
Online Scheduling Revisited

Rudolf Fleischer1 and Michaela Wahl2

1 University of Waterloo, Department of Computer Science
email: rudolf@uwaterloo.ca

2 Max-Planck-Institut für Informatik, Saarbrücken
email: altherr@mpi-sb.mpg.de

Abstract. We present a new online algorithm, MR, for non-preemptive
scheduling of jobs with known processing times on m identical machines
which beats the best previous algorithm for m ≥ 64. For m → ∞ its
competitive ratio approaches 1 +

√
1+ln 2

2
< 1.9201.

1 Introduction

Scheduling problems are of great practical interest. However, even some of the
simplest variants of the problem are not fully understood. In this paper, we study
the classical problem of scheduling jobs online on m identical machines without
preemption, i.e., the jobs arrive one at a time with known processing times
and must immediately be scheduled on one of the machines, without knowledge
of what jobs will come afterwards, or how many jobs are still to come. The
goal is to achieve a small makespan which is the total processing time of all
jobs scheduled on the most loaded machine. Since the jobs must be scheduled
online we cannot expect to achieve the minimum makespan whose computation
would require a priori knowledge of all jobs (even then computing the minimum
makespan is difficult, i.e., NP-hard [12]). The quality of an online algorithm is
therefore measured by how close it comes to that optimum [4,10]. It is said to
be c-competitive if its makespan is at most c times the optimal makespan for all
possible job sequences.

Graham [14] showed some 30 years ago that the List algorithm which always
puts the next job on the least loaded machine is exactly (2 − 1

m )-competitive.
Only much later were better algorithms designed. A series of papers improved
the upper bound on the competitive ratio of the online scheduling problem first
to (2− 1

m −εm) [11,5], then to 1.986 for m ≥ 70 [2], then to 1.945 [16], and finally
to 1.923 [1]. On the other hand, the lower bound for the problem was raised in
similarly small steps: From 1.707 for m ≥ 4 [9], to 1.837 for m ≥ 3454 [3], to
1.852 for m ≥ 80 [1], and finally to 1.85358 for m ≥ 80 [13].

Better bounds are known for a few special cases. For m = 2 and m = 3,
the lower bound is (2 − 1

m ) [9], i.e., List is optimal. And for m = 4, a 1.733-
competitive algorithm is known [7]. The best lower bound for randomized al-
gorithms is e

e−1 ≈ 1.58 for large m [6,18], and at least for m ≤ 5 randomized
algorithms can beat the best deterministic lower bound [17]. For scheduling with
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preemption the competitive ratio is exactly e
e−1 for m → ∞ [8]. For more results

on scheduling see the recent survey chapters in [4,10,15].
In this paper we propose another small improvement on the upper bound

of the competitiveness of the online scheduling problem, decreasing it to 1 +√
1+ln 2

2 < 1.9201 for m → ∞. For m ≥ 64 we beat the best previous bound of
1.923 [1]. Our new algorithm, called MR (the authors’ initials), tries to schedule
jobs either on the least loaded machine as long as its load is relatively low, or
on a certain machine with medium-high load if it can safely do this. This is
explained in Section 2. In Sections 3 and 4 we establish the competitiveness of
MR. The proof is quite straightforward and relatively simple (compared to proofs
of previous algorithms). In particular, we give an intuitive explanation for our
choice of the crucial parameters of MR optimizing its performance. And contrary
to the most recent previous papers [1,16] we even derive a closed formula for c.

So far, all proofs for the competitiveness of algorithms beating Graham’s LIST
algorithm make use of three elementary lower bounds on the optimal makespan
(see (C1)-(C3) in Section 3). We conjecture that better upper bounds are possible
if more lower bounds are added to this list (for example one involving the size
of the (2m + 1)th largest job), but currently we do not know how to do this.

2 The Algorithm

We assume that at each time step t = 1, 2, 3, . . . a new job J t with processing
time pt (also called the size of the job) arrives which must be scheduled online on
one of m identical machines. The current schedule at time t is an assignment of
the first t jobs on the machines. The load of a machine at a given time is the sum
of the sizes of the jobs assigned to it at that time. We assume that the machines
are always ordered by decreasing load, i.e., M t

1 is the machine with the highest
load and M t

m is the machine with the lowest load, after J t was scheduled. The
load of M t

j at time t will be denoted by ltj , 1 ≤ j ≤ m. Thus, lt1 is always the
makespan after the first t jobs have been scheduled. At time t = 0, all machines
have load 0. For j = 1, . . . , m let Dt

j be the average load of machines M t
j , . . . , M

t
m

at time t, i.e., Dt
j = 1

m−j+1 · ∑m
k=j ltk. Let Dt = Dt

1 be the average load of all
machines at time t (which is independent of the current schedule).

Our new algorithm MR is parameterized by the competitive ratio c we hope
to achieve. We show in the next section that MR works well if we choose c ≥
1 +

√
1+ln 2

2 . Let i =
⌈

5c−2c2−1
c · m

⌉
− 1 be a ‘magic’ number which will also

be explained in the next section, and let k = 2i − m. We call MR’s schedule flat
at time t if lt−1

k < 2(c−1)
2c−3 · Dt−1

i+1 , otherwise steep. We say J t is scheduled flatly
(steeply) if MR’s schedule is flat (steep) at time t.

As the worst case example for Graham’s List algorithm shows [14] one should
try to avoid situations were all machines have approximately the same load. So
we try to make flat schedules steeper again by scheduling new jobs on some
medium-loaded machine, if possible. All previous algorithms [11,2,16,1] are based
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on this basic idea, however they differ in their definitions of flatness and medium-
loadedness.

Algorithm MR

Let pt be the size of the next job J t to be scheduled.
If the current schedule is steep or if pt + lt−1

i > c ·Dt then schedule
J t on the smallest machine M t−1

m , else schedule it on M t−1
i .

Note that lt−1
i is the load of the ith machine prior to scheduling J t, and Dt

is the average load of all machines after scheduling J t.

Theorem 1 ((Main theorem)). The competitive ratio of MR approaches 1 +√
1+ln 2

2 < 1.9201 for m → ∞. �	

3 Proof of the Main Theorem

Let c = 1+
√

1+ln 2
2 ≈ 1.9201. Then i ≈ 0.639m, k ≈ 0.278m, and 2(c−1)

2c−3 ≈ 2.19.
The following proof is done under the assumption that m → ∞ but it can
easily be adjusted to finite m, however at the cost of a slightly higher value of
c (Lemmas 8 and 9 are the critical ones). Note that we can therefore ignore the
rounding in the definition of i.

Consider an arbitrary sequence of jobs to be scheduled online. Let tf be the
number of jobs in this sequence. We may assume w.l.o.g. that MR’s makespan
is defined by the machine receiving the last job J tf

. Let a = ptf

be the size of
J tf

and let b be the load of the machine which receives J tf

(not including ptf

).
Then MR’s final makespan is a + b. Let D = Dtf

be the final average load of all
machines. Furthermore, let Pm+1 be the size of the (m + 1)th largest job in the
sequence; if tf ≤ m then Pm+1 = 0.

We know the following three lower bounds for the optimal makespan (the
first two were introduced by Graham [14], the third seems to be first used by
Galambos and Woeginger [11]): D, a, and 2Pm+1. Thus, the following three
inequalities must hold for MR to fail to be c-competitive.

(C1) a + b > c · D ⇔ a > c · D − b
(C2) a + b > c · a ⇔ a < b

c−1

(C3) a + b > c · 2Pm+1

We assume from now that (C1) and (C2) hold. We will show that then (C3)
cannot hold, thus proving the Main Theorem. Since a + b < c

c−1 · b by (C2) it
suffices to show that Pm+1 ≥ d where
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d =
b

2(c − 1)
.

Note that b − d = 2c−3
2(c−1) · b, and the schedule is flat at time t if lt−1

k <
b

b−d · Dt−1
i+1 . We call jobs of size at least d big. We prove Pm+1 ≥ d by showing

that the last job is big and that each machine receives at least one big job before
the last job arrives.

We call a machine full if its current load is at least b, half-full if its current
load is at least b−d but less than b, and half-empty if its current load is less than
b − d. Note that MR does not know whether a machine is full or not before the
end of the sequence. A filling job is a job scheduled on a non-full machine which
is full afterwards, i.e., the job fills the machine. Slightly abusing this term, we
also call the last job a filling job. In the following we are only interested in filling
jobs.

(C1) implies that MR must schedule the last job J tf

on the smallest machine
M tf−1

m . In particular, all machines have load at least b before J tf

is scheduled.
Therefore, there are exactly m + 1 filling jobs, and we prove that each of them
is big. Note that any filling job scheduled on a half-empty machine is big. (C1)
and (C2) together imply

b > (c − 1) · D
justifying the name ‘half-full’ for machines with load at least b− d > (c− 3

2 ) ·D.

Lemma 2. The last job is scheduled flatly.

Proof. Assume the schedule is steep at time tf . Then lt
f−1

k ≥ 2(c−1)
2c−3 · b and

therefore

D ≥ k · 2(c−1)
2c−3 · b + (m − k) · b

m

>
m + k

2c−3

m
· (c − 1) · D

≈ 1.22 · D ,

a contradiction. �	
For j = 1, . . . , m + 1 let tj be the time the jth filling job arrives. And for

j = 1, . . . , m let Dj = D
tj−1
j be the average load of machines M

tj−1
j , . . . , M

tj−1
m

(which are exactly the non-full machines at that time) just prior to filling the
jth machine. Clearly, Di+1 ≤ · · · ≤ Dm < D.

From Lemma 2 we conclude that there is a minimal index s ≤ m such that
J ts+1 , J ts+2 , . . . , J tm+1 are scheduled flatly. If s < i then we choose s = i.

Lemma 3. J ts+1 , J ts+2 , . . . , J tm+1 are big.
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Proof. Consider one of these jobs at time t. Since machine M t−1
i is already full,

J t can only be filling if it is scheduled on M t−1
m . If this machine is half-empty

then J t must be big to fill it. If it is half-full then Dt = D if t = tf , or

Dt ≥ i · lt−1
i + b + (m − i − 1) · (b − d)

m

if t < tf because the first i machines have load at least lt−1
i , one machine just

becomes full, and all other machines are half-full; if t = tf then all machines
have load at least b. But MR will only schedule J t on the smallest machine if

pt > c · Dt − lt−1
i

≥ c · (i+1)·b+(m−i−1)·(b−d)
m − b

= c · b − m−i−1
m · c · d − b

= 2(c − 1)2 · d+ (4c − 2c2 − 1) · d
= d .

The second inequality holds because ci
m − 1 ≈ 0.22 > 0 and lt−1

i ≥ b. �	
Note that in the proof of the lemma in the worst case lt−1

i = b and then our
choice of i = 5c−2c2−1

c · m − 1 is the smallest possible to prove the claim.

Lemma 4. Di+1 < b − d. And if s > i then Ds < b − d. �	
We prove the lemma in the next section and continue with the proof of the

Main Theorem.

Lemma 5. J t1 , J t2 , . . . , J ts are big.

Proof. We show that all these jobs are scheduled on a half-empty machine (and
hence are big). Let u = max{i + 1, s}.

If s > i then J ti+1 , J ti+2 , . . . , J ts are filling jobs and must therefore be sched-
uled on the smallest machine. But that machine is half-empty just before time
ts by Lemma 4, so it is half-empty at any time before ts.

For j = k + 1, . . . , i, the schedule is steep at time tj because

l
tj−1
k ≥ b =

2(c − 1)
2c − 3

· (b − d)
(L4)
>

2(c − 1)
2c − 3

· Di+1 ≥ 2(c − 1)
2c − 3

· Dtj−1
i+1 .

Hence J tk+1 , J tk+2 , . . . , J ti are also scheduled on the smallest machine.
This also implies ltk

i ≤ l
tk+1
i+1 ≤ · · · ≤ l

tk+(m−i)

i+(m−i) = lti
m. For j = 1, . . . , k, J tj is

either scheduled on M
tj−1
i or on M

tj−1
m . But

ltj−1
m ≤ l

tj−1
i ≤ l

tj

i ≤ ltk
i ≤ lti

m ≤ Di+1

(L4)
< b − d

and hence J t1 , J t2 , . . . , J tk are scheduled on a half-empty machine. �	
This concludes the proof of the Main Theorem.
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4 Proof of Lemma 4

Let α = b
D . We first consider the case s = i.

We assume Di+1 ≥ b − d and show that this would imply that all the jobs
J ti+1 , . . . , J tm together already have a higher load than is possible. Therefore
the assumption must be wrong. For j = 1, . . . , m − i let

ωj = α ·
(

c − 1
c

− m − i − 1
2(c − 1)m

)
·
(
1 +

c

m

)j−1

+
α

c
.

We derive the contradiction by first showing that ωj ·D is a lower bound for Dti+j ,
i.e., the average load after scheduling J ti+j , and then showing that ωm−i > 1.

Since s = i, J ti+1 , . . . , J tm are scheduled flatly but are not scheduled on
machine Mi (they are filling jobs). The following observation follows directly
from the definition of MR.

Observation 6. Let b′ be the current load of Mi, let p be the size of the next
job J , and let ω ·D be the average load before scheduling J for some ω ≤ 1. If the
current schedule is flat and J cannot be scheduled on Mi then p > cωD− b′. �	

We even have the stronger bound p > c · (ωD+ p
m )− b′ which would improve

the lower bound on p by a factor of 1
1− c

m
, but under the assumption m → ∞

this factor equals 1.

Lemma 7. Dti+j ≥ ωj · D for j = 1, . . . , m − i.

Proof. We prove the lemma by induction on j. Let ω′
j =

Dti+j

D , for j = 1, . . . , m−
i. The proof of Lemma 3 shows that J ti+1 cannot have size smaller than d, and
the smallest size is only possible if the first i machines are just full prior to
scheduling J ti+1 , i.e., l

ti+1−1
1 = . . . = l

ti+1−1
i = b. After scheduling J ti+1 we have

i + 1 machines of size at least b and m − i − 1 machines of average size at least
b − d. Therefore

ω′
1 ≥ (i+1)·α+(m−i−1)· 2c−3

2(c−1) ·α
m

= α · (2c−3)m+i+1
2(c−1)m

= α ·
(

c−1
c − m−i−1

2(c−1)m

)
· 1 + α

c

= ω1 .

For j > 1, if we assume that l
ti+j−1
i = b = αD then Observation 6 implies

ω′
j ≥ ωj−1 + pti+j

mD

≥ ωj−1 +
cωj−1−α

m

= ωj−1 ·
(
1 + c

m

) − α
m

=
[
α ·

(
c−1

c − m−i−1
2(c−1)m

)
· (1 + c

m

)j−2 + α
c

]
· (1 + c

m

) − α
m

= α ·
(

c−1
c − m−i−1

2(c−1)m

)
· (1 + c

m

)j−1 + α
c

= ωj .
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But is the assumption l
ti+j−1
i = b justified? Observation 6 seems to imply

that the lower bound on the size of the next job is smaller if the load on machine
Mi is higher. However, if we want to decrease the lower bound on the next job
by some ε > 0 then we must first increase the load of Mi to at least b + ε (at
some time prior to time ti+j −1), so the net effect of that action does not lead to
a smaller average load than the lower bound obtained with our assumption. �	
Lemma 8. ωm−i > 1.

Proof. α > c − 1 implies

ωm−i = α ·
(

c−1
c − m−i−1

2(c−1)m

)
· (1 + c

m

)m−i−1 + α
c

= α ·
(

c−1
c − 1− 5c−2c2−1

c

2(c−1)

)
· (1 + c

m

)(1− 5c−2c2−1
c

)
·m

+ α
c

>
(2(c−1)2−(2c2+1−4c))·(1+ c

m )
2c2+1−4c

c
·m

+2(c−1)

2c

= 1 + e2c2+1−4c−2
2c .

For the last equality we used our assumption m → ∞ which implies (1 +
c
m )m = ec. Therefore, ωm−i > 1 if c ≥ 1 +

√
1+ln 2

2 . �	
This concludes the proof of the case s = i for m → ∞. For given finite m we
can easily compute c such that the lemma holds. For example, if m = 64 then
we can choose i = 40, k = 16, and c = 1.9229 < 1.923 which is the best previous
bound [1] (Lemma 9 below is also true with these parameters).

Some tedious analysis shows that if c = 1+
√

1+ln 2
2 then the proof of Lemma 8

works only for i = 5c−2c2−1
c ·m−1. If c is chosen bigger then there is some interval

around this value of i which works fine, and if c is chosen smaller then no value
of i works.

We now consider the case s > i. We assume Ds ≥ b− d and derive the same
contradiction as in the previous case.

Lemma 9. Dts ≥ ωs−i · D.

Proof. Prior to scheduling J ts we have

Dts−1
i+1 ≥ (s − 1− i) · b + (m − s + 1) · (b − d)

m − i
.

Since J ts is scheduled steeply we conclude

Dts

D
≥ k · lts−1

k + (s − k) · b + (m − s) · (b − d)
mD

≥ k · 2(c−1)
2c−3 · (s−1−i)·b+(m−s+1)·(b−d)

m−i + (m − k) · b − (m − s) · d
mD

= α
m ·

(
k · 2(c−1)

2c−3 ·
(
1− m−s+1

2(c−1)(m−i)

)
+ m − k − m−s

2(c−1)

)
.
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We call this term Es. Note that Es is linearly growing in s. On the other
hand, ωs−i is exponentially growing in s. Observing that Ei+1 = ω1 = ωi+1−i

and Em ≥ 1.33 · α > 1.09 · α ≥ wm−i for m → ∞ concludes the proof. �	
Now we can proceed as in the proof of Lemma 7 proving Dts+j ≥ ωs−i+j ·D

for j = 0, . . . , m − s. Note that the steepness condition only affects the load
of the first k machines which never become the ith machine in the worst case
scenario (with minimal load increases) of the proof of Lemma 7. Therefore the
assumption about the size of the ith machine in that proof is still justified. This
concludes the proof of Lemma 4.
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