
An Experimental Study of Algorithms for Online Bipartite
Matching

ALLAN BORODIN, University of Toronto, Canada
CHRISTODOULOS KARAVASILIS, University of Toronto, Canada
DENIS PANKRATOV, Concordia University, Canada

We perform an experimental study of algorithms for online bipartite matching under the known i.i.d input
model with integral types. In the last decade, there has been substantial e�ort in designing complex algorithms
to improve worst-case approximation ratios. Our goal is to determine how these algorithms perform on
more practical instances rather than worst-case instances. In particular, we are interested in whether the
ranking of the algorithms by their worst-case performance is consistent with the ranking of the algorithms
by their average-case/practical performance. We are also interested in whether preprocessing times and
implementation di�culties that are introduced by these algorithms are justi�ed in practice. To that end we
evaluate these algorithms on di�erent random inputs as well as real-life instances obtained from publicly
available repositories. We compare these algorithms against several simple greedy-style algorithms. Most of
the complex algorithms in the literature are presented as being non-greedy (i.e., an algorithm can intentionally
skip matching a node that has available neighbors) to simplify the analysis. Every such algorithm can be turned
into a greedy one without hurting its worst-case performance. On our benchmarks, non-greedy versions of
these algorithms perform much worse than their greedy versions. Greedy versions perform about as well as
the simplest greedy algorithm by itself. This, together with our other �ndings, suggests that simplest greedy
algorithms are competitive with the state-of-the-art worst-case algorithms for online bipartite matching on
many average-case and practical input families. Greediness is by far the most important property of online
algorithms for bipartite matching.

CCS Concepts: • Mathematics of computing → Graph algorithms; Random graphs; • Theory of com-
putation → Online algorithms;

Additional Key Words and Phrases: Bipartite graphs, bipartite matching, stochastic input models, greedy
algorithms

ACM Reference Format:
Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov. 2019. An Experimental Study of Algorithms
for Online Bipartite Matching. ACM J. Exp. Algor. 1, 1 (September 2019), 40 pages.

1 INTRODUCTION
One of the most active areas of theoretical computer science is the design and analysis of “e�cient”
approximation algorithms. Often the objective is to establish the best approximation ratio achieved
by a polynomial time algorithm. Such analysis is often done in terms of adversarial worst-case inputs,

Authors’ addresses: Allan Borodin, University of Toronto, 10 King’s College Road, Toronto, ON, M5S 3G4, Canada, bor@
cs.toronto.edu; Christodoulos Karavasilis, University of Toronto, 10 King’s College Road, Toronto, ON, M5S 3G4, Canada,
ckar@cs.toronto.edu; Denis Pankratov, Concordia University, 1515 Ste-Catherine St. W., Montreal, QC, H3G 2W1, Canada,
denis.pankratov@concordia.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
1084-6654/2019/9-ART $15.00
https://doi.org/

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

https://doi.org/

2 Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov

or in the case of stochastic analysis, in terms of a worst-case i.i.d.1 distributional setting. However,
such analysis can be and is challenged as to whether or not these worst-case approximation bounds
re�ect results for more “realistic” settings. There are many reasons for the perceived and observed
gap between theory and practice: asymptotic time bounds can hide large constant factors, typical
inputs are not worst-case inputs, and simple algorithms are much easier to implement and are
usually preferred (by practitioners) over more complex algorithms.
The most common approach to better understanding the gap between theory and practice is

to perform experimental studies with respect to data that better re�ects reality2. Following this
approach we wish to study relatively simple greedy and “greedy-like” algorithms for online bipartite
matching in comparison with more complex non-greedy algorithms that have been designed for
a known distribution stochastic setting. Since bipartite matching can be solved o�ine optimally
and relatively e�ciently, we are able to precisely compute the observed competitive ratios. Greedy
o�ine algorithms for matching in general graphs have also been experimentally studied in the
past [19].
A matching is a collection of vertex-disjoint edges in a graph. The bipartite matching problem

asks to compute either exactly or approximately the cardinality of a maximum-size matching in a
given bipartite graph. In addition, we typically want to �nd such a matching itself. In the adversarial
online setting, one side of the bipartite graph is known in advance, while vertices from the other
side arrive one by one. When an online vertex arrives you learn the identity of this vertex together
with identities of all its neighbors (all of them have to be on the other side of the partition). When
an online vertex arrives, an algorithm can pick one of its available neighbors to match this vertex
to. In the online setting such a decision is �nal and cannot be changed in the future. Thus, an online
algorithm makes decisions without seeing any future input items but knowing the past items. A
typical application for maximum cardinality bipartite matching is the task of assigning jobs to
workers. O�ine nodes correspond to workers, while online nodes correspond to jobs that arrive
online and have to be assigned (if possible) to some available appropriate worker. Not all jobs can
be executed by all workers and the goal is to assign as many jobs as possible.

The assumption that an online algorithm does not know anything about the future input is quite
pessimistic. In practical applications, instances of online maximummatching often need to be solved
over and over again. It is natural to assume that these instances come from some input distribution.
Thus, by observing past instances and collecting historical data we can estimate parameters of the
input distribution. Armed with this historical data, an algorithm might perform better on future
online instances, because it will have some statistical information about online input items. The
known i.i.d. model describes a particular distribution family that has recently received a lot of
attention in the bipartite matching community, in part because it is widely applicable in practice
and can also be analyzed theoretically. The set of neighbors of an online vertex is called its type.
From historical data one can derive the frequency of certain types of online nodes appearing in an
input instance. This information is then aggregated into a data structure, called type graph. A type
graph is a bipartite graph that on one side has nodes that appear as o�ine nodes in input instances.
On the other side, the type graph contains nodes of distinct types together with a probability of
each type occurring. Thus for each type i we know the probability pi of a node of this type arriving:
pi � 0 and

Õ
i pi = 1. With n o�ine nodes, the number of distinct types is 2n , but typically not all

types are present with positive probability. Oftentimes the set of types is very sparse, and even

1i.i.d. = independent, identically distributed
2This is not to say that the gap between theory and practice is restricted to experimental studies. Other approaches, such as
smoothed analysis, as initiated in [29], and perturbation stable instances, as initiated in [4], have also been proposed. Thus
far these insightful analytical approaches have not yet been widely accepted. Arguably, experimental analysis remains the
most common method for trying to understand the comparative performance of algorithms.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

Experimental Study of Online Bipartite Matching Algorithms 3

linear in n. Once we have this type graph information, we assume that an online bipartite instance
graph G is generated according to the following randomized process. The set of o�ine nodes of G
is the same as the set of o�ine nodes of the type graph, but each online node of G is sampled from
the same distribution p independently at random.
In terms of the jobs and workers application, the known i.i.d. model corresponds to each job

having a type which determines a set of workers that can work on that job. Based on past input
instances, one can derive how frequently a job of a given type arrives. Then the input instance is
assumed to be generated by simply sampling types of jobs independently from this distribution.
Analyzing an algorithm with this extra information is equivalent to analyzing the algorithm in the
known i.i.d. model.

Many other applications of online bipartite matching exist. For example in the kidney exchange
problem [28], the o�ine nodes correspond to kidney recipients and online nodes correspond to
donors. The donors arrive online and edges represent compatibility constraints. Most bipartite
matching problems have weighted variations that model real-world applications more realistically
with internet advertising (e.g. Display Ads, AdWords) being a commonly studied case (see [23] for
a detailed introduction). In the task of assigning jobs to workers, an edge weight could represent
the pro�t of the assignment of the job to the corresponding worker. In this paper we study the
unweighted problem, which models compatibility constraints and remains an important research
topic for many applications.

In our study, we consider both synthetically generated type graphs as well as some type graphs
based on real-world applications. Our experimental study indicates that simple greedy and greedy-
like algorithms (that are unaware of the type graph) perform quite well in terms of the observed
competitive ratio when compared to the signi�cantly more complex algorithms designed to exploit
the given known type graph. That is, while the provable worst-case approximation ratios (in
expectation over the distribution) of these non-greedy algorithms are much better than what can be
achieved by the simple greedy like algorithms we consider, there is a good reason why practitioners
might want to use simple greedy algorithms. The more complicated algorithms for known type
graphs are stated as being non-greedy (in the sense that an online node is not necessarily matched
whenever possible). However, we show that “greediness” can be easily achieved without loss of
generality and, moreover, greediness is necessary for any algorithm to achieve good performance
in practice.

The remainder of the paper is organized as follows. In Section 2 we describe the set of algorithms
under consideration. This includes two simple greedy algorithms (namely, a simple deterministic
greedy algorithm and the randomized R������ algorithm [16]), and �ve state of the art algorithms
for the known type graph model with integral types. Some of these algorithms have only been
informally described in the literature and we provide a more detailed description when needed. We
also consider a linear time two-pass “online” algorithm [11], which experimentally is almost a proxy
for obtaining optimality. In Section 3, we discuss the data sets we use as well as the experimental
setup. Section 4 provides the experimental results in terms of the observed competitive ratio. We
also provide some timing results verifying that indeed the simple linear time greedy algorithms are
signi�cantly faster than the algorithms designed for known type graphs. Finally, in Sections 5 and
6, we summarize the experimental results drawing some overall conclusions from our experimental
study.

2 PRELIMINARIES
We consider bipartite graphsG = (L,R,E) with bi-partition (L,R). We shall often refer to the nodes
in L as the left nodes, or the left-hand-side (LHS, for short) nodes, or the online nodes. Similarly, the
nodes in R are referred to as the right nodes, the right-hand-side (RHS) nodes, or the o�ine nodes.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

4 Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov

In the online version of bipartite matching, the right side is known to the algorithm in advance.
The left-hand-side nodes are revealed one-by-one in a given order. When an online node is revealed,
all its neighbors are revealed as well. After each arrival of an online node, the algorithm makes an
irrevocable decision on which neighbor to match the current online node (if at all). Without loss of
generality we can also allow for the o�ine nodes to be associated with di�erent capacities. A node
having capacity c means it can be matched at most c times. This is achieved by generating c copies
of that node before running the algorithm.

2.1 Definitions and Notation
LetM be a matching in a bipartite graphG = (L,R,E). We say ` 2 L participates in the matchingM
if there is r 2 R such that {`, r } 2 M . We writeM(`) to denote such r . If ` does not participate inM

then we de�neM(`) := ?. The same notions are de�ned for r 2 R symmetrically.
We shall measure the performance of an algorithm in one of two ways: in terms of the observed

asymptotic approximation ratio, or in terms of the fraction of the matched o�ine nodes.

De�nition 2.1. Let ALG be an online algorithm (possibly randomized) solving the bipartite
matching problem over random graphs Gn parameterized by the input size n = |R |. We write
ALG(Gn) to denote the expected size of the matching (random variable) that is constructed by
running ALG on Gn . We write OPT(Gn) to denote the size of a maximum matching in Gn . The
asymptotic approximation ratio of ALG with respect to Gn is de�ned as:

�(ALG,Gn) = lim inf
n!1

E(ALG(Gn))
E(OPT(Gn))

.

The fraction of matched o�ine nodes of ALG with respect to Gn is de�ned as:

µ(ALG,Gn) = lim inf
n!1

E(ALG(Gn))
n

.

The expectations above are taken over the randomness of the algorithm and the randomness of the
input.

2.2 Known I.I.D. Model and Integral Types
In the known i.i.d. model, one �rst chooses a type graphG = (L,R,E) and a distributionp : L ! [0, 1]
on the LHS nodes. In this case, the nodes in L are also referred to as types. The type graph together
with the distribution is given to the algorithm in advance. In the known i.i.d. model, an actual input
instance Ĝ = (L̂,R, Ê) is a random variable and is generated from G as follows. The right hand side
R is the same inG and Ĝ , but the left-hand-side of Ĝ consists ofm i.i.d. samples from p. Thus, say a
given node ˆ̀ 2 L̂ has type ` 2 L, then the neighbors of ˆ̀ in Ĝ are the same as the neighbors of ` in
G. The graph Ĝ is presented to the algorithm in the vertex arrival model (the order of vertices is
the same as the order in which they were generated). Note that a particular type ` can be absent
altogether or can be repeated a number of times in Ĝ. We refer to Ĝ as the instance graph. Note
that the instance graph is fully speci�ed by a pair (G,�) where G is a type graph and � is a vector
of types, i.e., � 2 L

m . When G is clear from the context, we will refer to � as an instance. The
probability of seeing a particular vector � is given by p(�) =Œm

i=1 p(�i).
A known i.i.d. problem is said to have integral types if the expected number of times a particular

type occurs is integral. We will denote the number of times type ` occurs in an instance by the
random variable Z` . Then the condition of integral types is equivalent to E(Z`) = p(`)m 2 Z.
While the parameters |L|, |R |, andm can all be di�erent, the most common setting ism = |L|. This
assumption together with integral types implies that without loss of generality one can take p

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

Experimental Study of Online Bipartite Matching Algorithms 5

Table 1. Algorithms with their respective provable competitive ratios

Algorithm worst case analysis
B������E�A� 0.7299 [8]
J������L� 0.7293 (1 � 2/e2) [15]
M�������E�A� 0.7025 [21]
B������K������� 0.6990 [3]
R������ 0.6961 [20]
F������E�A� 0.6702 (1�2/e2

4/3�2/3e) [12]
C��������A����� 0.6321 (1 � 1/e) [11]
3�P��� 0.6321 (1 � 1/e)) [6]
G����� 0.6321 (1 � 1/e) [16]
M��D����� 0.6321 (1 � 1/e)
K���S����� 0.6321 (1 � 1/e)

to be the uniform distribution on L (by duplicating types as necessary). An additional common
assumption is that |L| = |R |. In that case we talk about a single parameter n = |L| = |R | =m.
In our empirical evaluations, we only consider integral types, so when we say “known i.i.d.

model” we mean the known i.i.d. model with integral types and uniform distribution, unless stated
otherwise.

2.3 Algorithms
In this section we describe all algorithms that are included in our experimental study:
(1) S�����G�����.
(2) R������ due to Karp et al. [16].
(3) F������E�A� due to Feldman et al. [12].
(4) B������K������� due to Bahmani and Kapralov [3].
(5) M�������E�A� due to Manshadi et al. [21].
(6) J������L� due to Jaillet and Lu [15].
(7) B������E�A� due to Brubach et al. [8].
(8) C��������A����� due to Dürr et al. [11].
(9) 3�P��� due to Borodin et al. [6].
(10) M��D�����.
(11) K���S����� due to Karp and Sipser [17].
(12) O�ine optimal algorithm that runs Edmonds-Karp �ow algorithm on the canonical �ow

network associated with a bipartite graph. Sometimes, we initialize the algorithm by a solution
computed by one of the other algorithms.

We begin by presenting several algorithms that work in the online adversarial setting. This is
followed by the description of algorithms that work in the known i.i.d. setting, and other algorithms
that do not �t into online or known i.i.d. settings. Observe that algorithms that are designed
for the online adversarial setting also work in the known i.i.d. setting — they just ignore the
side information, i.e., the type graph. It is worth noting that pre-processing is the running time
bottleneck of algorithms using the type graph and the matching phase is executed in linear time
for all algorithms.

2.3.1 Algorithms for Online Adversarial Se�ing. We start with a helper subroutine, which we
call G�����W���P����������. This online algorithm accepts the RHS R and a permutation �

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

6 Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov

of R. The rank of r 2 R, denoted by rk� (r), is the position of r when in the arrangement of R
according to � . The G�����W���P���������� algorithm matches each online node with an
available neighbor of smallest rank (if there is at least one available neighbor). The pseudocode is
presented in Algorithm 1.

Algorithm 1 A helper algorithm.
procedure G�����W���P����������(G = (L,R,E),� : R ! R)

for all ` 2 L do
When ` arrives, let N (`) be the set of unmatched neighbors of `.
if N (`) , ; then

Match ` with argmin{rk� (r) | r 2 N (`)}.

S�����G�����. Next, we describe the simplest online algorithm – S�����G�����. The S������
G����� algorithm is obtained by �xing a permutation � on the RHS and applying G�����W����
P����������. While � could be any �xed permutation (not depending on the type graph), for
concreteness, we de�ne it to be the following. The RHS nodes are labelled with strings over some
alphabet. We de�ne �alphabet to be the ordering of the RHS nodes alphabetically according to their
labels. Thus, formally S�����G�����(G)=G�����W���P����������(G,�alphabet). A tight analysis
of the performance of Greedy in the random order and known i.i.d. models can be found in [14].

Remark 2.1. A word of caution with regards to the terminology: S�����G����� should not be
confused with an arbitrary greedy algorithm.Whenwe say that an algorithm is greedy, wemean that
it has the following property: whenever a given online node has at least one unmatched neighbor,
this online node is guaranteed to be matched. This property alone is not su�cient to specify the
algorithm, since the algorithm also needs to break ties when several unmatched neighbors are
available. S�����G����� is a very speci�c greedy algorithm, which breaks ties according to an
alphabetical order. It turns out that any algorithm for online bipartite matching can be turned into
a greedy one without hurting its approximation ratio. In particular, without loss of generality, an
optimal algorithm is greedy. Thus, the whole area of designing good online algorithms for bipartite
matching revolves around designing better and better tie-breaking rules. We discuss this in more
details below when we talk about more advanced algorithms for the known i.i.d model.

R������. The next algorithm is R������ due to Karp et al. [16]. Unlike the previous algorithms,
R������ is randomized. Let SR denote the set of all permutation of the RHS R. R������ samples
� uniformly at random from SR prior to seeing any online nodes. This is followed by running
G�����W���P���������� with � as the input permutation — see Algorithm 2. The original paper
contained a bug in the proof of the algorithm’s performance and alternative proofs were later
published [10, 14].

Algorithm 2 A randomized algorithm due to Karp et al. [16].
procedure R������(G = (L,R,E))

Sample a permutation � : R ! R uniformly at random.
Run G�����W���P����������(G,�).

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

Experimental Study of Online Bipartite Matching Algorithms 7

2.3.2 Algorithms for Known I.I.D. Se�ing. We start with a special subroutine. Consider a bipartite
graph of maximum degree 2, i.e., a set of paths and cycles. Such a graph can be decomposed into
two matchings, which we will call blue and red. Strictly speaking, the blue subgraph returned
by the subroutine is not always a matching; sometimes it is a matching plus some extra edges.
However, the blue subgraph always satis�es the property that there is at most one edge incident
on each LHS node, i.e., the blue subgraph is a “matching on the left.” For simplicity and slightly
abusing notation, we shall sometimes refer to both blue and red subgraphs as matchings. However,
for clarity, we can say that the blue edges form a “semi-matching”. When we actually run the
Feldman et al. algorithm on an i.i.d. instance, the blue edges become a matching as determined by
the assignment of the online node. We present a particular decomposition in Algorithm 3, which
we call B���R��D������������ and which is due to Feldman et al. [12]. This decomposition is
used in several algorithms that we consider later.

Algorithm 3 Blue red decomposition due to Feldman et al. [12]. Applies to bipartite graphs of
maximum degree 2.

procedure B���R��D������������(G = (L,R,E))
Color edges of the cycles alternating blue and red.
Color edges of the odd-length paths alternating blue and red, with more blue than red.
For the even-length paths that start and end with nodes in R, alternate blue and red.
For the even length paths that start and end with nodes in L, color the �rst two edges blue,

then alternate red, blue, red, blue, etc.
return (semi-matching formed by blue edges, matching formed by red edges).

F������E�A�. The �rst algorithm to ever beat the 1�1/e barrier of the online adversarial model
in the known i.i.d. model is due to Feldman et al. [12]. The algorithm has a preprocessing stage
and the online stage. In the preprocessing stage, the algorithm solves the following modi�cation
of the standard network �ow problem for biparite matching: add two new nodes s and t , add
directed edges each from s to r for each r 2 R, and add directed edges from ` to t for each ` 2 L,
orient the rest of the edges in G from RHS to LHS (these edges will be called the graph edges).
Each outgoing edge from s , as well as each incoming edge into t , has capacity 2. The rest of the
edges have capacities 1. We denote this �ow network by e

G. The algorithm of Feldman et al. �nds
an integral optimal solution to this network �ow problem. The subgraph induced by the graph
edges with positive �ow on them has maximum degree 2. The last step of the preprocessing stage
is to apply B���R��D������������ to this subgraph to obtain a blue semi-matching Mb and a
red matchingMr . In the online stage, the algorithm receives online nodes in the i.i.d. fashion and
matches them as follows: if a node of type i arrives for the �rst time, the algorithm tries to match
it to Mb (i). If Mb (i) = ? orMb (i) has been previously matched, the algorithm leaves the current
node unmatched. If a node of type i arrives for the second time, the algorithm tries to match it to
Mr (i). Otherwise, a node of type i is left unmatched. See Algorithm 4 for the pseudocode.
B������K�������. Bahmani and Kapralov [3] observed that the performance of Feldman et
al. algorithm can be improved by modifying the preprocessing stage. Recall, thatG refers to the
type graph, eG to the associated �ow network in F������E�A�, and f is an integral max �ow ine
G. Consider a subset A of L and de�ne Az to be those vertices in A such that the amount of �ow
through them in f is z for z 2 {0, 1, 2}. In other words, no �ow goes through vertices in A

0, one
unit of �ow goes through each vertex inA1, and two units of �ow go through each vertex inA2. The
main insight of Bahmani and Kapralov is that the more balanced the �ow is the better, i.e., we want
A

1 to be as large as possible. They give a procedure that redirects some of the �ow from A

2 into A0

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

8 Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov

Algorithm 4 The known i.i.d. algorithm of Feldman et al. [12].
procedure F������E�A�(G = (L,R,E) – type graph)

. Preprocessing stage:
Set up �ow network e

G = (eV , eE), wheree
V = L [R [{s, t}e
E = {(s, r) | r 2 R} [{(`, t) | ` 2 L} [{(r , `) | {r , `} 2 E}.
Set up capacities cap(s, r) = 2, cap(`, t) = 2 for ` 2 L, r 2 R and cap(r , `) = 1 for (r , `) 2 e

E.
Solve the �ow network to obtain a maximum integral �ow f .
Let G 0 denote the bipartite subgraph induced by edges {r , `} such that f (r , `) = 1.
Set (Mb ,Mr) = B���R��D������������(G 0).

. Online stage:
for all arriving online nodes u do

Let ` denote the type of u.
if it is the �rst arrival of type ` andMb (`) , ? andMb (`) is unmatched then

Match u toMb (`).
if it is the second arrival of type ` andMb (`) , ? andMb (`) is unmatched then

Match u toMr (`).

without a�ecting the optimality of the �ow. The procedure actually works on two sets A ✓ L and
B ✓ R and can be done to balance the �ow either on the left or on the right. We �rst describe the
procedure and then show which sets to apply it to in order to improve on the algorithm of Feldman
et al.
Lets �rst de�ne the procedure to balance the left side (the right side can be handled similarly).

The algorithm sets up a completely new �ow network b
G as follows: the vertex set of the network

consists of A [B together with two new vertices sA and tA. We add an edge (sA,a) of unit capacity
for each a 2 A

2 and an edge (a, tA) of unit capacity for each a 2 A

0. For each edge (b,a) such that
a 2 A,b 2 B and f (b,a) = 1, we add an edge (a,b) to the �ow network of unit capacity (note that
this essentially reverses the edges with positive �ow in e

G). For each (b,a) in e
G with f (b,a) = 0 (ine

G), we add an edge (b,a) to b
G of unit capacity (note that this essentially preserves the graph edges

in e
G that do not carry any �ow). Let fA denote an integral maximum �ow in the newly constructed

�ow network. If we use the convention that f (a,b) = �f (b,a) then by adding fA to f on edges
(b,a) and �xing the �ow on edges (a, t) accordingly, we essentially “undo” some �ow going into A2

nodes and replace it with a �ow going into A0 nodes in e
G.

Perhaps, this is best illustrated with a small example. Consider K4,2 type graph, where L =
{`1, `2, `3, `4} and R = {r1, r2}. One possible max �ow that Feldman et al. algorithm �nds for the
corresponding network is to send two units of �ow through r1 and into `1, `2 and to send two units
of �ow through r2 and into `1, `2. Call this �ow f . Consider A = L and B = R. Then A

2 = {`1, `2}
and A0 = {`3, `4}. Solving the new �ow problem corresponding to the balancing procedure we �nd
that we can send one unit of �ow through `1 to r1 and to `3 and another unit of �ow through `2 to
r2 and to `4. Thus, this new �ow can be used to augment f : it undoes one unit of �ow from r1 to `1
and replaces it with one unit of �ow from r1 to `3, and it undoes one unit of �ow from r2 to `2 and
replaces it with one unit of �ow from r2 to `4. This results in a new �ow being completely balanced
on the LHS, i.e., A1 = L. The two balancing procedures are described in Algorithms 5 and 6.
Now, let (S,T) be the min cut in the �ow network e

G obtained in a standard way: S is de�ned
to be the set of nodes reachable from s in the residual network de�ned by max �ow f . De�ne
SL = S \ L, SR = S \ R,TL = T \ L,TR = T \ R. Bahmani and Kapralov algorithm computes

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

Experimental Study of Online Bipartite Matching Algorithms 9

Algorithm 5 The balancing procedure on the LHS due to Bahmani and Kapralov [3] that takes as
input type graph G, a maximum integral �ow for the �ow network from Feldman et al. and two
sets A ✓ L and B ✓ R. Returns a �ow fA in the new �ow network that can be used to de�ne a more
balanced f .

procedure B������L���(G = (L,R,E),A,B, f)
Set up �ow network b

GA = (bVA, bEA), whereb
VA = A [B [{sA, tA}b
EA = {(sA,a) | a 2 A

2} [{(a, tA) | a 2 A

0} [{(a,b) | f (b,a) = 1} [{(b,a) | f (b,a) = 0}.
Set capacities of all edges in b

EA to 1.
Solve the �ow network to obtain a maximum integral �ow fA.
return fA.

Algorithm 6 The balancing procedure on the RHS due to Bahmani and Kapralov [3] that takes as
input type graph G, a maximum integral �ow for the �ow network from Feldman et al. and two
sets A ✓ L and B ✓ R. Returns a �ow fA in the new �ow network that can be used to de�ne a more
balanced f .

procedure B������R����(G = (L,R,E),A,B, f)
Set up �ow network b

GB = (bVB , bEB), whereb
VB = A [B [{sB , tB }b
EB = {(sB ,b) | b 2 B

0} [{(b, tB) | b 2 B

2} [{(a,b) | f (b,a) = 1} [{(b,a) | f (b,a) = 0}.
Set capacities of all edges in b

EB to 1.
Solve the �ow network to obtain a maximum integral �ow fB .
return fB .

fL = B������L���(G,TL,TR , f) and fR = B������R����(G, SL, SR , f). It then creates a subgraph
ofG consisting of those edges {r , `} that have f (r , `)+ fL(r , `)+ fR (r , `) > 0 (using the convention
f (u,�) = �f (�,u)). The rest is exactly as in Feldman et al. — use B���R��D������������ on this
subgraph and use the resulting blue and red matchings in the online stage in the same way as
Feldman et al. See Algorithm 7 for the pseudocode.

Algorithm 7 The known i.i.d. algorithm of Bahmani and Kapralov [3].
procedure B������K�������(G = (L,R,E) – type graph)

. Preprocessing stage:
Compute f as in Algorithm 4.
Compute the canonical (S,T) cut from f .
Set fL = B������L���(G,TL,TR , f).
Set fR = B������R����(G, SL, SR , f).
LetG 0 be induced by edges {r , `} such that f (r , `)+ fL(r , `)+ fR (r , `) > 0 (using the convention

f (u,�) = �f (�,u)).
Set (Mb ,Mr) = B���R��D������������(G 0).

. Online stage:
Same as in Algorithm 4.

M�������E�A�. The next algorithm is due to Manshadi et al. [21] and it is based on the idea
of a fractional optimal solution. Fix an algorithm for obtaining an o�ine optimal solution (e.g.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

10 Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov

Edmonds-Karp). Consider all possible instances arising out of the given type graph G = (L,R,E).
Recall, that an instance can be described as a vector of types � 2 L

n . We assume without loss of
generality that the expected number of arrivals of nodes of a given type ` is bounded above by 1.
The matchingM given by the optimal algorithm can be viewed as an indicator vector of length |E |
indexed by edge names. This indicator vector speci�es for each position {`, r } whether {`, r } is in
M or not. Abusing the notation, we denote this indicator vector by OPT(�). An optimal fractional
solution is given by the expected value of this indicator vector, i.e., fOPT =

Õ
� 2Ln p(�)OPT(�).

Observe that fOPT 2 [0, 1]E and for each edge {`, r } 2 E we have fOPT({`, r }) = the probability that
edge {`, r } appears in an optimal matching.
LetW{`,r } denote the random variable indicating the event that {`, r } appears in an optimal

matching. Let Z` denote the number of online nodes generated of type `. For each ` we haveÕ
r :{`,r }2EW{`,r }  Z` . By taking the expectation of both sides, we have

Õ
r :{`,r }2E fOPT({`, r })  1

(using the assumption described above). For a given type ` let r1, . . . , rk be its neighbors in G

ordered such that fOPT({`, r1}) � fOPT({`, r2}) � · · · � fOPT({`, rk }). Add a dummy node rk+1 and
de�ne fOPT({`, rk+1}) = 1 �Õk

i=1 fOPT({`, ri }). The dummy node simulates the event that ` is not
matched in an optimal solution — for the purpose of the algorithm, the dummy node is always
considered to be matched before the online stage.

Now, fOPT({`, ·}) de�nes a probability mass function (PMF) on the neighbors of `. The algorithm
of Manshadi et al. samples two random neighbors from this distribution during the online stage in
the following correlated fashion. Partition the interval [0, 1] into k + 1 consecutive non overlapping
intervals Ip where the length of Ip is fOPT({`, rp }). We denote this partition by Ì . Also, partition
the interval [0, 1] into k + 1 consecutive non overlapping intervals �p where the length of �p is
fOPT({`, rp+1}) if p  k and the length of �k+1 is fOPT({`, r1}). We denote this partition by J̀ .
In order to sample from the PMF on the neighbors of `, one could sample a uniform random
number between 0 and 1 and output the neighbor of ` corresponding to the interval to which
the number belongs. If we do this procedure independently for I intervals and � intervals, we get
two independent samples. Instead, Manshadi et al. do the correlated sampling — a single number
is sampled between 0 and 1. Let Ip and �q be the intervals in which this number falls. The two
neighbors returned by the procedure are the two neighbors of ` corresponding to Ir and �q . The
partitioning of [0, 1] into I intervals and � intervals was chosen so that there is as little overlap
between intervals corresponding to the same neighbor as possible.
When an online node of type ` arrives, the algorithm of Manshadi et al. performs a correlated

sampling from Ì and J̀ as described above. Let r`,1 and r`,2 denote the two samples returned
by the correlated sampling procedure. The algorithm tries to match the online node �rst to r`,1.
If r`,1 was matched previously, the algorithm tries to match the online node to r`,2. If r`,2 was
matched previously, the algorithm gives up on matching the online node. See Algorithm 8 for the
pseudocode. There is an outstanding issue of how to compute fOPT in practice. This is a di�cult
problem, and rather than computing it exactly, Manshadi et al. suggest approximating it by the
Monte Carlo method – sample a number of instances, solve them optimally, record the fraction of
times each edge appears in an optimal o�ine solution. This is what we do in our implementation,
as well (see Section 2.5).
J������L�. Jaillet and Lu [15] introduced a template of algorithms called Random Lists Algo-
rithms, RLA for short, for online bipartite matching under known i.i.d. input model. For type `,
de�ne �` to be the set of all possible ordered (sub)lists of neighbors of ` in the type graph. In the
preprocessing stage, an RLA constructs a distribution D` on �` for each ` 2 L. In the online stage,
when a node of type ` arrives, the RLA samples a list of neighbors from D` and matches the online
node to the �rst available neighbor according to that list. If there are no available neighbors in that

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

Experimental Study of Online Bipartite Matching Algorithms 11

Algorithm 8 The known i.i.d. algorithm of Manshadi et al. [21].
procedureM�������E�A�(G = (L,R,E) – type graph)

. Preprocessing stage:
Compute a fractional optimal matching fOPT.
For each ` construct the two partitions Ì and J̀ .

. Online stage:
for all arriving online nodes u do

Let ` denote the type of u.
Let r`,1 and r`,2 be the two neighbors of ` returned by the correlated sampling procedure

performed on Ì and J̀ as described in the text.
if r`,1 is unmatched then

Match u to r`,1.
else if r`,2 is unmatched then

Match u to r`,2.
else

Leave u unmatched.

list, the online node is left unmatched. The pseudocode for this template appears in Algorithm 9. In
order to get an actual algorithm out of this template, one has to specify how D` are constructed in
the preprocessing step.

Algorithm 9 Random Lists Algorithm template due to Jaillet and Lu [15].
procedure RLA(G = (L,R,E) – type graph)

. Preprocessing stage:
For each ` 2 L construct a distribution D` on �` .

. Online stage:
for all arriving online nodes u do

Let ` denote the type of u.
Sample a list of neighbors of ` from �` according to D` .
if all neighbors in the list are matched then

Leave u unmatched.
else

Match u to the �rst available neighbor in the list.

Jaillet and Lu [15] also gave an actual algorithm based on this template, which we refer to as
J������L�. Jaillet and Lu consider the following LP:

maximize
Õ

`2L,r 2R f`,r
subject to

Õ
`:{`,r }2E f`,r  1 r 2 RÕ
r :{`,r }2E f`,r  1 ` 2 L

f`,r 2 [0, 2/3] ` 2 L, r 2 R, {`, r } 2 E

(1)

A vertex solution f

⇤ to this LP has the property that f ⇤`,r 2 {0, 1/3, 2/3} for all ` 2 L, r 2 R.
Restrict the neighbors of ` to only those r that have f

⇤
`,r > 0. There can be at most 3 neighbors,

since for such r we have f

⇤
`,r � 1/3. If Õr :{`,r }2E f

⇤
`,r < 1, then add a dummy node d` and de�ne

f

⇤
`,d`
= 1 �Õ

r :{`,r }2E f

⇤
`,r . Even after adding dummy nodes, each ` has at most 3 neighbors. Jaillet

and Lu de�ne D` such that it is supported only on lists of these restricted neighborhoods. More

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

12 Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov

speci�cally, if ` has a single neighbor then D` assigns unit weight to the list consisting of that
neighbor; if ` has two neighbors r1, r2 then D` assigns probability f

⇤
`,r1

to the list hr1, r2i and
probability f

⇤
`,r2

to the list hr2, r1i; if ` has three neighbors r1, r2, r3 then D` assigns probability 1/6
to each permutation of r1, r2, r3. After that, J������L� runs RLA with these distributions.
B������E�A�.Next we describe the state-of-the-art3 algorithm for the known i.i.d. input model
with integral arrival rates due to Brubach et al. [8]. This algorithm is (predictably) the most di�cult
to explain and implement. It is a RLA-syle algorithm. The preprocessing stage consists of �ve steps:
(1) solve a special LP,
(2) round the solution,
(3) apply the �rst modi�cation to the rounded solution,
(4) apply the second modi�cation to the modi�ed solution from the second step,
(5) de�ne distributions D` on �` for each ` 2 L.
Next, we describe each of these steps in detail. Step 1 — Brubach et al. de�ne and solve the

following LP:

maximize
Õ

`2L,r 2R f`,r
subject to

Õ
`:{`,r }2E f`,r  1 r 2 RÕ
r :{`,r }2E f`,r  1 ` 2 L

0  f`,r  1 � 1
e ` 2 L, r 2 R, {`, r } 2 E

f`1,r + f`2,r  1 � 1
e2 `1, `2 2 L, r 2 R, {`1, r }, {`2, r } 2 E

(2)

The idea behind LP (2) is to introduce extra constraints to bring the optimal value of the objective
down closer to the fractional optimal solution, while maintaining feasibility of the fractional optimal
solution. Let f ⇤ denote an optimal solution to (2). Step 2 is to apply the rounding procedure of
Gandhi et al. [13] to 3f ⇤, i.e., f ⇤ multiplicatively scaled by 3. This results in an integral vector e

f

such that e
f`,r 2 {0, 1, 2, 3}. Then, Brubach et al. scale the rounded solution back down and set

h := e
f /3. For completeness, we describe the rounding procedure here. Say an edge in our bipartite

graph is fractional if f ⇤`,r < Z. While there are fractional edges remaining, repeat the following. Find
either a cycle or a maximal path consisting only of fractional edges. Let P denote this cycle/path,
and partition it into two matchingsM1 andM2. De�ne

� = min
�
� > 0 | (9(i, j) 2 M1 : f ⇤i, j + � = df ⇤i, j e) ^ (9(i, j) 2 M2 : f ⇤i, j � � = b f ⇤i, j c)

� = min

�
� > 0 | (9(i, j) 2 M1 : f ⇤i, j � � = b f ⇤i, j c) ^ (9(i, j) 2 M2 : f ⇤i, j + � = df ⇤i, j e)

.

With probability �/(� + � round f

⇤
i, j to f

⇤
i, j + � for all {i, j} 2 M1 and to f

⇤
i, j � � for all {i, j} 2 M2.

With complementary probability, round f

⇤
i, j to f

⇤
i, j � � for all {i, j} 2 M1 and to f

⇤
i, j + � for all

{i, j} 2 M2
Step 3 — the �rst modi�cation to h. Restrict the original type graph to a subgraph of edges {`, r }

such that h`,r > 0. This graph is sparse — each online node can have at most 3 neighbors. In Step 3,
the goal is to break certain 4-cycles — see Figure 1 for details. Formally, this procedure is done by
breaking all (C2)-type cycles �rst. Then if there is a (C3)-type cycle, break it. Return to trying to
break (C2)-cycles. This way you always try to break (C2) cycles �rst. This continues until all (C2)
and (C3) cycles are broken.

Step 4 – second modi�cation to h. We call the result of this modi�cation h0. This modi�cation is
presented in Figure 2. In that �gure, the numbers next to an o�ine node r indicates the total value
of h at that node, i.e.,

Õ
` h(`, r). Thin edges correspond to h`,r = 1/3 and thick edges correspond to

h`,r = 2/3. The number above the edge corresponds to the newly assigned h0. For example, a thin
3The state-of-the-art is in terms of the best provable competitive ratio over worst-case type graphs.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

Experimental Study of Online Bipartite Matching Algorithms 13

(C1) (C2) (C3)

`1

`2

r1

r2

`1

`2

r1

r2

`1

`2

r1

r2

`1

`2

r1

r2

`1

`2

r1

r2

Fig. 1. Three possible cycles induced by h. The thin edges correspond to h`,r = 1/3 and thick edges
correspond to h`,r = 2/3.

edge with value 0.15 above it means that h`,r = 1/3 and after modi�cation we have h0(`, r) = 0.15.
Any edges not covered by one of the cases in the �gure retain their old value of h.

Lastly, in Step 5, the distributions on lists are de�ned as follows. If ` has 1 or 0 neighbors in the
sparse graph based on h0, then the distribution is fully supported on either the single-element list
or the empty list, respectively. If ` has 2 neighbors, say, r1 and r2 then the distribution is supported
on two lists (r1, r2) and (r2, r1) with the probability of r1, r2) being proportional to h0(`, r1). If the
neighborhood of ` consists of three vertices, say, r1, r2, r3, then the distribution is supported on all
possible permutation of (r1, r2, r3), such that the probability that the list is (ri , r j , rk) is proportional
to h0(`,ri)h0(`,r j)

h0(`,r j)+h0(`,rk) . Algorithm 10 summarizes this procedure.

Algorithm 10 The known i.i.d. algorithm due to Brubach et al. [8].
procedure B������E�A�(G = (L,R,E) – type graph)

. Preprocessing stage:
Solve LP (2). Let f ⇤ denote an optimal solution. (Step 1)
Scale f ⇤ multiplicatively to 3f ⇤ and apply the rounding procedure of Gandhi et al. [13]. (Step

2)
Set h to be the scaled down (multiplicatively by 1/3) rounded solution.
Apply the two modi�cation steps to get h0. (Steps 3 and 4)
De�ne the distributions on (sub)lists of neighbors. (Step 5)

. Online stage:
Run RLA with the above distribution.

2.3.3 Algorithms for Other Se�ings. C��������A�����.Dürr et al. [11] suggested a greedy-like
algorithm that performs a second pass over the input called C��������A�����. The C��������
A����� algorithm belongs to the class of category algorithms that were introduced in the work of
Dürr et al. These algorithms are neither online nor known i.i.d. They can be viewed as conceptually

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

14 Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov

`

r1

r2

1/3

1

0.1

0.9 `

r1

r2

2/3

1

0.15

0.85 `

r1

r2

2/3

1

0.6

0.4 `

r1

r2

r3

1/3

1

1

0.1
0.45
0.45

`

r1

r2

r3

2/3

1

1

0.2
0.4
0.4

`

r1

r2

r3

1/3

2/3

1

0.15
0.2
0.65

`

r1

r2

r3

1/3

1/3

1

0.1
0.1
0.8

`

r1

r2

1/3

2/3

0.25

0.75

`

r1

r2

2/3

2/3

0.3

0.7 `

r1

r2

1

1

1 � x1

x1 `

r1

r2

1

1

1 � x2

x2 `

r1

r2

r3

2/3

2/3

1

.25

.25
.5

Fig. 2. Three possible cycles induced by h. The thin edges correspond to h`,r = 1/3 and thick edges
correspond to h`,r = 2/3. Numbers above edges correspond to new values of h0. The numbers next to
r nodes correspond to total values of h. The two magic numbers are x1 = 0.2744 and x2 = 0.15877.

simple o�ine algorithms, or online algorithms with advice (see [7]), or as de�ning their own
computational model.
A category algorithm starts with a permutation � of the o�ine nodes (e.g., given adversarially,

or by an alphabetical order of names of the o�ine nodes). Instead of running G�����W���P���
�������� directly with � , the algorithm start by computing a category function c : R ! Z. The
algorithm updates � to �c as follows: �c is the unique permutation satisfying that for all �1,�2 2 R,
we have �c (�1) < �c (�2) if and only if c(�1) < c(�2) or (c(�1) = c(�2) and � (�1) < � (�2)). Then
G�����W���P���������� is performed with �c as the permutation of the o�ine nodes. In other
words, a category algorithm partitions the o�ine nodes into | Im(c)| categories and speci�es the
ranking of the categories, the ranking within the category is induced by the initial permutation � .

The C��������A����� algorithm starts with � , and in the �rst pass, runs G�����W���P�����
������ with � . LetM be the matching obtained in the �rst pass. The category function c : R ! [2]
is de�ned as follows: c(�) = 1 if � does not participate inM and c(�) = 2 otherwise. In the second
pass, the C��������A����� algorithm runs G�����W���P���������� with �c . The output of
the second run of G�����W���P���������� is declared as the output of the C��������A�����
algorithm. In other words, in the second pass the algorithm gives preference to those vertices that
were not matched in the �rst pass. Algorithm 11 shows the pseudocode.
3�P���. The algorithm of Dürr et al. was extended to multiple passes in [6]. In this paper, we shall
only consider the generalization of the algorithm to 3 passes, which we call 3�P���. In the �rst
two passes, the algorithm behaves the same way as C��������A�����. The generalization is quite
natural: in the third pass, the algorithm prefers to match an incoming node to an o�ine node that

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

Experimental Study of Online Bipartite Matching Algorithms 15

Algorithm 11 The C��������A����� algorithm of Dürr et al. [11].
procedure C��������A�����(G = (L,R,E),� : R ! R)

SetM = G�����W���P����������(G,�)
De�ne c : R ! [2] by c(�) = 1 ifM(�) = ? and c(�) = 2 otherwise.
De�ne �c as stated in the main text.
Return G�����W���P����������(G,�c)

was not matched in the 1st or 2nd pass. If there is no such node available, then 3�P��� prefers to
match an incoming node to an o�ine node that was not matched in the 1st pass. If there is no such
o�ine node, then 3�P��� matches an incoming node to the �rst (according to the original �xed
ordering) available o�ine node.
M��D�����. A commonly used heuristic for matching in general graphs is picking the node
with the minimum degree, the idea being that this lowers the probability of the remaining nodes
becoming unmatchable. In the o�ine setting, the minimum degree heuristic can be utilized to decide
not only which node to match next, but also which neighbor it should be matched to, resulting
in a one-sided and a two-sided version of the MinDegree algorithm respectively. This distinction,
along with the tie breaking strategy used, gives rise to a family of MinDegree algorithms, some
of which have also been studied in the context of bipartite graphs [18]. In our study, we consider
a natural online variation of the M��D����� algorithm where the o�ine degrees, as they are
being formed online4, guide the matches. Since the arriving online node is always the one to be
matched next, ours can be considered as a one-sided algorithm in this regard. We break ties in a
�xed predetermined order.

Algorithm 12 O����� M��D�����
procedureM��D�����(G = (L,R,E))

Initialize the degree of every o�ine node to 0.
for all ` 2 L do

When ` arrives, increment the degree of its neighbors by one.
Let N (`) be the set of unmatched neighbors of minimum degree of `.
if N (`) , ; then

Match ` with argmin{rk�alphabet (r) | r 2 N (`)}.

K���S�����. Similar to theM��D����� algorithm, Karp and Sipser [17] considered an algorithm
that picks a node of degree 1, if it exists, otherwise chooses a node randomly. This is another
commonly studied strategy and was shown to be quite e�ective for o�ine bipartite matching [18].
As with M��D�����, we consider an online variation of this greedy algorithm that looks at the
o�ine degrees.

2.4 Conversion to Greedy
Asmentioned in Remark 2.1, all of the complicated known i.i.d. algorithms from the previous section
are presented in the corresponding papers as non-greedy to simplify the analysis. For example,
suppose that u is an online node of type `. Moreover, assume that it is the third arrival of type `
and consider the behavior of F������E�A�. Regardless of how many neighbors of u are available,
F������E�A� is not going to match u since F������E�A� only attempts to match �rst and second
arrivals of a given type. A greedy algorithm would match u if it had at least one available neighbor.
4Each new online node increases the degree of its neighbors by one.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

16 Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov

Algorithm 13 O����� K���S�����
procedure K���S�����(G = (L,R,E))

Initialize the degree of every o�ine node to 0.
for all ` 2 L do

When ` arrives, increment the degree of its neighbors by one.
Let N (`) be the set of unmatched neighbors of ` of degree one.
if N (`) , ; then

Match ` with argmin{rk�alphabet (r) | r 2 N (`)}.

Similar considerations hold for the rest of the algorithms in that section. Thus, vanilla versions of
these algorithms immediately forgo a constant fraction of possible matches in order to simplify the
analysis and optimize for the worst-case. Clearly, there are type graphs (e.g., the complete type
graph), on which any greedy algorithm would be able to �nd a perfect matching. On such graphs,
the complicated algorithms would be vastly outperformed by any greedy algorithm.
Fortunately, as stated in Pena and Borodin [26] and sketched in Borodin et al. [6], there is a

simple idea to turn all of these algorithms into greedy ones while preserving their worst-case
guarantees. The idea is just to run a greedy algorithm, and if there are several available neighbors,
break ties by using the suggestions of the non-greedy algorithm. More precisely, we are going to
convert a non-greedy algorithm ALG to a greedy algorithm ALG0. At all times, ALG0 will simulate
ALG and know to which node ri 2 R (if any) ALG would match each online node `i 2 L. Consider
the �rst time that a non-greedy algorithm ALG is about to leave an online node `i 2 L unmatched
even though there is an available neighbor. Instead our greedy algorithm ALG0 will match `i with
an arbitrary available neighbor r 0 2 R. Now ALG0 continues on simulating ALG until ALG tries
to match some later `j with the r 0 used to match `j . If there is still an available r 00 to match `j ,
then that match is made. And we continue in this manner always making a match according to
ALG when possible and otherwise making an arbitrary match if one is still available. If at any time
ALG wanted to match some later `j to some r that has been used by ALG0, `j will go unmatched.
But in this case, the addition of matching `i o�sets the loss of not matching `j . Moreover, this
modi�cation is easy to implement and does not seem to have a signi�cant a�ect on the runtime. To
apply this conversion to an adaptive5 algorithm, we would keep a second copy of the graph for the
non-greedy algorithm to operate on so that the performance guarantee is maintained despite of
our greedy choices. In our experiments, we report the performance of both greedy and non-greedy
versions of known i.i.d. algorithms.

2.5 Notes on Implementation
We used the adjacency list representation of graphs for all of the above algorithms. Compared to
adjacency matrix representation, this allowed for signi�cant speedup on sparse graphs.

The max �ow problems in F������E�A� and B������K������� are solved via straightforward
implementations of Edmonds-Karp max �ow algorithm. The same algorithm is used to obtain an
optimal maximum matching.
For M�������E�A�, we estimate a fractional optimal solution by running Edmonds-Karp al-

gorithm initialized with a greedy solution (for speed) on 100 samples generated for a given type
graph.

5An algorithm whose order of preference over the o�ine nodes changes dynamically as new nodes arrive and the matching
is formed.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

Experimental Study of Online Bipartite Matching Algorithms 17

The linear program (1) in J������L� can be formulated as a max �ow problem with integral
capacities. This is done by rescaling constraints by a multiple of 3, and constructing the following
�ow network. Add a source s and a sink t , connect s to each r 2 R via edges of capacity 3, connect
each ` 2 L to t via edges of capacity 3, orient edges of G from R to L and assign capacity 2 to them.
In our implementation, we use Edmonds-Karp to solve this max �ow problem via an integral �ow.
Then f

⇤ can be obtained by scaling the max �ow by a multiple of 1/3.
We solve the linear program (2) in B������E�A� using the simplex method in GNU Linear

Programming Kit (GLPK) [1].
The actual code is freely available at [2].

3 EXPERIMENTAL SETUP
All our experiments were performed on a personal laptop with Intel Core i5-7300HQ processor
clocked at 2.5 Ghz. The laptop had 8 GB 2400 Mhz DDR4 of RAM and 256GB M.2 SSD. The laptop
was running Windows 10 64-bit Home edition. All algorithms under consideration were coded in
C++ and compiled with Microsoft Visual Studio Community 2017 version 15.5.7. The code was
compiled for the 64-bit target architecture with an optimization �ag O2. The implementation is
single-threaded, so all algorithm runs were performed on a single core.

In the rest of this section we describe our benchmarks for online bipartite matching algorithms
under the known i.i.d. input model with integral types. Our benchmarks can naturally be split
into three categories; namely, parameterized families of graphs, stand-alone graphs, and bipartite
graphs derived from real-world graphs (which we will call “real-world graphs” for short). Graphs in
these categories refer to type graphs with the understanding that instance graphs corresponding to
a particular type graph from the benchmark will be obtained by sampling n online nodes uniformly
at random from all possible types, i.i.d.

Families of graphs are obtained by either a random or a deterministic process that has a natural
parameter. For example, this parameter could be a proxy for edge density of a graph. For families
of graphs, we will be interested in the performance of the algorithms as a function of the given
parameter.
We call a graph stand-alone if it is obtained either by a random or a deterministic process, but

there are no associated parameters. For example, worst-case graphs for online algorithms. Although
all graphs can be parameterized by the size of the graph, we are interested in the asymptotic
behavior of the algorithms on large graphs, so we typically take stand-alone graphs of largest size
that can be solved in reasonable time by all algorithms under consideration. Note that stand-alone
graphs are not necessarily �xed and can still be the result of a random process.

Stand-alone graphs F��G, M���G, R���, H���, Z��� are taken from Cherkassky et al. [9], where
these graphs were used to measure the performance of various o�ine algorithms for bipartite
matching. Our implementation of the generating procedures for these graphs does not perfectly
match the code accompanying the paper [9], because their code is designed for more general
families of graphs. Instead, our implementation follows the descriptions in the paper [9] itself,
where parameters are often �xed to certain values that simplify the generating process.

We also consider a number of graphs that are publicly available from online repositories.
Most of our synthetically generated instances are bipartite. A few of our synthetically generated

instances, as well as all real-world instances are non-bipartite. In case of a non-bipartite graph, we
use one of the following two ways of creating a bipartite graph out of a non-bipartite graph. Let
G = (V ,E) be a given graph that is not necessarily bipartite. The �rst way of creating a bipartite
graph out of G is the standard technique of the the duplicating method. The idea is to duplicate the
vertex set V . Let L = V be the �rst copy of V and R = V be the second copy. Put an edge between
` 2 L and r 2 R if and only if {`, r } 2 E. We call the second way of creating a bipartite graph out of

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

18 Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov

G the random balanced partition method. In this method, we partition V randomly into two blocks
L and R, such that |L| = b |V |/2c and |R | = d|V |/2e. We keep only those edges that connect two
vertices from di�erent partitions. Solving the matching problem on a graph obtained from the
random balanced partition method applied to social network graphs has a natural interpretation.
This corresponds to dividing the whole population into two groups and pairing up as many “friends”
(“co-authors”, “co-stars”, etc.) from the two groups as possible.

3.1 Families of Graphs
E�����R���� G�����. A graph of this family is denoted byGn,n,p . We have that |L| = |R | = n
and for each ` 2 L and r 2 R an edge {`, r } is included in G with probability p independently. We
consider p to be of the form c/n and c is the parameter de�ning this family of graphs.

R����� R������ �� ��� L��� (R����) G�����. We say that a graph G is d-regular
on the left (right) if the degree of every vertex in L (in R) is the same and equal to d . To generate a
random graph that is d-regular on the left, for each ` we sample a uniformly random subset of d
vertices from R and declare them to be neighbors of `. The samples for di�erent ` are independent.
The procedure to generate d-regular graphs on the right is analogous. These families of graphs are
parameterized by d .

M������R���.Molloy and Reed [24] gave a procedure to generate a graph with a given degree
distribution p. We describe the procedure for non-bipartite graphs. To generate a graph on n nodes,
for each node u sample its degree from p. Initially, degree d of u corresponds to d non-paired ends
of edges. The idea is to choose randomly two such ends of edges and connect them together – this
forms an edge and decreases the number of non-paired edges by 1 for each of the 2 participating
vertices. While there are vertices with non-paired edges, pick two such vertices at random and pair
up one end of an edge from the �rst vertex with one end of an edge from the second vertex. There
are a couple of problems with this procedure as stated. First of all, if the sum of all degrees is odd,
this procedure will leave one end of an edge non-paired. This is �xed by modifying the �rst step —
after sampling degrees of vertices and before pairing up any ends of edges. While the total degree
is odd, pick a random vertex and resample its degree. The second problem is that this procedure
does not necessarily generate a simple graph – i.e., there might be self-loops and duplicate (parallel)
edges. To address this issue, when pairing up edges, we perform 100 random samples of pairs of
vertices to try and �nd ends of edges that do not result in self-loops or parallel edges. If all of these
trials fail, then we add the self-loop or the parallel edge of the last trial. At the end of the procedure
we obtain the graph by removing all self-loops and parallel edges.

While Erdős-Rényi model is natural, it does not seem to model many real-life scenarios, such
as social networks. It has been long observed that degree distributions of many social networks
(e.g., Facebook, Twitter, movie actor databases, researcher co-authorship databases, etc.) are not
binomial, but rather seem to have heavy tails. Thus, they are more accurately modeled by power
law distributions. Newman et al. [25] describe a particular family of distributions that combined
with Molloy-Reed procedure results in a fairly accurate model of many social networks. This family
of distributions is called a power law distribution with exponential cuto�. This distribution has two
parameters – � , which is called the exponent, and �, which is called the cuto�. The idea is that for
small values of d the probability of a node having degree d should be modeled by x�� (the power
law part), but for d > � the probability should be dropping o� exponentially (the exponential cuto�
part). Formally, it is de�ned as follows. Let pd denote the probability of our random variable having

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

Experimental Study of Online Bipartite Matching Algorithms 19

value d , then we have:

pd =

⇢
0 if d = 0
cx

��
e

�d/� if d > 0,
where c is the normalizing constant. The Molloy-Reed procedure on a power law distribution with
exponential cuto�, followed by the random balanced partition method de�nes a family of type
graphs that is parameterized by � and �.

P����������� A��������� B�������. We also consider the following natural modi-
�cation of the preferential attachment model that immediately produces bipartite graphs without
having to use the random balanced partition method. We refer to this model as the preferential
attachment bigraph model. To generate a bigraph in this model, start with n o�ine nodes R and
introduce online nodes L one at a time. The model has a single parameter c which is the average
degree of an online node. When a new online node i 2 L arrives, sample Zi ⇠ Bin(n, c/n) to decide
on a number of its o�ine neighbors. Let dj denote the current degree of an o�ine node j 2 R.
De�ne a probability distribution µ on o�ine nodes such that µ(j) = 1+dj

n+
Õ
t2R dt

. Sample RHS nodes
from µ i.i.d. repeatedly until Zi unique o�ine nodes are generated. These o�ine nodes de�ne the
neighborhood of the current online node i . Update the dj and continue.

3.2 Stand-Alone Graphs
U�����T��������� (UT).This graph is the �xed graph de�ned by an upper-triangular ad-
jacency matrix with the columns representing online nodes that arrive from right to left. This is
known to be the worst case example for R������ in the adversarial online model [16].

(L) (R)

...
...

Fig. 3. Upper Triangular graph

(L) (R)

...

...

...

|L1 | = n

|L2 | = n/e

Fig. 4. Manshadi-Hard graph

M��������H��� (MH). In [21], Manshadi et al. present a type graph for which no online
algorithm can achieve an expected competitive ratio better than 1 � 1

e2 ⇡ 0.86. LetG(L,R,E) be the
type graph where L = L1 [L2, |L1 | = |R | = n and L2 = n/e . There is a perfect matching between
the vertices of L1 and R and a complete bipartite graph between L2 and R. Each type has arrival
rate 1 and there are |L| = n(1 + 1/e) online i.i.d. draws.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

20 Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov

F�������H��� (FH). Feldman et al. [12] present a family of graphs that is the worst case
for their algorithm, proving that their analysis of the competitive ratio of their algorithm is tight.
R is partitioned into 4 blocks: K ,U ,V , andW , each of size n/4. Similarly, L is partitioned into 4
blocks: I ,X ,Y , and Z , each of size n/4. We use a lower-case letter to refer to an element in the
given block, e.g., elements of U are denoted by ui , where i 2 [n/4]. The edge set consists of a
6-cycle (ui ,xi ,�i ,�i ,wi , zi ,ui) for i 2 [1, n4], a complete bipartite between K and X , and a complete
bipartite graph between I andW .

(L) (R)

i1
...
i

n
4

x1
...
x

n
4

�1
...

�

n
4

z1
...
z

n
4

k1
...
k

n
4

u1
...

u

n
4

�1
...

�

n
4

w1
...

w

n
4

Fig. 5. Feldman-Hard graph. Depicted with red-do�ed and blue-dashed edges are the cycles
(u1,x1,�1,�1,w1, z1,u1) and (un/4,xn/4,�n/4,�n/4,wn/4, zn/4,un/4) respectively. The remaining
edges form two complete bipartite graphs

F��G ���M���G. To construct these bipartite graphs, the vertices in L are randomly permuted
and then L and R are partitioned into k groups of equal size. Each vertex of the i-th group of L is
assigned Y random neighbors from the (i � 1)-th through (i + 1)-th group of R (with wrap around).
To be consistent with previous literature ([9]) Y is set to be binomially distributed with E(Y) = 5,
and we consider the two cases of k = 32 (F��G) and k = 256 (M���G).

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

Experimental Study of Online Bipartite Matching Algorithms 21

(L) (R)

L0

...

Li

...

Lk�1

R0

...

Ri�1

Ri

Ri+1
...

Rk�1

Fig. 6. Graph FewG and ManyG. For i = 0, . . . ,k � 1, vertices in Li are assigned random neighbors
from groups Ri�1 to Ri+1.

����. For this graph, vertices in L and R are grouped into t = n/d groups of size d , denoted
L0 . . . Lt�1 and R0 . . .Rt�1. Block i on one side is connected to block i + 1 on the other side, for
i = 0 . . . t �2; block Lt�1 is connected to block Rt�1. Thus the graph is a “rope” that zigzags between
the two sides of the graph, �rst up and then down. Consecutive pairs of blocks along the rope are
connected alternately by perfect matchings and random bipartite graphs of average degree d � 1,
beginning and ending with perfect matchings. As in [9], we �x d = 6.

(L) (R)

L0

L1

L2

...

Lt�1

R0

R1

R2

...

Rt�1

Fig. 7. Graph Rope. Blue do�ed edges correspond to perfect matchings and red dashed edges corre-
spond to random bipartite graphs. Edge (Lt�1,Rt�1) can be either do�ed or dashed.

����. In these graphs, each side is partitioned into
p
n blocks of size

p
n each. A random bipartite

hexagon is added between block i on one side and block j on the other side for all i, j 2 [pn]. This
results in the average degree of each vertex being 6. The random hexagon is generated by the

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

22 Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov

following procedure. Pick 3 random nodes on each side (inside the corresponding blocks), say,
`1, `2, `3 and r1, r2, r3. Sample two random permutations � ,� : [3] ! [3]. Add the following cycle
to the graph (`� (1), r� (1), `� (2), r� (2), `� (3), r� (3), `� (1)).

(L) (R)

L0

L1

L2

...

L

p
n�1

R0

R1

R2

...

R

p
n�1

Fig. 8. Graph Hexa. Connecting groups form a complete bipartite graph. Each edge depicts a random
hexagon between the corresponding groups.

����. In these bipartite graphs, we have |L| = |R | = n and an edge between nodes `i 2 L and
r j 2 R exists with probability roughly proportional to 1/ij. More precisely, the probability is
Pr(`i ⇠ r j) = min

⇣
n ·d
log2 n · 1

i ·j , 1
⌘
with d = 6 and i, j 2 [n]. This results in graphs that are denser

around vertices with smaller indices.

3.3 Real-World Data
To perform experiments on real datasets, we used some publicly available graphs from the Network
Data Repository [27]. In the experiments we used both the duplicating method and the random
balanced partition method of bipartite transformations.

The socfb datasets are social frienship networks extracted from Facebook. Nodes are users and
edges represent friendship ties. The bio-CE datasets correspond to biological datasets representing
links by similar phylogenetic pro�les and gene neighbourhoods of bacterial and archaeal orthologs.
We also used two econ datasets that model US economic transactions in 1972 by connecting
commodities to commodities and industries. These datasets, along with various properties of the
corresponding graphs, can be found in the following links6:

• http://networkrepository.com/socfb-Caltech36.php
• http://networkrepository.com/socfb-Reed98.php
• http://networkrepository.com/bio-CE-GN.php
• http://networkrepository.com/bio-CE-PG.php

6Accessed 2018-05-25

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

Experimental Study of Online Bipartite Matching Algorithms 23

Table 2. Real-World Graph Statistics

Dataset Application Domain Nodes Edges Max Degree Avg. Degree
������C������36 social networks 769 16.7k 248 43
������R���98 social networks 962 18.8k 313 39
����CE�GN biological networks 2.2k 53.7k 242 48
����CE�PG biological networks 1.9k 47.8k 913 51
������������ economic networks 492 49.5k 679 201
����������� economic networks 507 44.2k 766 174

• http://networkrepository.com/econ-mbea�w.php
• http://networkrepository.com/econ-beause.php

Table 2 summarizes some real-world graph statistics.

4 EXPERIMENTAL RESULTS
In this section, we present results of our experiments and provide some comments about the
experiments. However, we leave the main discussion about performance of algorithms and lessons
learned from the experiments to Section 5. With as many algorithms and as many graphs as we
consider in this paper, it is di�cult to present all of the data in a completely satisfying way. We
settled on the following presentation formats. For families of graphs, we plot performance of an
algorithm as a time series with an independent variable being the parameter corresponding to
the family of graphs and dependent variable being the achieved competitive ratio. The time series
allows us to identify regimes of parameters that are easy and that are hard for most algorithms.
We list performance of algorithms in those regimes sorted according to their competitive ratios.
When we plot the results for these regimes, we also graphically indicate sample standard deviations
by horizontal line segments: the length of each segment is 2 standard deviations and the segment
is centered around the sample mean. We treat stand-alone and real-world instances di�erently.
We collect performance of all algorithms on all stand-alone instances in one table, and on real-
world instances in two tables (one for the random bipartition conversion method and one for the
duplicating method). We also use the following notation: we add a letter “g” in brackets following
an algorithm’s name to indicate the greedy version of the algorithm, e.g., F������E�A�(�). The
algorithm’s name by itself (e.g., F������E�A�) refers to a non-greedy version of the algorithm.
We have also tested for statistical signi�cance of the results using t-tests and even when the
performance of two algorithms di�ers by 0.01, the p-values are less than 1%, allowing us to compare
them with con�dence. The rest of this section is organized as follows. We describe the results
for families of graphs in Subsections 4.1, 4.2, 4.3, and 4.4. We present our results for stand-alone
graphs in Subsection 4.5 and real-world instances in Subsection 4.6. Finally, we �nish with a small
discussion of running times in Subsection 4.7.

4.1 Erdős-Rényi Experiments
The experiments in this section were performed with Erdős-Rényi type graphs where the number
of nodes was �xed to be 1000 on each side, and the parameter c varied from 0.1 to 14.9 with a
step of 0.2. For each value of c , 100 type graphs were generated. The reported competitive ratios
of algorithms are (ratios of) the average values over these 100 trials. In Figure 9 you can see the
time series of performance of all non-greedy algorithms in this experiment. Each non-greedy
algorithm is compared with greedy algorithms (including its own counterpart) in Figures 10, 11,
12, 13, and 14. We did not plot R������, since its behavior in this experiment was analogous to

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

24 Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov

that of S�����G�����. Observe that from Figures 9 and, for example, 10, one can infer all other
�gures. We only show other �gures here for completeness, and in the future experiments we shall
omit them. Looking at the �gures, we observe that there are essentially three regimes of c that are
of interest in this experiment: (1) small c , i.e., a sparse type graph, regime, (2) “hard” values of c ,
where the relative order of algorithms changes, and performance of greedy algorithms experiences
a dip, and (3) asymptotic, i.e., steady-state, value of c , where the performance guarantees of various
non-greedy algorithms stabilizes. In order to “zoom-in” and see what happens in each of these
regimes, we plotted competitive ratios of algorithms in decreasing order (top to bottom) for c = 1.9
(regime (1)), c = 4.9 (regime (2)), and c = 14.9 (regime(3)) in Figures 15, 16, and 17, respectively.

Fig. 9. Performance of all non-greedy algo-
rithms on Erdős-Rényi family of graphs.

Fig. 10. Performance of F������E�A� algo-
rithm on Erdős-Rényi family of graphs.

Fig. 11. Performance of B������K������� al-
gorithm on Erdős-Rényi family of graphs.

Fig. 12. Performance of M�������E�A� algo-
rithm on Erdős-Rényi family of graphs.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

Experimental Study of Online Bipartite Matching Algorithms 25

Fig. 13. Performance of J������L� algorithm
on Erdős-Rényi family of graphs.

Fig. 14. Performance of B������E�A� algo-
rithm on Erdős-Rényi family of graphs.

Fig. 15. Performance of all algorithms on
Erdős-Rényi graph with c = 1.9.

Fig. 16. Performance of all algorithms on
Erdős-Rényi graph with c = 4.9.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

26 Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov

Fig. 17. Performance of all algorithms on Erdős-Rényi
graph with c = 14.9.

4.2 Random Le�-Regular Experiments
The experiments in this subsection are based on type graphs with 1000 nodes on each side, where
left-hand-side nodes are of degree d each. As before, results are averaged over 100 i.i.d. trials.
We present time series of all non-greedy algorithms in Figure 18, and we present F������E�A�
versus greedy algorithms in Figure 19. Figures comparing other non-greedy algorithms with greedy
algorithms are omitted, since they are very similar to Figure 19, as discussed at the beginning of
Subsection 4.1. We identify three regimes of d that correspond to (1) sparse case (d = 2), (2) di�cult
case (d = 5), and (3) asymptotic case (d = 30). This is very similar to what we did in Subsection 4.1.
The competitive ratios of di�erent algorithms under these regimes are plotted in Figures 20, 21,
and 22.

Fig. 18. Performance of all non-greedy algo-
rithms on Le�-Regular family of graphs.

Fig. 19. Performance of F������E�A� algo-
rithm on Le�-Regular family of graphs.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

Experimental Study of Online Bipartite Matching Algorithms 27

Fig. 20. Performance of all algorithms on Le�-
Regular graph with d = 2.

Fig. 21. Performance of all algorithms on Le�-
Regular graph with d = 5.

Fig. 22. Performance of all algorithms on Le�-Regular
graph with d = 30.

4.3 Molloy-Reed Experiments
Molloy-Reed family of graphs has two parameters: � and �. Thus, we generated a whole grid of
results. More speci�cally, for each value of � from 0.5 to 4.0 with a step of 0.1 and for each value of
� from 1 to 96 with a step of 5 we generated 100 Molloy-Reed graphs with those values of � and �
and averaged competitive ratios of algorithms over these 100 runs. Since plotting 3-dimensional
time series is awkward, we present �� and ��slices of the resulting grid for values of � and � that
exhibit more interesting behavior. We show how competitive ratios of non-greedy algorithms look

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

28 Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov

like as a function of � when � is �xed to 96 in Figure 23, and as a function of � when � is �xed to
0.5 in Figure 24. Time series comparing the non-greedy version of B������K������� with greedy
algorithms for the respective scenarios are shown in Figures 25 and 26. As in other subsections,
comparisons of other non-greedy algorithms with greedy algorithms look very similar, so we omit
them. For � = 0.5 we identify two regimes: di�cult regime for greedy algorithms, where � = 11;
and a steady-state regime, where � = 41. We “zoom in” to show competitive ratios of algorithms
for these two regimes in Figures 27 and 28. Similarly, the two regimes for � = 96 are when � = 1.0
and when � = 2.0. Those are depicted in Figures 29 and 30.

Fig. 23. Performance (as a function of �) of all
non-greedy algorithms onMolloy-Reed family
of graphs with � = 96.

Fig. 24. Performance (as a function of �) of all
non-greedy algorithms onMolloy-Reed family
of graphs with � = 0.5.

Fig. 25. Performance (as a function of �) of
B������K������� algorithm on Molloy-Reed
family of graphs with � = 96.

Fig. 26. Performance (as a function of �) of
B������K������� algorithm on Molloy-Reed
family of graphs with � = 0.5.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

Experimental Study of Online Bipartite Matching Algorithms 29

Fig. 27. Performance of all algorithms on
Molloy-Reed graph with � = 0.5,� = 11.

Fig. 28. Performance of all algorithms on
Molloy-Reed graph with � = 0.5,� = 41.

Fig. 29. Performance of all algorithms on
Molloy-Reed graph with � = 1.0,� = 96.

Fig. 30. Performance of all algorithms on
Molloy-Reed graph with � = 2.0,� = 96.

4.4 Preferential A�achment Bigraph Experiments
The experiments in this subsection are based on type graphs with 1000 nodes on each side, where
types are generated via the preferential attachment method with a single parameter c . The values
of c range from 0.1 to 14.9 with a step of 0.1. All results are averaged over 100 i.i.d. trials. We
present time series of all non-greedy algorithms in Figure 31, and we present B������K�������
versus greedy algorithms in Figure 32. Figures comparing other non-greedy algorithms with greedy
algorithms are omitted, since they can be inferred from the given two �gures, as discussed at
the beginning of Subsection 4.1. We identify three regimes of c that correspond to (1) sparse case
(c = 2.1), (2) intermediate case (c = 8.1), and (3) asymptotic case (c = 14.9); this is similar to
Subsection 4.1. The competitive ratios of di�erent algorithms are plotted in Figures 33, 34, and 35.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

30 Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov

Fig. 31. Performance of all non-greedy algo-
rithms on Preferential A�achment Bigraph
family of graphs.

Fig. 32. Performance of B������K������� al-
gorithm on Preferential A�achment Bigraph
family of graphs.

Fig. 33. Performance of all algorithms on Pref-
erential A�achment Bigraph graph with c =

2.1.

Fig. 34. Performance of all algorithms on Pref-
erential A�achment Bigraph graph with c =

8.1.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

Experimental Study of Online Bipartite Matching Algorithms 31

Fig. 35. Performance of all algorithms on Preferential At-
tachment Bigraph graph with c = 14.9.

4.5 Stand-Alone Graphs
In this subsection, we collect competitive ratios of all algorithms considered in this paper on all
stand-alone graphs, as discussed in Section 3. Since some of the algorithms and graph constructions
are randomized, we show results that are averaged over 100 trials. See Table 3 for the summary.

Table 3. Performance of algorithms on stand-alone graphs.

Algorithm UT MH FH FewG ManyG Rope Hexa Zipf
FeldmanEtAl 0.76 0.76 0.67 0.77 0.80 0.92 0.75 0.86

FeldmanEtAl(g) 0.90 0.87 0.88 0.89 0.92 0.99 0.89 0.96
BahmaniKapralov 0.76 0.76 0.80 0.77 0.80 0.93 0.76 0.93

BahmaniKapralov(g) 0.90 0.87 0.93 0.89 0.92 0.99 0.89 0.98
ManshadiEtAl 0.77 0.79 0.84 0.78 0.80 0.91 0.77 0.89

ManshadiEtAl(g) 0.89 0.87 0.96 0.89 0.92 0.99 0.89 0.96
JailletLu 0.78 0.80 0.78 0.79 0.82 0.93 0.78 0.87

JailletLu(g) 0.90 0.87 0.87 0.89 0.92 0.99 0.89 0.94
BrubachEtAl 0.78 0.81 0.78 0.79 0.82 0.94 0.78 0.87

BrubachEtAl(g) 0.91 0.87 0.92 0.89 0.92 0.99 0.89 0.95
MinDegree 0.98 0.87 0.91 0.89 0.92 0.99 0.89 0.92
KarpSipser 0.82 0.87 0.92 0.88 0.92 0.99 0.87 0.91

SimpleGreedy 0.66 0.87 0.91 0.86 0.90 0.99 0.86 0.87
Ranking 0.92 0.87 0.95 0.87 0.91 0.99 0.87 0.93

Category-Advice 0.76 0.95 0.99 0.92 0.95 1.00 0.92 0.97
3-Pass 0.77 0.95 0.99 0.92 0.95 1.00 0.92 0.97

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

32 Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov

4.6 Real-World Instances
In this subsection, we collect competitive ratios of our algorithms on graphs based on real-world
applications, as discussed in Section 3. That is, since these application graphs are not bipartite, we
consider two methods of converting them into bipartite graph: the random bipartition method,
and the duplicating method. Since some of the algorithms and the random bipartition conversion
method are randomized, we show results that are averaged over 100 trials. See Table 4 for the
summary of results for the random bipartition method, and Table 5 for the duplicating method.

Table 4. Performance of algorithms on real-life instances transformed into bipartite instances via the
random-bipartition method.

Algorithm Caltech36 Reed98 CE-GN CE-PG beause mbea�w
FeldmanEtAl 0.78 0.78 0.78 0.81 0.76 0.74

FeldmanEtAl(g) 0.91 0.91 0.94 0.96 0.94 0.95
BahmaniKapralov 0.80 0.81 0.84 0.89 0.80 0.76

BahmaniKapralov(g) 0.92 0.92 0.96 0.98 0.96 0.96
ManshadiEtAl 0.81 0.81 0.84 0.87 0.81 0.79

ManshadiEtAl(g) 0.91 0.91 0.96 0.97 0.96 0.96
JailletLu 0.81 0.81 0.80 0.82 0.78 0.77

JailletLu(g) 0.91 0.91 0.94 0.96 0.95 0.96
BrubachEtAl 0.81 0.81 0.81 0.83 0.79 0.77

BrubachEtAl(g) 0.91 0.91 0.94 0.95 0.94 0.95
MinDegree 0.88 0.88 0.94 0.95 0.95 0.97
KarpSipser 0.84 0.84 0.91 0.94 0.90 0.92

SimpleGreedy 0.87 0.87 0.93 0.94 0.94 0.95
Ranking 0.86 0.87 0.93 0.94 0.94 0.95

Category-Advice 0.92 0.93 0.97 0.98 0.97 0.97
3-Pass 0.92 0.93 0.97 0.98 0.97 0.97

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

Experimental Study of Online Bipartite Matching Algorithms 33

Table 5. Performance of algorithms on real-life instances transformed into bipartite instances via the
duplicating method.

Algorithm Caltech36 Reed98 CE-GN CE-PG beause mbea�w
FeldmanEtAl 0.77 0.77 0.77 0.80 0.74 0.73

FeldmanEtAl(g) 0.90 0.90 0.95 0.95 0.94 0.97
BahmaniKapralov 0.78 0.78 0.82 0.88 0.76 0.75

BahmaniKapralov(g) 0.91 0.91 0.97 0.98 0.95 0.97
ManshadiEtAl 0.79 0.78 0.84 0.86 0.78 0.77

ManshadiEtAl(g) 0.90 0.90 0.96 0.97 0.95 0.96
JailletLu 0.79 0.79 0.79 0.81 0.77 0.76

JailletLu(g) 0.90 0.90 0.95 0.96 0.95 0.97
BrubachEtAl 0.80 0.79 0.80 0.82 0.77 0.76

BrubachEtAl(g) 0.91 0.91 0.94 0.95 0.95 0.97
MinDegree 0.88 0.87 0.94 0.95 0.95 0.98
KarpSipser 0.82 0.82 0.91 0.93 0.91 0.94

SimpleGreedy 0.72 0.72 0.95 0.95 0.91 0.94
Ranking 0.86 0.86 0.93 0.94 0.94 0.97

Category-Advice 0.82 0.83 0.98 0.99 0.96 0.97
3-Pass 0.83 0.84 0.98 0.99 0.96 0.97

4.7 Running Times
In this section we describe our experimental �ndings about running times of the algorithms under
consideration. We have not dedicated a lot of time to optimizing run-times of individual algorithms
or to �nding state-of-the-art libraries for LP solving, for example. Our aim is not to provide
an extensive scalability study, but rather to see if complicated algorithms with an o�-the-shelf
implementation incur prohibitive run-time costs. The main di�erence between complicated and
simple algorithms is that the complicated algorithms have a non-trivial pre-processing component.
Theoretically, we know that pre-processing adds a signi�cant overhead to the running time and
in certain cases it asymptotically dominates the online matching phase of the algorithm (see the
discussion of B������E�A� at the end of this section). The goal of this section is to see if this is
supported by our experiments, and, indeed, it is. We observe how running times scale with the
number of edges. For that purpose we present running times from random left- regular graph
experiments. The edge density for the other data set families in Section 3.1 are also controlled by a
single parameter and the run times for experiments for these data sets behave exactly the same way.
Thus, the conclusions we derive for the random left regular graph experiments are quite general
and are expected to carry over to other scenarios. In the random left regular graph experiment, the
number of online nodes is �xed to be 1000, same as the number of o�ine nodes. The neighborhood
of each online node is decided by selecting a subset of neighbors of size d uniformly at random.
Thus, as d increases, the total number of edges increases. Figure 36 shows how the running times
of the various algorithms scale with d .

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

34 Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov

Fig. 36. Running times le�-side regular family of graphs.

For ease of presentation, we omit greedy versions of complicated algorithms (i.e., F������E�A�,
B������K�������, M�������E�A�, J������L�, B������E�A�). In our experiments, greedy
versions had the same runtimes as their non-greedy versions, because turning an algorithm into a
greedy one has virtually no overhead. Runtimes of complicated algorithms are dominated by their
preprocessing stages. Therefore, the more complicated is the preprocessing stage, the slower is the
algorithm. Greedy-like algorithms have either no or minimal preprocessing, e.g. S�����G�����
and C��������A�����, and thus are the fastest algorithms, as expected. B������K������� is
essentially F������E�A�with some additional preprocessing steps, thus the two algorithms behave
similarly with B������K������� being slightly slower. J������L� is slower still, but not by much.
The behavior of M�������E�A� might seem mysterious at �rst as the running time increases
sharply until d = 4 and then suddenly drops almost matching the greedy runtime. To explain this
behavior, we recall how the preprocessing step of M�������E�A� works. It samples 100 graphs
from the distribution speci�ed by the type graph and solves each of the samples optimally. Thus,
the runtime depends not only on the density of the edges, but also on how easy it is to solve a
sample optimally. The runtime plot suggests that the case d = 4 is the hardest to solve optimally
(among integral d). Clearly, as d increases, it becomes easier and easier to �nd a perfect matching
in the samples. This leads to a faster runtime when d > 4. Of course, we applied a simpli�cation
where we �xed the number of samples used byM�������E�A� in the preprocessing stage to be
100. In practice, one would have to adjust the number of samples with the density of the graph
with denser type graphs requiring far more samples. Thus, one would expect the run time of
M�������E�A� to scale much worse than what is suggested by our �gure. So far, our plot suggests
that the runtimes of simple greedy-like algorithms scale linearly with the number of edges, while
the runtimes of other more complicated algorithms scale like small polynomials. When it comes
to the last complicated algorithm, B������E�A�, the runtime scales exponentially with d . The
runtime of B������E�A� is dominated by the part of the preprocessing stage that corresponds

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

Experimental Study of Online Bipartite Matching Algorithms 35

to solving the LP. The number of constraints in the LP of B������E�A� is asymptotically larger
than the number of edges (assuming |V | = o(|E |)). More speci�cally, let e(r) denote the number of
edges incident on a node r 2 R in the given type graph. The number of constraints in the LP of
B������E�A� is at least

Õ
r 2R e(r)2 � |E |2/n (by Cauchy-Schwarz). Using the simplex method from

the GNU Linear Programming Toolkit even with moderately dense graphs (e.g., d = 100) already
results in excessive runtimes and in memory consumption of over 6GB. One could potentially try to
optimize this step, possibly applying interior-point methods to very large instances and designing
new heuristics to speed up this computation. We suspect that such e�orts would not be worth it; it
does not seem feasible to run B������E�A� on very large instances (e.g., number of edges on the
order of tens of millions) and furthermore simpler methods either match or surpass its performance
in terms of the competitive ratio on many instances that we consider in this study.

5 DISCUSSION
As seen in Figure 9, in the Erdős-Rényi family of graphs, all algorithms exhibit somewhat similar
performance. All algorithms perform much better than their theoretical worst-case guarantees.
This is expected because of the randomness in the input. Figures 10-14 showcase the experimental
competitive ratios of each algorithm along with its greedy version, S�����G�����, and C��������
A����� (2-Pass). All algorithms seem to follow similar trends. More speci�cally, the non-greedy
versions show a drop in performance as c increases. This is to be expected since non-greedy
algorithms ignore a certain fraction of the input while the o�ine optimum increases when the
graph is getting denser. Greedy algorithms always perform close to optimumwhen the graph is very
sparse or very dense and this behavior is evident as the greedy versions achieve a global minimum
around c = 4.9. For a theoretical explanation of this behavior see [22] and [5]. Figures 15-17 show an
experimental ranking of the algorithms before, around, and after the global minimum respectively.
What stands out the most is that even the simplest greedy algorithms, S�����G�����, R������,
M��D����� and K���S�����, always outperform the more sophisticated non-greedy algorithms
that make use of the type graph, while the greedy versions of the latter perform only slightly better
than simple greedy ones. Interestingly, C��������A����� is always the best performing algorithm,
while M��D����� is the best performing purely online algorithm on very dense graphs (c = 14.9).
For c = 14.9 the experimental ranking of the non-greedy algorithms is consistent with table 1. For
c = 1.9 and c = 4.9 B������K������� is the best and worst non-greedy algorithm respectively,
while in both cases J������L� is doing slightly better than B������E�A�. It’s worth noting that the
proven competitive ratios of J������L� and B������E�A� only di�er by 0.0006 and the number of
simulations required to achieve a low enough error margin is beyond our computational resources.
We also note that 3�P��� is always guaranteed to perform at least as well as C��������A�����, but
sometimes our plots list C��������A����� above 3�P���. In these instances, the two algorithms
gave identical performance, and the plot generating procedure broke ties in favour of C��������
A�����. In all our experiments 3�P��� was either identical to C��������A����� or gave minuscule
improvements. This is explained by an already impressive performance of C��������A�����.
When the instance graph has a near-perfect matching, one can expect the �rst and second pass
to cover almost all o�ine nodes. The third pass di�ers from the �rst two only in its behavior on
the nodes that were not matched in either of the �rst two passes. If the �rst two passes already
cover all or almost all nodes, then the third pass doesn’t actually do anything, and this is what we
observed.

The Random Regular family of graphs paints a similar picture. The results are almost identical
for Left Regular and Right Regular, so we only present the former. The performance of all non-greedy
algorithms is depicted in Figure 18. The main di�erence compared to the Erdős-Rényi family is that
the algorithms converge a bit faster as the graph gets denser. The results of non-greedy F������

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

36 Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov

algorithm compared to its greedy version and other greedy algorithms are shown in Figure 19.
Other non-greedy algorithms exhibit similar behavior. We see that the greedy algorithms achieve
a global minimum around d = 5 and that there seems to be a slightly bigger gap between the
non-greedy algorithms and their greedy versions than in the Erdős-Rényi experiment. As seen
in Figures 20-22, for d = 5 and d = 30, the ranking of the non-greedy algorithms agrees with
their respective theoretical guarantees, while for d = 2 B������K������� performs the best, and
B������E�A� is second worst after F������E�A�. Simple greedy algorithms are consistently
better than all non-greedy algorithms, while greedy algorithms that use information from the
type graph perform marginally better than simple greedy ones on sparser graphs. Interestingly,
M��D����� quickly becomes the best performing online algorithm, even for d = 5.
For the Molloy-Reed family of graphs, Figures 23, 24 show the performance of non-greedy

algorithms as functions of � and �, respectively. The behavior of all algorithms is again very similar.
We can see that as � increases, the graph is getting denser, which results in an expected drop in
performance as more nodes that could be included in an optimal matching are being rejected. On
the contrary, as � increases, the graph is getting less dense and the performance increases. In fact,
as shown in the indicative plot of B������K������� (Figure 25), as � increases and the graph
becomes sparse, non-greedy algorithms achieve performance close to that of greedy ones. The
experimental performance-based ranking of algorithms in various settings is shown in Figures
27-30. Simple greedy algorithms consistently outperform non-greedy algorithms but the greedy
versions of algorithms that use the type graph achieve slightly better results (althoughM��D�����
manages to outperform B������E�A�(�) and J������L�(�) in the setting of � = 0.5,� = 41). The
ranking of non-greedy algorithms varies a lot among di�erent parameter settings. As opposed to
other graphs, F������E�A� does not always come last, and it even outperforms B������E�A� in
the setting of (� = 2,� = 96.0).

Results for thePreferentialAttachmentBigraph family (Figures 31-35) agreewith the patterns
observed thus far. The greedy version of only one of the non-greedy algorithms is presented in a
plot (Figure 32), and the rest are similar. Simple greedy algorithms do better than all non-greedy
algorithms but, with the exception of M��D�����, are outperformed by the greedy versions of
algorithms using the type graph. B������K�������(�) is the best performing online algorithm
for the sparse case but afterwards the heuristic algorithmM��D����� climbs to the top. For c = 8.1
and c = 14.9, M�������E�A� is the best non-greedy algorithm, whereas for c = 2.1 it comes
second to B������K�������.

Similar trends appear in the results for stand-alone graphs (Table 3), with algorithms performing
much better than their worst case guarantees. One exception is graph UT, where S�����G�����
is the worst performing algorithm. This is to be expected as that is the worst case graph for that
algorithm. Besides S�����G�����, C��������A����� and 3�P��� algorithms also achieve low
performance on graph UT. On the other hand,M��D����� is the best algorithm for UT, followed by
R������, even though in the adversarial setting this is its worst-case graph for the latter. Moreover,
it seems that 0.78 is an upper bound of all other non-greedy algorithms on UT, indicating that
this graph might be a useful theoretical benchmark. GraphMH is a hard instance that produces
the best known upper bound for the known i.i.d. input model with integral types. All greedy
online algorithms achieve the same, best online performance, while C��������A����� and 3�
P��� result in a substantial improvement. The exceptionally low performance of F������E�A�
on graph FH veri�es it as its worst-case graph. What is also interesting about FH is that the
experimental performance-based ranking of the algorithms is not consistent with the ranking
of Table 1. Speci�cally, the best non-greedy algorithm isM�������E�A� with 0.84, followed by
B������K������� and the remaining algorithms in their usual ordering. Rope seems to be the
easiest class that all algorithms can handle quite well. The worst performance on graph Rope is

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

Experimental Study of Online Bipartite Matching Algorithms 37

0.91 achieved byM�������E�A�. The second easiest graph is Zipf where the worst performing
algorithm is F������E�A� with a competitive ratio of 0.86. On graphs FewG and ManyG, the
ranking of the non-greedy algorithms algorithms based on their performance follows their ranking
based on their worst-case analysis. Overall, ManyG appears to be an easy graph, which might be
due to a quite uniform distribution of edges over the o�ine nodes. Hexa appears to be an instance
of similar hardness toMH. The best performing algorithms get 0.89, only slightly better than the
best performance onMH (0.87), while the worst algorithm (F������E�A� with 0.75) is slightly
worse than the worst performance on MH (0.76). It is also worth noting that the multiple-pass
o�ine algorithms do not result in a performance increase as big as on graph MH.

Overall, the ranking of the non-greedy algorithms as presented in Table 1 remains fairly consistent
in the stand-alone graphs, except for FH and Zipf whereM�������E�A� and B������K�������
take the lead. Additionally, simple greedy algorithms always outperform the non-greedy algorithms
that make use of the type graph, with the former always being slightly better, and with the only
exception being graph UT, where S�����G����� experiences a drop in performance. For most
graphs,M��D����� is in the set of algorithms that achieve the best performance. In just two graphs,
namely UT and Zipf, there exist online algorithms that beat the o�ine multiple-pass algorithms.
As shown in Tables 4 and 5, the performance on real instances is also much better than the

worst-case guarantees, which justi�es looking at random graphs for an indication of real-world
performance. The results using both the random-bipartition method and the duplicating method
are very similar in terms of the experimental performance-based ranking of the algorithms, with
the graphs produced using the random-bipartition method being seemingly easier. The numbers
achieved by R������ and S�����G����� are pretty much identical when random-bipartition is
used, while R������ is signi�cantly better when the duplicating method is used.M��D����� is
the best out of the simple greedy algorithms, but with the exception of dataset mbea�w, there’s
always a greedy version of an algorithm that uses the type graph that performs just as well. In
datasets Caltech36 and Reed98, the ranking of Table 1 is maintained for non-greedy algorithms.
In CE-GN and CE-PG, M�������E�A� and B������K������� outperform the rest. In beause
and mbea�w M�������E�A� is the best algorithm, while in beause using the random-bipartition
method, B������K������� comes a close second, outperforming B������E�A� and J������L�.

The experimental performance-based ranking of the non-greedy algorithms is generally consis-
tent with their provable competitive ratios. B������E�A� and J������L� perform very similarly
and are usually on top, although on some graphs,M�������E�A� and B������K������� can out-
perform the rest. F������E�A� almost always comes last (with a few exceptions, e.g. Molloy-Reed),
but F������E�A�(�) is often one of the best online algorithms.M��D�����, K���S�����, R������
and S�����G����� get excellent results and almost always outperform all non-greedy algorithms.
M��D����� seems to be the most powerful out of the simple greedy algorithms studied here, and
with its heuristic having such a minimal overhead, it is quite impressive. After turning non-greedy
algorithms into greedy algorithms, the ranking of the resulting algorithms is not very predictable.
F������E�A�(�) does quite well and its place in the ranking improves. B������E�A�(�) and
J������L�(�) can drop in rankings and become some of the worst greedy algorithms, while it is not
unsual for B������K�������(�) to become the best. It is not straightforward to predict how an
algorithm will behave after it turns greedy but the transformation appears to be very bene�cial as
the greedy versions signi�cantly outperform non-greedy algorithms. C��������A����� seems to
be a great algorithm to use in streaming models and when dealing with massive datasets. Even
though it can improve substantially over the S�����G����� solution, an additional pass (as done in
3�P���) does not seem to provide much bene�t, as discussed before.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

38 Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov

6 CONCLUSION
In this paper, we experimentally studied various online bipartite matching algorithms under the
known i.i.d. input model with integral types. Type graphs that were used in our evaluations
came from di�erent sources, including random models of social networks, real-life networks, and
stand-alone graphs that appeared previously in matching-related literature. Broadly speaking,
algorithms under consideration can be split into two groups: simple algorithms that do not make
use of the additional information (i.e., the type graph), and more complicated algorithms that often
have a computationally intensive preprocessing step that tries to utilize the type graph for future
predictions. The more complicated algorithms were developed and analyzed by researchers in the
worst-case known i.i.d. setting so as to demonstrate more realistic performance bounds in contrast
to the purely adversarial setting. These algorithms are often presented as being non-greedy to
simplify the analysis. In contrast, most simple algorithms are naturally greedy. It is relatively easy
to convert complicated algorithms into greedy ones without hurting the worst-case performance
guarantee and without any signi�cant computational overhead. Thus, intuitively an algorithm
for online bipartite matching can be viewed as consisting of two parts; namely, the complicated
preprocessing part, and the greedy part. One of the main questions we try to answer in this work is
how much each part is contributing to the competitive ratio on “practical instances,” where practical
instances are modeled by the type graphs discussed above. It turns out that most of the work is done
by the greedy part. In particular, the simple greedy algorithm tends to outperform all non-greedy
versions, sometimes quite signi�cantly. It also tends to perform comparable to the greedy versions
of more complicated algorithms. In certain scenarios, the more complicated algorithms turned
into greedy ones outperform the simple greedy algorithm, although it is questionable whether
the performance boost is worth the extra computational e�ort in practice. In certain cases this
overhead can become computationally intractable in practice (e.g., running B������E�A� on type
graphs with millions of nodes).

There are many problems suggested by our work and many future directions are worth exploring.
We list some of them here:

Open Problem 6.1. We conjecture that a practical study of online bipartite matching under the
known i.i.d. with fractional types would result in very similar results and conclusions to what
we observed with integral types. Does there exist a “practical instance” with fractional types that
highlights the necessity to use more complicated algorithms?

Open Problem 6.2. It is important to perform a similar evaluation on real-life data for online
advertising, which is one of the main applications of online bipartite matching. Such data is
proprietary and is not available to the public. Creating a public repository of such benchmarks
would be a great contribution to the �eld on its own.

Open Problem 6.3. In order to bridge the gap between theory and practice one needs to consider
models other than worst-case. Known i.i.d. was the �rst step in this direction for online bipartite
matching, since worst-case over type graphs allows for much better competitive ratios than worst-
case over adversarial inputs. However, the area does not have to stop at known i.i.d. It is important
to design and analyze new stochastic input models that better match practical inputs for certain
application domains, e.g., online advertising.

Open Problem 6.4. In an attempt at being fair and test all algorithms on the same type graphs,
we were limited to consider graphs with at most 1000 nodes due to prohibitive computational
requirements of B������E�A�. One could perform a study on extremely large instances with
millions or billions of nodes by excluding algorithms with too much preprocessing. We suspect
that results of such a study would be similar to ours, and they would highlight the importance of

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

Experimental Study of Online Bipartite Matching Algorithms 39

using very simple greedy algorithms in large-scale applications. Would any of the complicated
algorithms be able to handle such instances? Would the extra computation be worth it?

Open Problem 6.5. There are many extensions of online bipartite matching, including edge-weighted
matching, vertex-weighted matching, matching with capacity constraints (i.e., the so-called b-
matching), etc. Performing an experimental study similar to the current one for those extensions is
an interesting open problem. Such a study might reveal certain ranges of parameters which make
extensions of the matching problem behave very di�erently from the vanilla matching problem
with respect to the algorithms considered in this paper.

ACKNOWLEDGMENTS
We thank Michael Kapralov for discussing the B������K������� algorithm. Part of this work
was done while the �rst author was at the Toyota Technological Institute at Chicago, and the last
author was a postdoc at the University of Toronto.

We are thankful to the anonymous reviewers who provided a lot of constructive comments that
led to an improved version of the paper. In particular, the M��D����� algorithm in the known
i.i.d. input model that we consider in this paper was inspired by the o�ine M��D����� algorithm,
which was suggested by one of the reviewers. This ended up being an excellent algorithm and we
are thankful to the reviewer for the suggestion.

Research is supported by NSERC.

REFERENCES
[1] GNU linear programming kit, version 4.32. http://www.gnu.org/software/glpk/glpk.html. Accessed: 2018-05-11.
[2] Denis Pankratov Allan Borodin, Christodoulos Karavasilis. Online bipartite matching library. https://users.encs.

concordia.ca/~denisp/online-bm-lib.tar.gz. Accessed: 2018-08-10.
[3] Bahman Bahmani and Michael Kapralov. Improved bounds for online stochastic matching. In Proc. of ESA, pages

170–181, 2010.
[4] Yonatan Bilu and Nathan Linial. Are stable instances easy? Combinatorics, Probability & Computing, 21(5):643–660,

2012.
[5] A. Borodin, C. Karavasilis, and D. Pankratov. Greedy bipartite matching in random type poisson arrival model. In

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2018,
August 20-22, 2018 - Princeton, NJ, USA, pages 5:1–5:15, 2018.

[6] Allan Borodin, Denis Pankratov, and Amirali Salehi-Abari. On conceptually simple algorithms for variants of online
bipartite matching. In Roberto Solis-Oba and Rudolf Fleischer, editors, Approximation and Online Algorithms, pages
253–268. Springer International Publishing, 2018.

[7] Joan Boyar, Lene M. Favrholdt, Christian Kudahl, Kim S. Larsen, and Jesper W. Mikkelsen. Online algorithms with
advice: A survey. ACM Comput. Surv., 50(2):19:1–19:34.

[8] Brian Brubach, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan Xu. New algorithms, better bounds, and a
novel model for online stochastic matching. In Proc. of ESA, pages 24:1–24:16, 2016.

[9] Boris V. Cherkassky, Andrew V. Goldberg, Joao C. Setubal, and Jorge Stol�. Augment or push: a computational study
of bipartite matching and unit-capacity �ow algorithms. Journal of Experimental Algorithmics, 3(8), 1998.

[10] Nikhil R. Devanur, Kamal Jain, and Robert D. Kleinberg. Randomized primal-dual analysis of ranking for online
bipartite matching. In Proc. of SODA, pages 101–107, 2013.

[11] Christoph Dürr, Christian Konrad, and Marc Renault. On the Power of Advice and Randomization for Online Bipartite
Matching. In Proc. of ESA, pages 37:1–37:16, 2016.

[12] Jon Feldman, Aranyak Mehta, Vahab S. Mirrokni, and S. Muthukrishnan. Online stochastic matching: Beating 1-1/e. In
FOCS 2009, pages 117–126, 2009.

[13] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. Dependent rounding and its applica-
tions to approximation algorithms. J. ACM, 53(3):324–360, May 2006.

[14] Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with applications to adwords. In
Proc. of SODA, pages 982–991, 2008.

[15] Patrick Jaillet and Xin Lu. Online stochastic matching: New algorithms with better bounds. Mathematics of Operations
Research, 39(3):624–646, 2014.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

http://www.gnu.org/software/glpk/glpk.html
https://users.encs.concordia.ca/~denisp/online-bm-lib.tar.gz
https://users.encs.concordia.ca/~denisp/online-bm-lib.tar.gz

40 Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov

[16] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite matching. In Proc. of STOC,
pages 352–358, 1990.

[17] Richard M. Karp and Michael Sipser. Maximum matchings in sparse random graphs. In 22nd Annual Symposium on
Foundations of Computer Science, Nashville, Tennessee, USA, 28-30 October 1981, pages 364–375, 1981.

[18] Johannes Langguth, Fredrik Manne, and Peter Sanders. Heuristic initialization for bipartite matching problems. ACM
Journal of Experimental Algorithmics, 15, 2010.

[19] Jacob Magun. Greedy matching algorithms, an experimental study. Journal of Experimental Algorithms, 3, 1998.
[20] Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random arrivals: An approach based on strongly

factor-revealing LPs. In Proc. of STOC, pages 597–606, 2011.
[21] Vahideh H. Manshadi, Shayan Oveis Gharan, and Amin Saberi. Online stochastic matching: Online actions based on

o�ine statistics. In Proc. of SODA, pages 1285–1294, 2011.
[22] A. Mastin and P. Jaillet. Greedy Online Bipartite Matching on Random Graphs. ArXiv e-prints, July 2013.
[23] A. Mehta. Online matching and ad allocation, Theoretical Computer Science, 8(4):265âĂŞ368, 2012.
[24] Molloy Michael and Reed Bruce. A critical point for random graphs with a given degree sequence. Random Structures

& Algorithms, 6(2âĂŘ3):161–180, 1995.
[25] Mark EJ Newman, Duncan J Watts, and Steven H Strogatz. Random graph models of social networks. Proceedings of

the National Academy of Sciences, 99(suppl 1):2566–2572, 2002.
[26] Nicolas Pena and Allan Borodin. On extensions of the deterministic online model for bipartite matching and max-sat.

Theor. Comput. Sci., 770:1–24, 2019.
[27] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics and visualization.

In Proceedings of the Twenty-Ninth AAAI Conference on Arti�cial Intelligence, 2015.
[28] Alvin E. Roth, Tayfun SÃűnmez, and M. Utku ÃĲnver. E�cient kidney exchange: Coincidence of wants in markets

with compatibility-based preferences. American Economic Review, 97(3):828–851, June 2007.
[29] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis: an attempt to explain the behavior of algorithms in

practice. Commun. ACM, 52(10):76–84, 2009.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: September 2019.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Definitions and Notation
	2.2 Known I.I.D. Model and Integral Types
	2.3 Algorithms
	2.4 Conversion to Greedy
	2.5 Notes on Implementation

	3 Experimental Setup
	3.1 Families of Graphs
	3.2 Stand-Alone Graphs
	3.3 Real-World Data

	4 Experimental Results
	4.1 Erdős-Rényi Experiments
	4.2 Random Left-Regular Experiments
	4.3 Molloy-Reed Experiments
	4.4 Preferential Attachment Bigraph Experiments
	4.5 Stand-Alone Graphs
	4.6 Real-World Instances
	4.7 Running Times

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

