j) E X small if it has size less than n ~. Otherwise it is large. The algorithm 
will part i t ion V into Z, at most n 1-~ large subsets of size n ~, and a bounded 
number of small subsets. Each of these subsets will be colored from disjoint 
palettes of colors. The palette for Z will have (~n colors and each of the other 
palettes will have Cn ~0-1/~) colors. 

Consider the input sequence vl -~ v2 -~ . ' .  -~ vn of G ~. At the s-th stage the 
algorithm processes the vertex v~ as follows. 

1. If d "~ (v~) < 5n, then put v~ in Z. Color v8 by First-Fit applied to Z, using 
a palette of size 5n. 

2.1. Otherwise v~ is a witness vertex. Find a live/-witness set W, with i as large 
as possible subject to the condition that  v~ E N*(W). Such a witness set 
exists by the fact that IN(v~)MZ] _> tin and so v8 E N*(Z), provided we 
can prove (Lemma 7) that Eve is immortal.  

2.2. Put  v~ in the active part Xw(t) ,  t -- tw,  of Pw. Color v8 by Ai applied to 
X w  (t), using a palette of size Cn ~(1-~). (By step 2.3, ]Xw (t)l _< ha.) 

2.3. If after the addition of v~, [Xw(t)l = n ~, then set tw -- t + 1 and set 
X w  (tw) = ~. Then Xw(t)  is large. 

o~(1 e) 2.4. If n - colors have been used on Xw(t) ,  then we have a proof that  
x (Xw( t ) )  _ i +  1. Set tw -- t + 1 and set Xw( t  + 1) = 0. (We may 
have just  done this.) In this case, if i - k, then W dies. (This may cause 
some female ancestors of W to die of grief.) Otherwise i < k and W spawns 
a new litter {D. : v E Xw(t)} ,  where each daughter D~ is a si+l-subset of 
g(v)  N W. The father of Dr is v, for each v E Xw(t) .  

This completes the description of the algorithm A. To show that the algorithm 
is well defined, we need the following Lemma. 

L e m m a  7. Eve is immortal. 

Proof. Suppose that  Z is mortal. Let c be a proper (k ~- 1)-coloring of G. First 
consider any mortal  (i - 1)-witness set M, with i E [k]. Since M is mortal, M 
has a litter L such that  every daughter D E L is mortal. When L is spawned, 
x ( { F ( D )  : D E L}) > i. Thus ]{c(F(D)) : D E L}] _> i. It follows that,  setting 
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W0 -- Z, we can find a collection {W~ : i E [k]} such that  W~ is a morta l  daughter  
of W/-1 and [{c (F  (Wi)) : i E [k]}[ = k. Every father in the set {F(Wi)  : i E [k]} 
is an ancestor of Wk and so is adjacent to every vertex in Wk. Thus c must  color 
every vertex in W~ with the same color. It  follows that  c restricted to N(Wk) is 
a proper k-coloring. Since Wh is morta l  Ak must  use at least n ~(1-~) colors on 
the k-colorable graph induced by N (Wk), which is a contradiction. [] 

Clearly A produces a proper coloring of G. I t  remains to bound the number  
of colors that  A uses. The key step is the next l emma  tha t  bounds the number  
of litters a witness set can spawn. 

L e m m a  8. Every i-witness set M has less than 2/~i litters. 

Proof. We may assume that  M is alive since after M dies, M will have no more 
litters. Then each litter of M contains a live (i + 1)-witness set. Suppose W and 
U are two live daughters of M from distinct litters. Then there exist distinct j 
and j '  such that  F(W) e XM(j) and F(U) E XM(j').  Say j < j ' .  At the stage 
tha t  F(U) is processed, all the vertices in W have already been processed. Thus 

6? ]W N U[ < si+2 = -~si, since otherwise F(U) would be put in Sw instead of 
SM. Thus by Lemma 5, M has less than 2/5i litters. [] 

Let Q = {Xw(j )  E X :  Z w ( j )  is small}. We claim that  [Q[ _< 2 k2 (n~/~) h. 
For any/-wi tness  set W, [{Zw(j)  E Pw : Xw( j )  is small}[ is at most  one more 
than the number  of litters of W. Note that  a k-witness set spawns l~ = 0 litters 
and, by Lemma  8, an/ -wi tness  set spawns less than li = 2/5i litters. Let wi be 
the number  of/-witness sets. Then w0 = 1 and wi+l < wilin ~, since each of the 
wi /-witness sets spawns less than li litters of at most  n a daughters. It  follows 
tha t  w~ _< 2 ~(i+1)/2 (n~/~) i. So [Q[ _< ~-]~0<i<k wili< 2wk <_ 2 k2 (n~/5) k. 

The algorithm A partit ions V into at most  2 k2 (na/5) k small pieces and at 
most  n 1-~ large pieces. Each piece is colored with at most  Cn  ~(1-~) colors, 
except that  Z is colored with at most  5n colors. Thus, setting 5 = n - ~  and 
a = 1/(k  + 1 + kc), the number of colors used by the algorithm is at most  

~n + Cn ~(1-~) (2kn'~/~) k + Cnl-'~n ~(1-~) -- 6n + C2k2n c~(k+l+k~-~) + Cn 1 - ~  

= n 1 -~  + 2k~Cn 1 - ~  + Cn 1 - ~  

-- (2C + 2k~) n 1 -~ .  [] 

We could improve the performance of the last algorithm if we could further 
limit the number  of witness sets. One way to do this is to improve the bounds on 
the size of the litters. The size of the litters of an/ -wi tness  set W is determined 
by the least ti such that  whenever Ai uses more than a given number  ci of 
colors on the active par t  X of Pw, X contains a subgraph on tl vertices whose 
chromatic number  is at least i + 1. Clearly to = 1, t l  - 2, and by Example  3 we 
can take t2 = 5, when co = 0, cl - 1, and c2 = 2n 1/2. These observations lead 
to the more elegant bounds in the s ta tement  of Theorem 6 and, for small values 
of k, the following noticeable improvements in the algorithm. 
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Theorem9.  (Kierstead [13]). 
There exists an on-line algorithm A3 such that for every on-line 3-colorable graph 
G "< on n vertices, XA3(G "<) < 20n2/Slog1/3n. 

T h e o r e m l 0 .  (Kierstead [13]). 
There exists an on-line algorithm A4 such that for every on-line ~-colorable graph 
G ~ on n vertices, XA4(G "<) < 120nS/61og 1/6 n. 

These algorithms are not only on-line, but also run in polynomial time. From 
this point of view they are quite good since the best off-line algorithms for 
polynomial time coloring of 3-colorable graphs use n 3/14 colors ([2]). The author 
and Kolossa obtained much tighter bounds in the case of perfect graphs. Let 
~r(k, n) be the least integer t for which there exists an on-line algorithm A such 
that XA(G) < t, for any k-colorable perfect graph G on n vertices. 

T h e o r e m  11. (Kierstead and Kolossa [19]). 

[] 

Example 3 illustrates the basic idea behind the proof of Theorem 11, but this 
idea must be iterated log (3) n times and extended to graphs that do not induce 
any odd cycles. The actual proof is much more difficult and requires many on- 
line coloring techniques. The lower bound on ~r is derived from Vishwanathan's 
construction (Theorem 3). This suggests that the known lower bound on r n) 
is far from tight. But maybe this lower bound is close to the truth for lr(k, n). 
In the case of chordal graphs, Irani has an upper bound of the form O(k log n) 
(see Theorem 34). The following problems remain open and very interesting. 

Problem 12. Find tighter bounds on r n) for fixed k and large n, especially 
for k e {3, 4, 5}. Does r n) = O (nl/2)? 

Problem 13. Find tighter bounds on ~r(k, n) for fixed k and large n. Does there 
exist a function p(k) such that 7r(k, n) < log p(k) n? 

Vishwanathan studied randomized on-line algorithms. His lower bounds 
(Theorem 3) were actually proved for these more powerful algorithms. 

T h e o r e m l 4 .  (Vishwanathan [36]). 
There exists a randomized on-line algorithm A such that for every k- 
colorable on-line graph G "< on n vertices, the expected value of XA (G "<) = 
O(k2kn(k-2)/(k-D(lgn)l/(k-D). Moreover, for any randomized on-line algo- 
rithm B, there exists a k-colorful on-line graph G "< on n vertices such that the 
expected value ofxB (G "<) = Y2(1/(k - 1)(lgn/(12(k + 1)) + 1)k-l) .  [] 
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3 O n - l i n e  x - b o u n d e d  c l a s s e s  

In this section we consider classes F of graphs, for which there exists an on-line 
algorithm A such that  for all G E F, XA(G) can be bounded by a function of 
~(G) (< x(G)), regardless of the number of vertices in G. More precisely, we 
say that F is on-line x-bounded iff there exists an on-line algorithm A and a 
function g(k), such that  XA (G ~) <_ g (~v(G)), for any on-line presentation G "~ 
of any G E F. Similarly, F is x-bounded if there exists a function f(k) such that  
X (G) < f (w(G)), for all G E F. Most of the time we will not be concerned with 
the size of the function g; the important point is that it does not depend on the 
number of vertices of G. 

The results of this section have their roots in the author's previous work in 
recursive combinatorics and a beautiful graph theoretical conjecture formulated 
independently by Gys163 and Sumner. The problems the author considered in 
recursive combinatorics can be very roughly described as follows. Given a count- 
ably infinite graph G, design an algorithm to color each vertex v of G using only 
certain types of local information (in particular, only finitely much information) 
about v. Depending on the amount of information allowed, in increasing order, 
the graphs may be recursive, highly recursive, or decidable. Usually, results about 
coloring recursive graphs, such as Bean [1], Kierstead [14], and Kierstead and 
Trotter [25] translate immediately to on-line results, while results on highly re- 
cursive or decidable graphs such as Kierstead [15] [16], Manaster and Rosenstein 
[28], and Schmerl [31] do not. The starting point for the work of this section is 
Theorem 15, which we will state after introducing some more terminology. 

An on-line ordered set is an on-line digraph D "~ such that  D is an ordered 
set, i.e., D is transitive, antisymmetric, and antireflexive. The comparability 
graph of an ordered set D = (V, A) is the undirected graph G = (V, E), where 
E = {xy : (x, y) E A or (y, x) E A}. Similarly the cocomparability graph of D is 
the undirected graph G c = (V, EC), where E c = {xy :  (x, y) ~ A and (y, x) 
A and x ~ y). A chain (antichain) in D is an independent set in the cocom- 
parability graph G ~ (comparability graph G). The height (width) of an ordered 
set is the number of vertices in the maximum chain (antichain). Notice that  the 
height of D is the clique size of G and the width of D is the clique size of G c. It 
is well known that G (and hence G c) is perfect. 

T h e o r e m l b .  (Kierstead [14]). 
There exists an on-line algorithm A that will partition the vertices of any on-line 
ordered set of width w into at most (5 9 - 1 ) / 4  chains. [] 

Theorem 15 does not assert the existence of an on-line coloring algorithm 
that will color every on-line cocomparability graph G "~ with (5 w - 1) /4  colors. 
The problem is that  the algorithm of Theorem 15 receives as input the digraph D 
of an ordered set; in general this provides more information than the cocompara- 
bility graph. This was shown rigorously by Penrice [29]. The best lower bounds 
for Theorem 15 were obtained by Szemer@di. 
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T h e o r e m  16. (Szemerddi [35]). 
For every integer w and on-line chain partitioning algorithm A, there exists an 
on-line ordered set D "~ with width w such that A partitions D into at least C ~ 
chains. [] 

The author [14] had previously derived a super linear lower bound and shown 
that  at least five chains were necessary in the case w = 2. Recently Felsner 
has improved the upper bound in the case w = 2. (This also gives a slight 
improvement in the general upper bound.) 

T h e o r e m l T .  (Felsner [5]). 
There exists an on-line algorithm A that will partition the vertices of any on-line 
ordered set of width 2 into at most 5 chains. [] 

Over the last fifteen years Theorem 17 is the only progress on the following 
natural problem. 

Problem 18. Let p(w) be the least integer such that  there exists an on-line algo- 
ri thm A such that  A will partition the vertices of any on-line ordered set of width 
w into at most p(w) chains. Improve the bounds (w+l) < p(w) < (5 w - 1)/4. Is 
p(w) polynomial? O 

The analogous problem for antichains is much simpler. 

T h e o r e m l 9 .  (Schmerl [30]). 
There exists an on-line algorithm that will partition any on-line ordered set of 

h+l  height h into at most ( 2 ) antichains," moreover for every positive integer h and 
on-line algorithm A, there exists an on-line ordered set D "~ such that A cannot 
partition D "~ into fewer than h+l ( 2 ) antichains. 

Proof. We only prove the upper bound. Consider the input sequence v l , . . . ,  v~ 
of an on-line ordered set D with height h. At stage s we process the vertex v, 
by putting v, into the antichain Aa,b where a = a(s) is the number of vertices 
in the longest chain (at stage s) with maximum element Vs and b = b(s) is the 
number of vertices in the longest chain (at stage s) with minimum element v,. 

h-P1 Then 2 <_ a -t- b < h + 1. It follows that  there are at most ( 2 ) choices for the 
sets Aa,b. To see that  the sets Aa,b really are antichains, consider two comparable 
vertices Vs and vt with s < t. If v, < vt in D, then a(s) < a(t). Otherwise v~ > vt 
in D and b(s) < b(t). [] 

Note that  the class of comparability graphs is not on-line x-bounded since 
it contains the class of trees which is not on-line x-bounded by Example 1. The 
following conjecture of Schmerl from 1978 motivated a lot of work, including 
Example 4. 

C o n j e c t u r e 2 0 .  ( Schmer O. 
The class of cocomparability graphs is on-line x-bounded. [] 



294 

A solution of Schmerl's Conjecture required some purely graph theoretical 
results. For a graph H, let Forb(H) be the class of all graphs that do not contain 
an induced copy of H. Quite independently of any work on on-line algorithms, 
and independently of each otherl Gys163 and Sumner made the following con- 
jecture. 

Conjecture 21. (Gys163 [7], Sumner [33]). 
For any tree T, Forb(T) is x-bounded. [] 

The conjecture is essentially the strongest possible. It would be false if T were 
replaced by a graph H that contained a cycle (say of length t), since any graph 
with girth greater than t is in Forb(H) and ErdSs and Hajnal [4] have shown 
that there are graphs with arbitrarily large girth and arbitrarily large chromatic 
number. Moreover if the conjecture is true for trees it is easy to show that it is 
also true for forests. Gys163 [8] gave an easy proof to show that it is true for 
paths. The author and Penrice built on earlier work of Gys Szemer~di, and 
Tuza [11], to prove the following off-line theorem. The general conjecture is still 
open. 

T h e o r e m 2 2 .  (Kierstead and Penrice [20]). 
For any tree T with radius at most two, Forb(T) is x-bounded. 

Gys163 and Lehel [10] made a fundamental and unexpected breakthrough 
in on-line coloring when they proved the following theorem. 

T h e o r e m  23. (Gys163 and Lehel [10]). 
Forb(Ps) is on-line x-bounded, but Forb(P6) is not on-line x-bounded. 

Theorem 23 was the first hint of a connection between Conjectures 20 and 
21. Then Gys163 made the following observation. Let S be the radius two tree 
obtained by subdividing each edge of a star on four vertices. It is well known 
that no cocomparability graph induces S and so the class of cocomparability 
graphs is contained in Forb(S). Thus to prove Conjecture 20, it suffices to show 
that Forb(S) is x-bounded. With this challenge, the author, Penrice and Trotter 
proved the following very general theorem. 

T h e o r e m  24. (Kierstead, Penrice, and Trotter [22]). 
For any tree T, Forb(T) is on-line x-bounded iff T has radius at most two. 

The proof of Theorem 24 is much too long to present here. However the 
proof for the special case of Forb(S), which provided most of the motivation for 
attacking the general theorem, is considerably simpler and illustrates many of 
the key techniques needed to prove the general theorem. 

Corol lary  25. Forb( S) is on-line x-bounded. 
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Proof. We shall first prove that  ForD(S) is off-line x-bounded and then use 
the proof as a basis for constructing an on-line algorithm. Let R(ca, ~) be the 
Ramsey function such that  for any graph G on R(ca, a) vertices either ca(G) _> ca 
or c~(G) > a. Let f be the function on the positive integers defined inductively 
by: 

/ (1)  = 1 and /(w) = / ( c a -  1)+ca + w / ( c a -  1) (ca 2 ( n  (ca, R(ca + 1, 3)) + 1) 2 + 1) 

We shall prove by induction on ca(G), that  x(G) < f (ca(G)), for every graph 
G = (V, E)  in ForD(S). The base step, ca = 1, is trivial, so consider a graph 
G E ForD(S) with 1 < ~(G) = ca. 

Let { Q 1 , . . . , Q t }  be a maximal collection of w-cliques in G such that  for 
all distinct i , j  E [t],g(Q~) N N(Qj )  = ~. For each i E It], let Ni -- 
Y (Qi) - Uj<i g (Qj). Let Q ? Uj.e[t] QJ, N : Uje[t] Nj, and X = V - Q - N. 
The ca-cliques Qi are called ~emplates and the sequence Q1, N 1 , . . . ,  Qt, Nt is 
called a template sequence. Since Q is a union of disjoint ca-cliques, we can 
color Q with ca colors. Since ca(X) < w, by the induction hypothesis, we 
can color X with f (w - 1) new colors. These ca + f(ca - 1) colors will not 
be used on any of the vertices of V - Q - X,  so it suffices to show that  

x(N) ~ car(ca- 1)(ca2 (n  (ca, R(ca + 1 , 3 ) ) +  1) ~ + 1). 
% 

Since each Ni C UqeQ g(q),  it can be colored with c a r ( w - l )  colors. However, 
if we try to color each of the Ni with the same set of caf(w - 1) colors, two 
adjacent vertices vi E Ni and vj E Nj may be assigned the same color. To 
avoid this problem each vertex of N will be assigned a two coordinate color. The 
first coordinate, called the local color and assigned as above, will insure that  
two adjacent vertices in the s a m e N /  are assigned different colors. The second 
coordinate, called the global color will take care of the problem of adjacency 
between vertices in different Ni. Since t is unbounded, we can not simply use 
disjoint sets of colors for the different Ni. We shall need the following lemma, 
which is the only place in the proof of the theorem that we use the hypothesis 
that  G E ForD(S). 

L e m m a 2 6 .  Let d(s) = 2(R(ca, R(w -b 1,3))q- 1) 8-1. Then for every vertex v 
in G, v is connected to vertices in at most d(s) templates by paths with at most 
s edges. 

Proof. We argue by induction on s. The base step s = 1 follows from the fact 
G e ForD(S): Suppose v .-~ qi, where qi E Qi, for i E {jl < J2 < j3}. Since each 
Qi is a maximum clique there exist vertices yi E Qi such that  not v .-~ Yi, for 
i E {jl < j2 < j3}. But then {v, qi, Yi : i E {Jl < j2 < j3}} induces S in G, which 
is a contradiction. 

For the induction step, suppose that  a vertex v is connected to vertices in 
d +  1 distinct templates by paths with at most s edges, where d = d(s). Chose a 
minimal set of vertices F C N(v) such that  each of these d +  1 templates contains 
a vertex which is either connected to some vertex in F by an induced path with 
exactly s -  1 edges or is connected to v by a path with at most s -  1 edges. By the 
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induction hypothesis ([F I + 1) d(s - 1) > d +  1, and so IF[ > [l (w, R(w + 1, 3)). 
Using Ramsey's Theorem, and the fact that  every vertex in F is adjacent to 
v, there exists an independent subset F0 = { v l , . . . ,  vp} C F with cardinality 
p = R(w + 1, 3). Using the minimality of F,  for each v E F0 there exists a 
template Ti such that vi is the only vertex in F U {v} to which any vertex of T/ 
is connected by an induced path (say Ri) with exactly s - 1  edges. Say v ,,~ vi '~ yi 
in Ri. Then neither v ,,~ yj nor vi ~ yj, if i r j .  Using Ramsey's Theorem again, 
there exist j l  < J2 < js such that  {yi : i E {jl ,  J2, j3}} is an independent set. 
But then {v, Vl, Yi : i E {jl ,  j~, ja}} induces S in G, which is a contradiction. [] 

In order to assign a global color to the vertices in N, we construct an auxiliary 
graph B. The vertex set of B is the set of templates { Q 1 , . . . ,  Qt}- Two templates 
Q~ and Qv are adjacent if there is a path from one to the other with at most 
three edges. By Lemma 26, the maximum degree of B is at most wd(3), since 
each of the w vertices in Qi can be connected to at most d(3) templates by paths 
with at most three edges. Thus B can be colored with wd(3) + 1 colors. The 
global color of a vertex v E Ni is the color of Qi in B. To see that  this gives a 
proper coloring, consider two adjacent vertices x and y in N. If x and y have 
the same local color, there exist distinct indices i and j such that x E Ni and 
y E Nj. But then Q~ is adjacent to Qj in B, so x and y are assigned different 
global colors. This completes the proof of the off-line case. 

We still must show that  there exists a function g and an on-line algorithm 
A such that x(G) <_ g (w(G)), for every graph G E Forb(S). It suffices to show 
by induction on w that  there exist on-line algorithms A~, for w = 1, 2 , . . .  and 
a function h(w) such that  XA(G) <_ h(w), for every graph G E Forb(S) such 
that w(G) = w: First guess that w = 1 and use A1. If a 2-clique is found, 
guess that w(G) = 2 and start using A2 with a new set of colors, etc. Then 
g(w) = ~'~d<~ h(w). The base step is trivial, so consider the induction step. 

The major problem in developing an on-line algorithm from the proof of the 
off-line case is that  we cannot possibly construct the template sequence on-line. 
We can only add a template to the sequence after we have seen all the vertices 
in the clique, but by this time we may have missed some of its neighbors. The 
key idea is to consider the neighbors of neighbors of vertices in the templates. 
A minor problem will be that we can not maintain the auxiliary graphs on-line. 
Our on-line algorithm A = A~ will maintain a list of templates Q 1 , . . . ,  Qt(s), 
where Qi = {xi,1 -~ -..  -~ xi,~}. A template Qi will enter the end of the list 
at the time xi,,o is presented. Once a template has entered the list it will not 
change position or leave the list. When a new vertex v, is presented, A will 
assign v~ to exactly one of the sets N, LI D, or H. The sets N and D are 
more finely partitioned as: N = U{Ni, j  : i E { 1 , . . . , t ( s ) } , j  E {1 , . . . ,w}}  and 
D = [.J{Di: i E {1 , . . . , t ( s )}} .  Then each of the sets of vertices N, L, D, H, 
will be colored with disjoint sets of colors. 

(N) If vs is adjacent to some vertex in some template in the current template 
list, let i be the least such index such that  v8 ", xi,~, for some k, and let j 
be the least such k. Put  v~ in Ni,j. 



2 9 7  

/ \ 

(L) Otherwise, if v, is in an o~-clique Q in V -  (N  uUl< i< t ( ,  ) Qi) ,  then add 
% 

Q = Qt(8)+l to the template list and put v, in L. 

(D) Otherwise, if vs is connected to some vertex in some template in the template 
list by a path with two edges, let i be the largest index such that,  for some 
j ,  vs is connected to some zi,j by a path with two edges. Put  v~ in Di. 

(X) Otherwise put v~ in X. 

Clearly w(X) < w. Thus the on-line algorithm A can use the on-line algorithm 
A~-I  to color the vertices of H with one set of h(w - 1) colors. Also L is an 
independent set, so we can use one special color to color L. Thus it remains to 
color the vertices of N and D. As in the off-line proof, each vertex in N, and 
also D, will be assigned a two coordinate color. The local color insures that  two 
adjacent vertices in N~ -- (.J1<~_.<~ Ni,j or Di are assigned different colors, while 
the global color insures that two adjacent vertices with the same local color are 
assigned different colors. 

We consider the local coordinate. For N the local coordinate is assigned as 
in the off-line case, using the on-line algorithm A~_I. In order to use A~-I  to 
assign a local coordinate to the vertices of Di, we must first show that w (Di) < w. 
Suppose Q = {ql -~ . . .  -< q~} is an w-clique in Di and consider the situation at 
the t ime q~ was presented. Since q~ was added to Di instead of N, q~ is not 
adjacent to any vertex in any template in the template list. Since q~ was not 
added to L, some q E Q must be adjacent to some vertex in a template Qj. Thus 
q~ is connected to Qj by a path through q with two edges. Since q is not in N, Qj 
must have been added to the template list after q was presented and thus i <: j .  
But then q~ would have been assigned to Dj. We conclude that  w (Di) < w, for 
all i, and assign the local coordinate to each vertex in D using A~-I .  

It remains to determine the global color. First consider the vertices of N. If 
we could color the vertices of the auxiliary graph B on-line, we would be done. 
However this is not possible since the auxiliary graph is not presented on-line. 
Two templates Q ,  and Qy may start out being non-adjacent, but when a new 
vertex of G "< is presented they may suddenly become adjacent. On the other 
hand, the degree of a template in B can only increase wd(3, w) times. The on- 
line algorithm A will maintain a two coordinate, (wd(3) + 1)2-coloring of B such 
that  (i) the first coordinate of a template is the current degree of the template 
in B, (ii) the second coordinate insures that  two templates which are adjacent 
in B and have the same degree in B are assigned different colors, and (iii) the 
second coordinate of a color assigned to a template will only change when the 
degree of the template changes. The global color of a vertex in Ni will be the 
color assigned to Qi in B by A at the time the vertex is presented. To assign 
the global color to a vertex in D, we define another auxiliary graph B I on the 
templates, where two templates Q ,  and Q~ are adjacent iff there is a path from 
a vertex in Q ,  to a vertex in Qy with at most five edges. Since each template has 
w vertices, the maximum degree of B I is bounded by wd(5, w). Thus as above we 
need only (wd(5, w) 4- 1) 2 colors for the global color of vertices in D. Thus h(w) 
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is defined recursively by h(1) -- 1 and 

h(w) = wh(w - 1) (wd(3,w) + 1) 2 + 1 + h(w - 1) (wd(5,w) + 1) s + h(w - 1) .[q 

4 F i r s t - F i t  x - b o u n d e d  c l a s s e s  

In this section we consider classes of graphs for which First-Fit performs rea- 
sonably well in comparison to the best on-line algorithm for the class. We begin 
by continuing our study of classes of graphs defined by forbidding certain in- 
duced subgraphs. Later we consider various classes of d-degenerate graphs such 
as trees, interval graphs, and chordal graphs. A First-Fit coloring of a graph 
G = (V, E) with the colors It] produces a structure called a wall. h wall W in G 
is a partition {L1 , . . . ,  Lt} of V into independent sets such that  for all vertices 
v E Lj,  there exists a vertex u E Li such that  v is adjacent to u, whenever i < j .  
The independent sets Lj are called levels of the wall. The height of W is t. It is 
easy to see that  G contains a wall of height t iff t < XFF(G). 

A class of graphs F is First-Fit x-bounded if there exists a function f such 
that  for all graphs G E F, XFF (G) < f (w(G)) .  It follows immediately from Ram- 
sey's theorem that  if S is a star, then Forb(S) is First-Fit x-bounded. Also it is 
well known that any graph in Forb (P4) is perfect, and moreover First-Fit pro- 
duces an optimal coloring, where Pk is the path on k vertices. Gy~rf~s and Lehel 
[9] showed that  i f T  is a tree that  is not in Forb (K1 U K1 U Ks), then Forb(T) is 
not First-Fit x-bounded. Since P5 is the only tree in Forb (K1 O K1 O K2) that  
is neither a star nor P4, they asked whether Forb (Ps) was x-bounded. This was 
answered affirmatively by the author, Penrice and Trotter. 

T h e o r e m  27. (Kierstead, Penrice and Trotter [23]). 
The class Forb (Ps) is First-Fit x-bounded, and thus, for any tree T, Forb(T) is 
First-Fit x-bounded iff T does not contain K1 UK1 U Ks as an induced subgraph. 

Proof. We must show that there exists a function f such that  for all G E 
Forb (Ps), x(G) <_ f(w(G)) .  We argue by induction on w(G). The base step 
w(G) = 1 is trivial, so consider the induction step w(G) = k. Let R ( a l , a s ,  a3) 
be the Ramsey function such that  for any 3-coloring of the edges of the complete 
graph on R (al, as, a3) vertices, there exists i E [3] and a complete subgraph on 
al vertices whose edges are all colored i. The following Lemma provides the main 
technical tool for defining f (k ) .  

L e m m a  28. For any integer t, i f  a graph G E Forb (Ps) with clique size k con, 
tains a wall W of height 1 + R ( f ( k  - 1) + 1, t, 3), then for every vertex x in the 
top level of W,  there exists an induced subgraph H contained in G - x that has a 
wall W ~ of height t such that the top level of W '  has exactly one vertex y, which 
is the only vertex of H adjacent to x. 

By the lemma, for sufficiently large t, we can let f ( k )  = l + R ( f ( k - 1 ) q - 1 ,  t, 3), 
since if there were a graph G E Forb (P~) with clique size k that  contained a wall 
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W of height 1 + R( f (k  - 1) + 1, t, 3), then by iterating the lemma four times we 
could find vertices xl "~ Yl -" x2 "~ y2 -- x3 ~ Y3 = x4 ~ Y4 = x5 that  induce Ph. 
This would be a contradiction. 

Proof of Lemma 28. Fix an integer t, a graph G E Forb(Ph), and a vertex x 
such that  w(G) = k and G contains a wall W = {L1 , . . . ,  Lt,} of height t '  = 
1 + R( f (k  - 1) + 1,t,  3) with x ELt , .  Then for every s E It' - 1], g ( x )  n L, # 0. 
Define a function g on the 2-subsets of It-l] by 

ifVv e Lj n N(x)3u ELi  n g (x )v  ,.~ u, then g(i < j) = 1 
else if Vv E L j  n Ye(x)3u E Li n YC(~c)v ,.~ u, then g(i < j) = 2 
e l s e g ( i < j ) = 3  . 

Then by the choice of t ~, there exists a subset S C It ~ -  1] such that  all pairs 
in S have the same color a and either (1) a -- 1 and I S ] = S(k - 1) + 1 or 
(2) a = 2 and IS] = t or (3) a = 3 and iS] = 3. Note that  if (1) holds, then 
{n, n g ( x ) :  s E S)  is a wall, and if (2) holds, then {L, N NO(x) : s e S} is a 
wall. 

Suppose (1) holds. Let F be the subgraph of G induced by N(x) .  Since 
{L, n N(x)  : s e S )  is a wall in F of height f ( k - 1 ) + l ,  the induction hypothesis 
implies that  w(F) > k. Since x is adjacent to every vertex in F,  ~ ( F )  > k + 1, 
which is a contradiction. So (1) is impossible. 

Suppose (3) holds. Say S = {q < r < s). Since g(q < r) # 1 and g(r < 
s) r 1, there exist v e L~ n N(x) and w E L, n g(x )  such that  v is not 
adjacent to any vertex in Lq n N(x) and w is not adjacent to any vertex in 
L~ n g ( x ) ;  Thus Lq n NO(x) n g(v)  and Lr n We(x) n N(w) are nonempty. Let 
u' E LqnNC(x)ng(v ) .  Since 1 # g(q < r) • 2, there exists v' E L~ngc(x)  such 
that  v ~ is not adjacent to any vertex in Lq n Nr Thus v ~ is not adjacent to 
u' and there exists u �9 Lq n g(x )  n g(v ') .  Since v is not adjacent to any vertex 
in Lq n N(x),  v is not adjacent to u. Since Lq and Lr are independent sets, u 
is not adjacent to u ~ and v is not adjacent to v ~. Thus (v', u, x, v, v ~) induces Ph, 
which is a contradiction. So (3) is impossible. 

Thus (2) must hold. Let s be the largest element in S and let y �9 L, N N(x). 
Let H be the subgraph of G induced by {y} U Ures-{ ,}  {L~ N N*(x)}. Then y 
is the only vertex of g adjacent to x and {y} U {L~ n N~(x) : r �9 S - {s}} is a 
wall in H of height t with top level {y}. 

This completes the proofs of Lemma 28 and Theorem 27. [] 

Theorem 27 completely answers the question of whether Forb(T) is First-Fit 
x-bounded for any tree T. Next consider the problem in which a tree and some 
other graphs are forbidden. The following theorem of this type is a key result 
in the proof of Theorem 24. Its proof requires a special Ramsey theoretic result 
due to Galvin, Rival, and Sands [6]. 

T h e o r e m  29. (Kierstead and Penrice [21]). 
For every tree T and complete bipartite graph Kt,t, Forb(T, Kt,t) is First-Fit 
x-bounded. 
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Let Bt be the graph introduced in Example 6. Let Dk be the tree obtained 
by adding an edge between the roots of two disjoint copies of Sk, where Sk is 
the star on k vertices whose root is its only nonleaf. 

T h e o r e m 3 0 .  (Kierstead, Penrice and Trotter  [23]). 
The classes Forb ( Pb,1, Bt ) and Forb ( Dk, Bt ) are First-Fit x-bounded. 

Consider a graph G E Forb(Pb,1) on which First-Fit uses a huge number 
of colors. Theorem 30 explains why First-Fit uses at least a large numbers of 
colors on G. The reason is that  G contains an induced subgraph that  is either 
a large clique or a large induced Bt. Since First-Fit is known to require a large 
number of colors on either of these subgraphs; First-Fit requires a large number 
of colors on G. It would be very nice to prove a theorem of the following form: If 
XFF(G) > g(k), then G induces a graph in Qk, where Qk is a finite set of graphs 
such that XFF(H) >_ k, for all H E Qk. The author, Penrice and Trot ter  [23] 
generalized the construction of Bt as follows. Call a graph H = (V, E) t-bad if 
there exist sets A 1 , . . . ,  At such that: 

(1) V = AI U . . .  U At; 
(2) gj  = { e l , j , . . . ,  aj,j} is an independent set of vertices for j E [t]; 
(3) Aj MAj+I = O, for j E [t]; 
(4) ai,k 7 ~ ai,j, whenever 1 < i < k < j _ t; and 
(5) ai,j ~ ak,j+l, whenever 1 < i < k _~ j + 1 ~ t. 

If H is t-bad then XFF(H) _~ t. Note that  it is not required that Ak N Aj  :- O, if 
IJ - k[ _> 2. If ai,j = ai,j+2, whenever 1 < i < j < t - 2, then H is just Bt with 
one vertex removed. It is easy to see that  it is possible to present the vertices so 
that ai,j precedes ar,s if i < r and that  when the vertices are presented in such 
an order, First-Fit uses t colors. 

Problem 31. Let Qk = {Tk} U { g :  H is k-bad}. Does there exist a function g(k) 
such that if XFF(G) > g(k), then G contains an induced subgraph H such that  
H E Qk? [] 

We have already seen in Examples 5 and 6 that  First-Fit performs optimally 
on trees. For interval orders, First-Fit is not optimal. Example 4 showed that  
there is an on-line algorithm that  will color any interval graph G with 3w(G) - 2 
colors, while Chrobak and Slusarek showed the following. 

T h e o r e m  32. (Chrobak and Slusarek [3]). 
There exists a constant C such that for every positive integer k, there exists an 
interval graph G with w(G) = k such that First-Fit uses at least 4.4k - C colors 
on G. [] 

However the author answered a question of Woodall [37] by proving the 
following theorem that  shows that  First-Fit is close to optimal for interval graphs. 

T h e o r e m 3 3 .  (Kierstead [17]). 
For any interval graph G, XFF(G) _~ 40~(a). 
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Proof. Identify the vertices of G with the intervals of an interval representation 
of G. Let L C V. An interval I has density d = d(I /L)  in L if every point in I 
is in at least d intervals in L. If K is a k-clique in G, then some interval in the 
representation of K has density at least d/2. To see this, alternately remove from 
K the intervals with the least left endpoint and the greatest right endpoint. When 
this process terminates the last interval will be contained in each pair of removed 
intervals and thus will have density at least d/2. Next we define the notion of 
centrality. Consider two adjacent intervals I and J in a set of intervals L. Let 
N = N(J ) NL .  Then N is a set of intervals and so defines an interval order P. Let 
A(I/J,  L) be the length of the longest chain of intervals less than or equal to I in 
P. Note that  if I '  E N satisfies A(I/J,  L) = A(I ' /J,  L), then I is adjacent to I ' .  
Similarly, let p(I /J ,  L) be the length of the longest chain of intervals greater than 
or equal to I in P.  Again, i fp ( I /J ,  L) = p(I ' /J ,  L), then I is adjacent to I ' .  The 
centrality of I in J with respect to L is c(I/J,  L) = min{A(I/J ,  L) ,p( I /J ,  L)}. 
Note that  c(I/J ,  L) > 0 iff I C J.  

Let W be the wall of height h associated with a First-Fit coloring of G. We 
shall actually prove that  W contains an interval with density h/40. Begin by 
set t ing/1 equal to any interval in the top level of W and dl = 1. Now suppose 
that  we have constructed a sequence S = (I1, �9 �9 I~) of intervals and a sequence 
D = ( d l , . . . ,  dk) of integers. (11 and dl may have changed.) Let X1 be the top 
40dl levels of W, X2 be the next 40d2 levels of W, etc. Let Tt be the top 20dt 
levels of Xt and Bt be the bottom 20dr levels of Xt,  for all t E [k]. Also, let 
B_ 1 = r We shall write X~, Tt*, and B~ for U x t ,  ~J Tt, and LJ Bt, respectively. 
So for example Xt is a set of levels, while X;  is the set of intervals contained in 
the levels in )ft. Suppose further that  the pair (S, D) is acceptable, i.e., 

(1) c (It+l/It ,  B~ U Tt*+l ) >_ 2, for all t E [k - 1]; 
(2) d (It/B~_ 1 U T;)  > dt, for all t E [k]; and 
(3) dt+l >_ 3 -c+2, where c = e (It+l/It ,  S~ U Tt*+l ), for all t E [k - 1]. 

Then d (I~,/X) > d = ~ D = ~te[k] dr, where X is the union of {X1, . . . ,  Xk}. 
It suffices to show that  if d < h/40, then we can find a new acceptable pair 
(S ~, D ~) with d ~ > d, where d ~ = ~ D ~. Note that in this case Bk is well defined 
and we have not yet used any of the intervals in Bk. We make further progress 
by taking advantage of these unused intervals. 

Consider N = N (Ik) C1 B~. As above N can be partitioned into cliques 
K0, K ~ , . . . ,  Kc, K~ so that  for all indices i, A (I / Ik ,  B;) = i = c (I / Ik ,  S~), for 
all intervals I E Ki and p (I / Ik ,  B;) = i = c (I / Ik ,  B~), for all intervals I E K~. 
Since IN] > 20dk = 2(1 + 2 + 2 + 5), either 

(i) ]Ki] >_ 2 [3-~+2dk] or ]I~'~] > 2 [3-'+2dk], for some i such that  3 < i < 
log 3 dk, 

(ii) IK2] > 2dk, ]K~] > 2dk, ]K1] > 2dk, or ]till > 2dk, 
(iii) IKol > 5dk or IK0,1 > 5dk. 

(We can improve the argument at this point by showing that INI is actually 
considerably larger than 20dk.) In each case, we assume without loss of generality 
that  the condition is met by Ki. 
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Case (i). T h e  clique Ki contains an interval Ik+~ such that  d(I~+~/B;) > 
3-~+Uda and c(I / Ik ,B~) = i _> 2. Thus setting S' = (I~,. . . ,Ik,Ik+~) and 
D ' =  (d~ , . . . , da ,  [3-i+~dk]) yields an acceptable pair (S ' ,D' )wi th  d' > d. 

Case (ii). Let Ig ,  I ~ 2dk, where i 6 {1,2}. Then Ki contains an inter- 
val I such that  d(I /B; )  > dk and c( I / Ik ,B; )  > 1. Thus I C Ik. It  

*-- * c ( I / I k - l , B k _  1 _ follows that  d(I /B~_ tUT/cUBk)  >_ 2dk and * U T ~ U B ; )  > 
c( Ik / Ik- l ,B;_  1 U T~ t2 B~) > 2. Note that  Tk U Bk consists of the next 
21" (2dk) levels after Bk_~. Thus setting S'  = ( I 1 , . . . , I k _ ~ , I )  and D '  = 
(d t , . . . ,  dk-~, 2dk) yields an acceptable pair (S', D') with d' > d. 

Case (iii). The left endpoint of dk is contained in 5dk intervals from K0 C B~ and 
dk additional intervals from B;_  1 U T~ that  witness that  d(Ik/B;_ 1 t2 T~) > dt. 
Thus for one of these intervals I, d(I/B;_IUT;UB~) >_ 3dk. Let J be the interval 
in B;_lthT ~ with c(J/Ik-1, B~_IUT;) = c -1 ,  where c = c(Ik/Ik-1, B;_IUT~). 
If J C I ,  let I '  = J;  otherwise let I' = I. In either case c(I' /Ik_l,  B~_ 1 U 7;, LJ 
B;)  > e - 1 and d(I ' /S;_  1 U T~ U B;) > 3dk. First suppose that  c > 2. Note 
that  Tk U Bk is contained in the first 21*3dk levels below Bk-1. Thus setting 
S' = ( I1 , . . . I k - l , I ' )  and D' = (dl , . . . ,dk- l ,3dk)  yields an acceptable pair 
(S',D') with d' > d. Otherwise c = 2. Then dk > dk-1 and I '  C Ik-1.  Thus 
d(I'/B~_2UT~_z U Bk-I  UT~U B;) >_ 2dk-l + 2dk and e(I'/Ik_2, B~_2U:T~_I U 

* * * * * * * * Bk_ 1 U T~ U Bk) > c(Ik-1/Ik-2, Bk_ ~ U T~_ 1 U Bk_ 1 U T;, U Bk). Thus setting 
S' -- (I1, �9 �9 Ik-2, I') and D' = (d~,. . . ,  dk-2, 2dk-~ + 2dk) yields an acceptable 
pair (S', D') with d' > d. [] 

The proof of Theorem 4.7 can be strengthened to obtain a bet ter  constant. 
The author and Qin [24] showed that  at most  26w(G) colors are used by First-Fit  
to color interval graphs. I strongly believe that  the real constant is less than ten. 

A graph G = (V, E) is d-degenerate (sometimes called d-inductive) if there 
exists an ordering vl -~ v2 -~ - . .  -< vn of the vertices of G so that  I{w 6 V : 
w ~ v a n d w  -< v}l _< d, for all v 6 V. For example planar graphs are 5- 
inductive and trees are 1-inductive. If  G is a d-degenerate graph, then clearly 
x(G) _< d + 1. The graph G is chordal if every cycle in G of length at least 
four contains a chord, i.e, an edge between two nonconsecutive vertices. There 
are two well known characterizations of chordal graphs. The first is tha t  G is 
chordal iff there exists an ordering vl -~ v2 -~ . . .  -~ v~ of the vertices of G so 
that  {w ~ V : w --~ v and w -< v} is a clique, for all v E V. Thus if G is chordal, 
then G is (w(G) - 1)-degenerate. It  follows that  chordal graphs are perfect. The  
other characterization is that  G is chordal iff there exists a mapping  f of the 
vertices of G to subtrees of a tree T such that  two vertices u and v are adjacent 
iff E(f(u)) N E(f(v)) # O. Thus interval graphs are chordal since intervals can 
be represented as subpaths of a path. Irani showed that  First-Fit  performs close 
to optimally on the class of d-degenerate graphs. 

T h e o r e m 3 4 .  (Irani [12]). 
There exists a constant C such that First-Fit uses at most Cdlogn colors to 
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color any d-degenerate graphs on n vertices. Moreover there exists a constant C ~ 
such that for every on-line algorithm A and all integers d and n with n > d 3, 
there exists a d-degenerate graph G on n vertices such that HA(G) > C~dlogn. 

We end this section with two more applied problems. First we consider the 
Broadcast Problem, which is a generalization of Path Coloring on Trees. 

Broadcast Problem. 
INSTANCE: Tree T and a set S = {T1, . . . ,  Tn} of subtrees of T. 
PROBLEM: Color the elements of S with as few colors as possible subject to 
the condition that  two subtrees that share an edge must receive different colors. 

By the discussion above, the Broadcast Problem is equivalent to coloring 
chordal graphs. Thus by Theorem 34 First-Fit uses at most X tog n colors, where 
X is the optimal number of colors. If the underlying tree of the Broadcast problem 
is a path, then the problem reduces to interval graph coloring and First-Fit uses 
at most 42X colors. Irani left open the problem of whether there exists a chordal 
graph G on n vertices for which First-Fit uses ~2(w(G)log n) colors. 

The second application is the following storage problem that was shown to 
be NP-complete by Stockmeyer [32]. Here we shall only be interested in the 
off-line version; however we will use on-line interval graph coloring to obtain a 
polynomial time approximation for this off-line version. 

Dynamic Storage Allocation (DSA). 
INSTANCE: Set A of items to be stored, each a E A having a positive integer size 
s(a), a non-negative integer arrival time r(a), and a positive integer departure 
time d(a), and a positive storage size D. 
PROBLEM: Is there a feasible allocation of storage for A, i.e., a function ~r : 
A --+ ( 1 , 2 , . . . , D }  such that for every a E A the allocated storage interval 
I(a) = [r ~r(a) § 1 , . . . ,  ~(a) § s(a) - 1] is contained in [1, D] and such that,  for 
all a, a' E A, if I(a) N I(a') is nonempty then either d(a) < r(a') or d(a') < r(a)? 

Notice that  if all the items have the same size, then DSA is just interval graph 
coloring. The following approximation algorithm for DSA has been well known 
since the late sixties. First put each item into the smallest possible box whose 
size is a power of two. Then order the boxes by decreasing size and use First-Fit 
to assign the boxes to storage locations. Clearly this algorithm produces a proper 
assignment of storage locations. Let w* be the maximum, over all times t, of the 
sum of the sizes of the boxes that must be stored at time t. Then w* is a lower 
bound on the amount  of storage that must be used. It is easy to show that,  
because of the uniformity in box size and the use of First-Fit, this algorithm 
uses at most f(w*) storage locations, where f (k )  is the maximum number of 
colors used by First-Fit to color an interval graph with clique number k. Thus 
Theorem 34 has the following corollary. 

C o r o l l a r y 3 5 .  (Kierstead [17]). 
There is a polynomial time approximation algorithm for Dynamic Storage Allo- 
cation with a constant performance ratio of 80. [] 
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It later turned out that  a slight modification of the algori thm in Example  4 
had this same property. So we have the following corollary to Example  4. 

Corollary36. (Kierstead [18]). 
There is a polynomial time approximation algorithm for Dynamic Storage Allo- 
cation with a constant performance ratio of six. [] 

This is an example of the following hypothetical situation. An off-line opti- 
mization problem (DSA) can be reduced to a simpler problem (interval graph 
coloring) if the da ta  is preordered in a certain way (decreasing box size). How- 
ever this preordering turns the simpler problem into an on-line problem. I know 
of no other examples of this situation, but if it turns out that  there are other 
examples, this could be a very impor tant  application for on-line theory. 
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