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Abstract

We give a simple proof showing that the RANKING algorithm introduced by Karp, Vazirani

and Vazirani [1] is 1 − 1

e
competitive for the online bipartite matching problem. Our proof

resembles the proof given by Devanur, Jain and Kleinberg [2], but does not make an explicit

use of linear programming duality; instead, it is based on an economic interpretation of the

matching problem. In our interpretation, one set of vertices represent items that are assigned

prices, and the other set of vertices represent unit-demand buyers that arrive sequentially and

choose their most-demanded items.

1 Problem Statement

Consider a bipartite graph G = (L,R;E), where L = {ℓ1, . . . , ℓn} and R = {r1, . . . , rn} are the left

and right vertices, respectively, and E is the set of edges.

The online bipartite matching problem introduced by Karp, Vazirani and Vazirani [1] is the

following: The graph G is initially unknown. In iteration i, for i = 1, . . . , n, vertex ℓi arrives, along

with its adjacent edges (which are unknown from the outset). The algorithm needs to decide which

neighbor of ℓi (if any) ℓi is matched to; this decision is irrevocable. The objective is to maximize

the cardinality of the obtained matching.

A simple greedy algorithm for this problem matches each arriving vertex with an arbitrary

unmatched neighbour, if available. Every greedy algorithm outputs a maximal matching, hence

has cardinality at least a half of the maximum matching. It is not very difficult to see that this

bound is tight; that is, there exist graphs for which this greedy algorithm cannot achieve more

than half of the maximum matching. It was also shown that a randomized version of the greedy

algorithm, which chooses a currently unmatched neighbor uniformly at random (if one exists) also

has a competitive ratio of 1/2, up to low order terms [1].

In [1], Karp et al. introduced the randomized RANKING algorithm, and proved that it has

a competitive ratio of 1 − 1
e . They also showed that this bound is tight (up to low order terms).

RANKING first chooses a random permutation π over the vertices in R. Upon the arrival of a vertex

1

http://arxiv.org/abs/1804.06637v1


ℓi, RANKING matches ℓi to the highest-ranked (according to π) currently unmatched neighbor of

ℓi.

The analysis in the original paper was quite complicated. Subsequent papers by Goel and

Mehta [3], Birnbaum and Mathieu [4] and Devanur Jain and Kleinberg [2] simplified the analysis

considerably. The proof presented here is based on an economic interpretation of the online bipartite

matching problem. It is similar to the proof of [2], but does not make an explicit use of linear

programming duality.

2 An Economic-Based Analysis of RANKING

Consider the following interpretation of the RANKING algorithm. Given a graph G = (L,R;E),

vertices of R represent items, and vertices of L represent utility maximizing buyers. If (ℓi, rj) ∈ E,

then we say that buyer ℓi is connected to item rj . Every buyer ℓi has a binary unit-demand

valuation, with value 1 to items connected to ℓi and value 0 otherwise.

Before the arrival of buyers, every item rj is assigned a price pj = ewj−1, where wj is a uniformly

random number in [0, 1] (chosen independently for every item). Buyers arrive in arbitrary order.

Every buyer, upon arrival, chooses an item that maximizes her utility, defined as the difference

between her value for the item and the item’s price. This means that every buyer ℓi chooses the

cheapest item she is connected to, which is still available.

We claim that the market process above is equivalent to the RANKING algorithm. To see this,

one needs to show that every buyer purchases the item that is ranked highest among all available

items, according to a preset random permutation. In the market setting, every buyer purchases

the cheapest (currently available) item she is connected to. But since the price of every item is a

strictly monotonically increasing function of wj , which is chosen independently and uniformly at

random, the permutation induced by item prices is a random permutation.

We now proceed to the analysis of the market process.

For each item rj , let revj denote the revenue obtained by rj (i.e., pj if the item was purchased

and 0 otherwise). The utility of buyer ℓi is

utili =

⎧

⎨

⎩

1− pj , if buyer ℓi purchased item rj

0, if buyer ℓi did not purchase any item

Fix some arrival order of the buyers and a price vector p = (p1, . . . , pn), and let T be the set of

the corresponding purchased items. Since every buyer that received an item has value 1, the social

welfare is the cardinality of the obtained matching. The following equation shows that it can also

2



be written as the sum of the buyers’ utilities and the total revenue:

∑

ℓi∈L

utili +
∑

rj∈R

revj =
∑

rj∈T

(1− pj) +
∑

rj∈T

pj =
∑

rj∈T

1 = |T |. (1)

We note that the approach of expressing the welfare as the sum of utilities and revenue has been

used previously in other settings and proved useful [5, 6, 7].

Recall that for weights w := (w1, . . . , wn) we set prices pj = ewj−1. We shall now present the

main claim of the proof.

Claim 2.1. For every order of arrival of the buyers, let wj be chosen uniformly in [0, 1], and let

prices be as above. We have that for all edges (ℓi, rj) ∈ E:

E
w

[utili + revj] ≥ 1−
1

e
.

Before proving Claim 2.1, we show how it is used to prove the competitive ratio of 1 − 1
e . Fix

a maximum matching M∗ and let M be the matching produced by the market process above. It

follows that

E
w

[|M |] = E
w

⎡

⎣

∑

i

utili +
∑

j

revj

⎤

⎦ ≥ E
w

⎡

⎣

∑

(ℓi,rj)∈M∗

utili + revj

⎤

⎦

=
∑

(ℓi,rj)∈M∗

E
w

[utili + revj ] ≥

(

1−
1

e

)

|M∗|,

where the first equality follows from Equation (1), and the last inequality follows from Claim 2.1.

We now proceed to proving Claim 2.1 — thus proving the competitive ratio of RANKING.

Proof of Claim 2.1. Fix some arbitrary order of buyer arrival σ, buyer ℓi item rj such that (ℓi, rj) ∈

E, and let prices p be random prices as above. Consider the market without item rj and let p = ey−1

be the price of the item chosen by buyer ℓi under the same arrival order σ (if ℓi buys nothing, set

p = 1). Then, under order σ, in the market with item rj, we have the two following properties:

1. Item rj is always sold when pj < p. This follows since either (a) some previous buyer bought

item rj , or (b) buyer ℓi prefers item rj over the item chosen by ℓi when rj was unavailable.

2. The utility of buyer ℓi, utili ≥ 1− p. Observe that after reintroducing item rj to the market,

every buyer has the same set of items available to him plus — possibly — one additional

item. This is obviously true for the first incoming buyer, and remains true subsequently since

the introduction of an additional item does never induces a buyer to take an item previously

waived.
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Property (1) above implies that

E
w

[revj ] = E
w

[

pj · 1rj is sold

]

≥ E
w

[

pj · 1pj<p

]

=

∫ y

0
ewj−1dwj = ey−1 −

1

e
= p−

1

e
.

It now follows from property (2) that

E
w

[utili + revj ] ≥ 1− p+ p−
1

e
= 1−

1

e
,

as desired.

Remark 1. Devanur et al. [2] gave an elegant and simple proof of the 1− 1/e bound achieved by

RANKING using primal-dual analysis, where the primal LP represents the matching problem. It

is known that the dual variables can be interpreted as these utili’s and revj’s. Our proof uses a

scaled version of the assignment of the relevant dual variables in [2] as prices for items. The new

interpretation simplifies the proof in two ways. (a) It removes the need to argue about the dual

program and its feasibility. (b) Viewed from the economic perspective, some of the arguments in

[2] are more readily apparent.

Remark 2. Note that the proof Claim 2.1 only uses the random choice of wj , while all other values

can be arbitrary.

Remark 3. While the choices of the buyers, and thus the 1− 1
e bound, hold when prices are just

chosen uniformly at random in [0, 1]1, the proof of Claim 2.1 requires that we use the prices as

specified above. Specifically, consider the lower bound example from [1]. In this instance, the last

buyer to arrive is very unlikely to receive anything (in particular, it must be the case that the price

of the last item is maximal, which happens w.p. 1/n). Claim 2.1 is about all edges, in particular

the edge from the last buyer. As the utility of the last buyer is small, the revenue must compensate,

but the revenue from this item is at most ∼ 1/2 under uniform price distributions.
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