
Tight Bounds for Online Coloring of Basic Graph Classes∗

Susanne Albers† Sebastian Schraink‡

Abstract

We resolve a number of long-standing open problems in online graph coloring. More specifically,

we develop tight lower bounds on the performance of online algorithms for fundamental graph

classes. An important contribution is that our bounds also hold for randomized online algorithms,

for which hardly any results were known. Technically, we construct lower bounds for chordal

graphs. The constructions then allow us to derive results on the performance of randomized online

algorithms for the following further graph classes: trees, planar, bipartite, inductive, bounded-

treewidth and disk graphs. It shows that the best competitive ratio of both deterministic and

randomized online algorithms is Θ(log n), where n is the number of vertices of a graph. Furthermore,

we prove that this guarantee cannot be improved if an online algorithm has a lookahead of size

O(n/ log n) or access to a reordering buffer of size n1−ε, for any 0 < ε ≤ 1. A consequence of our

results is that, for all of the above mentioned graph classes except bipartite graphs, the natural

First Fit coloring algorithm achieves an optimal performance, up to constant factors, among

deterministic and randomized online algorithms.

1 Introduction

Online graph coloring is a classical problem in graph theory and online computation. It has applications

in job scheduling, dynamic storage allocation and resource management in wireless networks [19, 23, 24].

A problem instance is defined by an undirected graph G = (V,E), consisting of a vertex set V and

an edge set E. Let |V | = n. The vertices arrive one by one in a sequence σ = v1, . . . , vn that may

be determined by an adversary. Whenever a new vertex vt arrives, 1 ≤ t ≤ n, its edges to previous

vertices vs with s < t are revealed. An online algorithm A has to immediately assign a feasible color

to vt, i.e. a color that is different from those assigned to the neighbors of vt presented so far. The

goal is to minimize the total number of colors used.

For a graph G, let A(G) be the number of colors used by A. Let χ(G) be the chromatic number

of G, which is the minimum number of colors needed to color G offline. An online algorithm A is

c-competitive if A(G) ≤ c · χ(G) holds for every graph G [25]. If A is a randomized algorithm, then

E[A(G)] is the expected number of colors used by A. The algorithm is c-competitive against oblivious

adversaries if E[A(G)] ≤ c · χ(G) holds for every G [5]. An oblivious adversary, when determining σ,

does not know the outcome of the random choices made by A. We always evaluate randomized online

algorithms against this type of adversary. When considering specific graph classes, for a deterministic

or randomized algorithm, the competitive factor of c must hold for every graph from the given class.

The framework defined above is the standard online one. It is also interesting to explore settings

where an algorithm is given more power. An online algorithm A has lookahead l if, upon the arrival

∗Work supported by the European Research Council, Grant Agreement No. 691672, project APEG.
†Department of Computer Science, Technical University of Munich, Garching, Germany. albers@in.tum.de.
‡Department of Computer Science, Technical University of Munich, Garching, Germany. schraink@in.tum.de.

1

ar
X

iv
:1

70
2.

07
17

2v
2

 [
cs

.D
S]

 3
 J

ul
 2

01
7

of vertex vt, the algorithm also sees the next l vertices vt+1, . . . , vt+l along with their adjacencies to

vertices in {v1, . . . , vt+l}. Alternatively, an algorithm might have a buffer of size b in which vertices

can be stored temporarily. The requirement is that at the end of step t the algorithm must have

colored at least t−b vertices. A buffer is more powerful than lookahead because it allows the algorithm

to partially reorder the input sequence and delay coloring decisions. The value of a buffer has recently

been explored for a variety of online problems, see e.g. [1, 11] and references therein.

Previous work: For general graphs, the competitive ratios are high compared to the trivial upper

bound of n. Lovasz, Saks and Trotter [22] developed a deterministic online algorithm that achieves a

competitive factor of O(n/ log∗ n). Vishwanathan [26] devised a randomized algorithm that attains

a competitiveness of O(n/
√

log n). This bound was improved to O(n/ log n) by Halldorsson [16].

Halldorsson and Szegedy [17] proved that the competitive ratio of any deterministic online algorithm

is Ω(n/ log2 n). This lower bound also holds for randomized algorithms. Moreover, it holds if a

randomized algorithm has a lookahead or a buffer of size O(log2 n) [17].

There has also been considerable research interest in online coloring for various graph classes.

An early and celebrated result proved by Bean [4] in 1976 is that, for trees, every deterministic

online algorithm can be forced to use Ω(log n) colors. The First Fit algorithm colors every tree with

O(log n) colors [15]. The natural strategy First Fit assigns the lowest-numbered feasible color to each

incoming vertex. Since trees have a chromatic number of 2, the best competitive ratio achievable

by deterministic online algorithms is Θ(log n). For bipartite graphs, there also exists a deterministic

online algorithm that uses O(log n) colors [22], implying that the best competitiveness of deterministic

strategies is again Θ(log n). However, First Fit performs poorly, as there are bipartite graphs for

which it requires Ω(n) colors. Kierstead and Trotter [20] proved that, for interval graphs, the best

competitive ratio of deterministic online algorithms is equal to 3.

A paper directly related to our work is by Irani [18]. She examined d-inductive graphs, also

referred to as d-degenerate graphs. They are defined as the graphs which admit a numbering of the

vertices such that each vertex is adjacent to at most d higher-numbered vertices. Every planar graph

is 5-inductive and every chordal graph G is (χ(G) − 1)-inductive. Irani [18] proved that First Fit

colors every d-inductive graph with O(d · log n) colors. Furthermore, for every deterministic online

algorithm A, there exist graphs such that A uses Ω(d · log n) colors [18]. Since d-inductive graphs

have a chromatic number of at most d + 1, the best competitive ratio achieved by deterministic

online algorithms is Ω(log n). For planar graphs a tight bound of Θ(log n) holds because trees are

planar. However, it was an open problem if a tight competitiveness of Θ(log n) holds for general

chordal graphs. In fact, Irani [18] raised the question if, for every deterministic online algorithm A
and every d, there exists a chordal graph with chromatic number d such that A uses Ω(d · log n) colors.

Finally, for d-inductive graphs, Irani [18] analyzed deterministic online algorithms with lookahead l

and showed that the best competitiveness is Θ(min{log n, n/l}). A lower bound of Ω(log log n) on

the competitive ratio of randomized online algorithms for d-inductive graphs was given by Leonardi

and Vitaletti [21].

We address two further graph classes. Downey and McCartin [10] studied online coloring of

bounded treewidth graphs. For an introduction to treewidth see [7]. For any graph of treewidth

d, First Fit uses O(d · log n) colors. This is a consequence of Irani’s work [18] because a graph of

treewidth d is d-inductive [10, 18]. Downey and McCartin [10] showed that, on graphs of treewidth

d, First Fit can be forced to use Ω(d
log(d+1) log n) colors. Last but not least, a disk graph is the

intersection graph of a set of disks in the Euclidean plane. Each vertex represents a disk; two vertices

are adjacent if the two corresponding disks intersect. Online coloring of disk graphs has received

2

quite some attention because it models frequency assignment problems in wireless communication

networks, see [13] for a survey. The best competitiveness achieved by a deterministic online algorithm

is Θ(min{log n, log ρ}), where ρ is the ratio of the largest to smallest disk radius [9, 12]. The result

relies on the common assumption that an online algorithm does not use the disk representation, when

making coloring decisions [9, 12, 13]. It has been repeatedly raised as an open problem if the bound

of Θ(min{log n, log ρ}) can be improved using randomization [9, 12, 13].

Recent work on online graph coloring has studied scenarios where an online algorithm can query

oracle information about future input [8, 6]. Moreover, online coloring of hypergraphs has been

explored [2, 3].

Our Contribution: In this paper we settle the performance of online coloring algorithms

for fundamental and widely studied graph classes. More precisely, we prove lower bounds on the

performance of online algorithms. These bounds match the best upper bounds known in the literature.

An important contribution is that our bounds also hold for randomized online algorithms, for which

very few results were known.

First, in Sections 2 and 3 we investigate chordal graphs. They have been studied extensively, cf.

textbook [27]. We remind the reader that a graph is chordal if every induced cycle with four or more

vertices has a chord. For a chordal graph G, the chromatic number χ(G) is equal to the largest clique

size ω(G). Interval graphs are a subfamily of chordal graphs. Chordal graphs in turn are perfect

graphs, for which the offline coloring, maximum clique and independent set problems can be solved in

polynomial time.

In Section 2 we examine deterministic online coloring algorithms. We prove that, for every

deterministic algorithm A and every integer d ≥ 2, there exists a family of chordal graphs G with

χ(G) = d such that A uses Ω(d · log n) colors. This resolves the open problem raised by Irani [18].

In Section 3 we extend this result to randomized online algorithms. The statement is identical to

the one for deterministic algorithms, except that a randomized online algorithm uses an expected

number of Ω(d · log n) colors. Although the result for randomized algorithms is more general, we give

proofs for both deterministic and randomized policies. Our lower bound construction for deterministic

algorithms exhibits an adversarial strategy for generating worst-case graphs. Given this strategy, we

show how to define a probability distribution on graphs so that Yao’s principle [28] can be applied.

First Fit colors every chordal graph G with χ(G) = d using O(d · log n) colors. Hence, the optimal

competitiveness of deterministic and randomized online algorithms is Θ(log n).

In Section 4 we derive lower bounds for further graph classes, focusing on randomized online

algorithms. For d = 2, our lower bound construction for chordal graphs generates trees. It follows

that, for any randomized online algorithm A, there exists a family of trees such that A needs an

expected number of Ω(log n) colors. This complements the fundamental and early result by Bean [4]

for deterministic algorithms. To the best of our knowledge, no lower bound on the performance

of randomized online coloring algorithms for trees was previously known. Recall that trees have a

chromatic number of 2. Vishwanathan [26] gave a lower bound of Ω(log n) on the expected number of

colors used by randomized online algorithms for graphs of chromatic number 2, i.e. bipartite graphs.

However, the graphs in his construction have cycles. Thus, Vishwanathan’s lower bound does not

apply to trees. Obviously, trees are planar and bipartite. Hence, our result for trees directly implies

that every randomized online algorithm can be forced to use Ω(log n) colors in expectation for graphs

of these two classes. The lower bounds are tight because known deterministic online algorithms color

trees, planar and bipartite graphs with O(log n) colors [15, 18, 22].

Section 4 also addresses inductive and bounded-treewidth graphs. Since every chordal graph

3

G is (χ(G) − 1)-inductive and has treewidth χ(G) − 1, we derive the following results. For every

randomized online algorithm A and every d ≥ 1, there exists a family of d-inductive graphs such that

A uses Ω(d · log n) colors. The same statement holds for graphs of treewidth d. We further show that

the statement also holds for strongly chordal graphs with chromatic number d. A chordal graph is

strongly chordal if every cycle of even length consisting of at least six vertices has an odd chord, i.e.

an edge connecting two vertices that have an odd distance from each other in the cycle [14]. First Fit

colors any d-inductive graph and any graph of treewidth d using O(d · log n) colors. We conclude that,

for all the graph classes considered so far, Θ(log n) is the best competitiveness of deterministic and

randomized online algorithms. Finally, in Section 4 we study disk graphs. We prove that, for d = 2,

every graph of the probability distribution defined in Section 3 translates to a disk graph. We then

show that, for every randomized online algorithm A that does not use the disk representation, there

exists a family of disk graphs forcing A to use an expected number of Ω(min{log n, log ρ}) colors,

where ρ is again the ratio of the largest to smallest disk radius. Hence randomization does not improve

the asymptotic performance of online coloring algorithms for disk graphs, cf. [9, 12, 13].

In Section 5 we explore the settings where an online algorithm has lookahead or is equipped with

a reordering buffer. We show that a lookahead of size O(n/ log n) does not improve the asymptotic

performance of randomized online algorithms. We prove the result for chordal graphs and then derive

analogous results for all the other graph classes. Irani [18] gave a similar result for deterministic

algorithms, considering inductive graphs. As a final result of this paper we demonstrate that a

reordering buffer of size n1−ε, for any 0 < ε ≤ 1, does not yield an improvement in the asymptotic

performance guarantees of deterministic online algorithms. Again, we develop the result for chordal

graphs and derive corollaries for the other graph classes.

Our Proof Technique: We devise a technique for proving lower bounds that is relatively simple;

we view this as a strength of our results. The main idea is to recursively construct trees of cliques,

which in turn form forests. In a recursive step the construction combines forests by adding or not

adding a new clique in a specific way. Our construction resembles the one by Bean [4] but differs in an

important aspect that allows us to obtain lower bounds for randomized algorithms. The construction

by Bean builds a tree Tk, k ∈ N, by joining trees Tj , for j < k, so that any deterministic online

algorithm must use a k-th new color for some vertex of Tk. This vertex then becomes the root of

Tk. An oblivious adversary, playing against a randomized online algorithm, cannot identify with

sufficiently high probability such vertices exhibiting a new color. Instead, our construction maintains

the invariant that the root vertices of each forest use a large number of colors, given any deterministic

online algorithm. For randomized algorithms, a corresponding invariant holds with probability of at

least 1/2.

Convention: Unless otherwise stated, logarithms are base 2.

2 Deterministic online algorithms for chordal graphs

We establish a lower bound on the performance of any deterministic online coloring algorithm.

Theorem 1. Let d ∈ N with d ≥ 2 be arbitrary. For every deterministic online algorithm A and

every n ∈ N with n ≥ 2d2, there exists a n-vertex chordal graph G with chromatic number χ(G) = d

such that A uses Ω(d · log n) colors to color G.

The proof of Theorem 1 relies on Lemma 1, which we prove first.

4

Lemma 1. Let d ∈ N with d ≥ 2 be arbitrary. For every deterministic online algorithm A and

every k ∈ N, there exists a chordal graph Gk having chromatic number χ(Gk) = d and consisting of

nk ≤ d2k vertices such that A is forced to use at least ck ≥ (d− 1)k/4 colors to color Gk.

Proof. We describe how an adversary constructs a chordal graph Gk, k ∈ N. Such a graph is built up

recursively and consists of graphs Gj , where j < k. We assume that d is even. The construction of

Gk can be adapted easily if d is odd; details will be given later. On a high level Gk is a forest, i.e. a

collection of disjoint trees, each having a distinguished root node. In every tree T of Gk, each tree

node represents a clique of size d/2 in Gk. If two tree nodes uT and vT are connected by a tree edge

in T , then any two vertices u ∈ uT and v ∈ vT are connected by an edge in Gk. Hence uT and vT
form a clique of size d in Gk. Since Gk is a forest, it consists of several connected components. One

can add a final vertex and edges in order to connect the various trees; details will be given at the end

of the proof.

We proceed with the concrete construction of Gk, for increasing values of k ∈ N. As mentioned

above, each tree T of Gk has a distinguished root node consisting of d/2 vertices in Gk. Let r(T) be

the set of these d/2 vertices. Moreover, let r(Gk) be the union of these sets r(T), taken over all T of

Gk. We refer to the elements of r(Gk) as the root vertices of Gk. They are important because the

online algorithm A will be forced to use a large number of colors for r(Gk). For any subset V ′ of the

vertices of Gk, let CA(V ′) be the set of colors used by A to color V ′.

The strategy of the adversary to generate a graph Gk is adaptive, i.e. the exact structure of the

graph depends on the coloring decisions of A. Nevertheless, during the bottom-up construction of Gk,

for increasing k ∈ N, the following invariants will be maintained.

(1) Algorithm A uses at least d
4 · k colors for the root vertices of Gk, i.e. |CA (r(Gk))| ≥ d

4 · k.

(2) Gk is a union of connected components, each of which can be represented by a tree T . Each tree

node is a clique of size d/2. Every tree T has a distinguished root node containing a set r(T) of

d/2 root vertices in Gk.

(3) Gk is chordal.

(4) The maximum clique size is ω(Gk) = d.

(5) The number of vertices satisfies nk ≤ d
2 · (2k+1 − 1).

Invariants (3) and (4) together imply that χ(Gk) = ω(Gk) = d holds. In invariant (1) and the

following technical exposition integer values are compared to expressions of the form d
4 · k, which

might not be integer. We remark that the statements, comparisons and calculations hold without

considering the rounded expressions.

Construction of the base graph G1: G1 is a clique of size d. The adversary may present the

corresponding vertices in an arbitrary order. The set of root vertices r(G1) is an arbitrary subset R

of size d/2 of the vertices of G1. The remaining d/2 vertices form a second tree node. The resulting

tree T is depicted in Figure 1. We can easily verify properties (1–5).

(1) Since R = r(G1) is a clique of size d/2, A uses d/2 colors for it, i.e. |CA(r(G1))| ≥ d
4 .

(2) G1 consists of one connected component which represents a tree, as described above and shown in

Figure 1.

(3) G1 is a clique and thus chordal.

(4) The maximum clique size ω(G1) is exactly d.

(5) There holds n1 = d ≤ 3
2 · d = d

2 · (21+1 − 1).

5

R

Figure 1: The tree T representing G1

Rl
1 Rl

s Rr
1 Rr

t

Gl
k−1

Gr
k−1

Figure 2: The general structure of Glk−1 and

Grk−1 restricted to the root vertices

Construction of the graph Gk, k > 1: Assume that the adversary can generate graphs Gj , for

any j < k, satisfying invariants (1–5). The construction of Gk proceeds as follows. First the adversary

recursively generates two independent graphs of type Gk−1, i.e. it twice executes the strategy for

generating a graph Gk−1. Let Glk−1 and Grk−1 be these two graphs. They are created one after the

other. We remark that Glk−1 and Grk−1 need not be identical because A’s coloring decision in one

graph can affect its decisions in the other one.

In the following we focus on the root vertices of Glk−1 and Grk−1. In particular, we consider the

colors used by A. Invariant (1) implies that
∣∣CA(r(Glk−1))

∣∣ ≥ d
4 (k − 1) and

∣∣CA(r(Grk−1))
∣∣ ≥ d

4 (k − 1).

We distinguish two cases depending on the total number of colors used, i.e. the cardinality of

CA(r(Glk−1) ∪ r(Grk−1)). To this end we introduce some notation. Assume that Glk−1 consists of

s connected components, which we number in an arbitrary way. Each component/tree T li has a

distinguished root containing a set r(T li) of d/2 root vertices. We abbreviate Rli = r(T li), 1 ≤ i ≤ s.
Similarly, assume that Grk−1 consists of t connected components. Set r(T rj) is the set of root

vertices in the component T rj . Let Rlj = r(T rj), 1 ≤ j ≤ t. There holds r(Glk−1) =
⋃s
i=1R

l
i and

r(Grk−1) =
⋃t
j=1R

r
j . Figure 2 shows the general structure of Glk−1 and Grk−1 by focusing on the roots.

The left-hand side of the figure depicts Glk−1 as a union of connected components rooted at Rl1, . . . , R
l
s,

respectively. The right-hand side shows Grk−1 as a collection of components rooted at Rr1, . . . , R
r
s.

Case 1: Assume that
∣∣CA(r(Glk−1) ∪ r(Grk−1))

∣∣ ≥ d
4 · k. In this case the adversary defines Gk as

the union of Glk−1 and Grk−1. No further vertices or edges are added. It is easy to verify the five

invariants because Glk−1 and Grk−1 satisfy them by inductive assumption.

(1) The condition of Case 1 ensures |CA(r(Gk))| =
∣∣CA(r(Glk−1) ∪ r(Grk−1))

∣∣ ≥ d
4 · k.

(2) The invariant is satisfied since Gk is the union of Glk and Grk.

(3) Gk is chordal because Glk and Grk are, and no further vertices or edges have been added.

(4) There holds ω(Gk) = d, as ω(Glk−1) = ω(Grk−1) = d.

(5) Let nlk−1 and nrk−1 be the number of vertices in Glk−1 and Grk−1, respectively. There holds

nk = nlk−1 + nrk−1 ≤ 2 · (d2 · (2k − 1)) = d
2 · (2k+1 − 2) ≤ d

2 · (2k+1 − 1). The first inequality follows

because (5) holds for nlk−1 and nrk−1.

Case 2: Next assume that
∣∣CA(r(Glk−1) ∪ r(Grk−1))

∣∣ < d
4 · k. In this case the adversary adds a set

R of d/2 vertices that form a clique. Moreover, for every vertex of R there is an edge to every vertex

in Rli, for i = 1, . . . , s. In other words, every vertex of R has edges to all root vertices of r(Glk−1). The

vertices of R together with their adjacent edges may be presented by the adversary in an arbitrary

order. The resulting structure is depicted in Figure 3. Set R and the connected components of Glk−1
rooted at Rl1, . . . , R

l
s form a single component rooted at R. There is a tree edge between R and every

Rli, 1 ≤ i ≤ s. The newly created component forms a tree rooted at R because the components of

Glk−1 represent trees rooted at Rl1, . . . , R
l
s. Graph Gk is the union of the new component and the

components of Grk−1. The set of root vertices of Gk consists of R and the root vertices of Grk−1.

Formally, r(Gk) = R ∪Rr1 ∪ . . . ,∪Rrt . It remains to verify the five invariants.

6

Rl
1 Rl

s

R

Rr
1 Rr

t

Figure 3: The graph Gk with the new addition of R

(1) We analyze the number of colors that A uses for the root vertices in Gk. In a first step,

among the colors CA(r(Glk−1)) ∪ CA(r(Grk−1)) for the roots of Glk−1 and Grk−1, we upper bound the

number q of colors occurring in CA(r(Grk−1)) only. By assumption
∣∣CA(r(Glk−1)) ∪ CA(r(Grk−1))

∣∣ =∣∣CA(r(Glk−1) ∪ r(Grk−1))
∣∣ < d

4 · k. There holds CA(r(Glk−1)) ≥ d
4(k − 1). We obtain q =∣∣CA(r(Grk−1)) \ CA(r(Glk−1))

∣∣ =
∣∣CA(r(Grk−1)) ∪ CA(r(Glk−1))

∣∣−∣∣CA(r(Glk−1))
∣∣ < d

4 . Next consider the

vertices in R. We upper bound the number of colors from CA(r(Grk−1)) that A can use for R. Observe

that CA(r(Grk−1)) is the disjoint union of CA(r(Glk−1))∩CA(r(Grk−1)) and CA(r(Grk−1)) \ CA(r(Glk−1)).

Every vertex of R is adjacent to every vertex in r(Glk−1). Hence, A cannot apply a color occurring in

CA(r(Grk−1)) ∩ CA(r(Glk−1)) to a vertex in R. Only a color of CA(r(Grk−1)) \ CA(r(Glk−1)) is feasible,

and the latter set has cardinality q < d/4. Since R is a clique of size d/2 algorithm A must use at least

d/2− q > d/4 colors not contained in CA(r(Grk−1)) to color the vertices of R. As r(Gk) = R∪ r(Grk−1),

we conclude |CA(r(Gk))| =
∣∣CA(R ∪ r(Grk−1))

∣∣ =
∣∣CA(r(Grk−1))

∣∣+ ∣∣CA(R) \ CA(r(Grk−1))
∣∣ ≥ d

4 (k− 1) +
d
4 = d

4k.

(2) By construction Gk is a collection of connected components, forming trees rooted at R and

Rr1, . . . , R
r
t , respectively.

(3) In Gk consider a simple cycle C with at least four vertices and assume that at least one vertex is in

R. If three or more vertices of C are in R, then there is a chord because R is a clique. If C contains

one or two vertices of R, then C can visit only one connected component of Glk−1. Suppose that it

visits the one rooted at Rli. Cycle C must contain two vertices of Rli. Each of these two vertices

has an edge to every vertex of R in C. Hence C has a chord. Since Glk−1 and Grk−1, and thus the

components rooted at Rl1, . . . , R
l
s and Rr1, . . . , R

r
t , are chordal, so is Gk.

(4) Set R and each Rli, 1 ≤ i ≤ s, form a clique of size d. The vertices of R are not connected to

any vertices outside Rli, 1 ≤ i ≤ s. Hence no other cliques are formed by the addition of R. Since

ω(Glk−1) = ω(Grk−1) = d it follows ω(Gk) = d.

(5) Again, let nlk−1 and nrk−1 be the number of vertices in Glk−1 and Glk−1. We have nk =

nlk−1 + nrk−1 + d
2 ≤ 2 · (d2 · (2k − 1)) + d

2 = d
2 · (2k+1 − 2) + d

2 = d
2 · (2k+1 − 1).

The construction and analysis of Gk is complete.

Graph Gk consists of several connected components if k > 1. The adversary can create a connected

graph by adding a final vertex vf that has an edge to exactly one root vertex in each of the components.

The resulting graph remains chordal because there is no simple cycle containing vf . By the addition

of vf the maximum clique size does not change. Including vf the total number of vertices is upper

bounded by d
2(2k+1 − 1) + 1 ≤ d2k because d ≥ 2. The lemma follows from invariants (1) and (3–5)

because χ(Gk) = ω(Gk) = d.

We finally address the case that d is odd. In this case the adversary executes the graph construction

described above for parameter d− 1, which is even. In the end when Gk is generated for the desired k,

the adversary adds a final vertex to each base graph G1. This vertex has edges to every other vertex

of the corresponding G1. This increases the maximum clique size from d− 1 to d. The new graph

7

remains chordal. The number of colors used by algorithm A is at at least d−1
4 k. We observe that the

number of base graphs G1 in Gk is 2k−1. Hence, in the extended graph the total number of vertices is

upper bounded by d−1
2 (2k+1 − 1) + 2k−1 ≤ d

2 (2k+1 − 1). If k > 1, the adversary can add a final vertex

to link the various components. Again the lemma follows.

Proof of Theorem 1. Given d and n, let k = blog(n/d)c. There holds k ∈ N because n ≥ 2d2 > 2d.

For every deterministic online algorithm, by Lemma 1, there exists a chordal graph Gk with chromatic

number χ(Gk) = d such that A uses at least ck ≥ (d− 1)k/4 colors. Graph Gk has nk ≤ d2k vertices.

By the choice of k = blog(n/d)c, we have nk ≤ n. To Gk we add n− nk vertices, all of which have

one edge to an arbitrary vertex of Gk. The resulting n-vertex graph remains chordal and χ(G) = d.

Since d ≥ 2, there holds ck ≥ dk/8. We have k ≥ log n− log d− 1. Inequality n ≥ 2d2 is equivalent

to d ≤
√
n/2. Thus, k ≥ log(n/2) − 1/2 · log(n/2) = 1/2 · log(n/2). As n ≥ 2d2 ≥ 4, there holds

log(n/2) ≥ 1/2 · log n. Hence, the number of colors used by A is at least ck ≥ d log n/32.

In Theorem 1 the lower bound on n can be reduced from 2d2 to 2d1+ε, for any 0 < ε < 1. Then

the number of colors used by A is Ω(ε · d · log n).

3 Randomized online algorithms for chordal graphs

We extend the result of Theorem 1 to randomized algorithms against oblivious adversaries.

Theorem 2. Let d ∈ N with d ≥ 2 be arbitrary. For every randomized online algorithm A and every

n ∈ N with n ≥ 12d2, there exists a n-vertex chordal graph G with chromatic number χ(G) = d,

presented by an oblivious adversary, such that the expected number of colors used by A to color G is

Ω(d · log n).

In order to prove Theorem 2 we resort to Yao’s principle [28] and show the following Lemma 2.

Lemma 2. Let d ∈ N with d ≥ 2 be arbitrary. For every k ∈ N, there exists a probability distribution

on a set Gk of chordal graphs with the following properties. For every Gk ∈ Gk, χ(Gk) = d and the

number of vertices is at most d · 12k. The expected number of colors used by any deterministic online

algorithm to color a graph drawn according to the distribution is at least (d− 1)k/8.

Proof. For every k ∈ N we define a set Gk of chordal graphs Gk, each having a chromatic number of d.

Moreover, we specify the order in which the vertices of any Gk ∈ Gk are presented to a deterministic

online algorithm A. The distribution on Gk is the uniform one, i.e. each Gk ∈ Gk is chosen with the

same probability. We assume that d is even. The definition of Gk can be adapted easily if d is odd;

details are given at the end of the proof.

The set Gk is built recursively based on Gk−1. The construction of graphs Gk ∈ Gk is a generalization

of the one presented in the proof of Lemma 1. A major difference is that any Gk ∈ Gk contains twelve

graphs of Gk−1, which are grouped into six pairs. For each pair a clique of size d/2 may or may not

be added. As before, every Gk ∈ Gk is a union of connected components. Each such component can

be represented by a tree with a distinguished root vertex. Every tree vertex is a set of d/2 vertices

forming a clique in Gk. We reuse the notation of the proof of Lemma 1. Given Gk ∈ Gk, for any

component/tree T of Gk, r(T) is the set of d/2 vertices in the root of T . Set r(Gk) is the union of

all r(T), taken over all T of Gk. Finally CA(r(Gk)) is the set of colors used by A for the vertices of

r(Gk).

8

During the recursive construction of Gk, for increasing k ∈ N, the following invariants are

maintained. Compared to the proof of Lemma 1, (1) and (5) differ. Invariant (1) states that, for a

randomly chosen Gk, every deterministic online algorithm needs, with probability greater than 1/2,

at least dk/4 colors for the root vertices r(Gk). Invariant (5) gives an adjusted bound on the size of

any Gk.

(1) If Gk is chosen uniformly at random from Gk, then for any deterministic online algorithm A,

Pr[|CA (r(Gk))| ≥ dk/4] > 1/2. This holds independently of other connected components A might

have already colored.

(2) Every Gk ∈ Gk is a union of connected components, each of which can be represented by a tree T .

Each tree node is a clique of size d/2. Every tree T has a distinguished root containing a set r(T)

of d/2 root vertices in Gk.

(3) Every Gk ∈ Gk is chordal.

(4) For every Gk ∈ Gk, the maximum clique size is ω(Gk) = d.

(5) For every Gk ∈ Gk, the number nk of vertices satisfies nk ≤ d(12k − 1).

Graph set G1: The set only contains G1, the base graph used in the proof of Lemma 1, which

is a clique of size d. The vertices of G1 may be presented in any order to a deterministic online

algorithm. Again, the set r(G1) of root vertices is an arbitrary subset of size d/2 of the vertices of

G1. The remaining d/2 vertices form a second tree node. Every deterministic online algorithm, with

probability 1, needs d/2 colors for r(G1), which implies (1). Invariants (2–4) are obvious. As for (5),

there holds n1 = d ≤ d(12− 1).

Graph set Gk, k > 1: Assume that the set Gk−1 satisfying (1–5) has been constructed. First,

in order to build Gk, all possible 12-tuples of graphs of Gk−1 are formed. In assigning tuple entries,

graphs of Gk−1 are selected with replacement. Hence, a total of |Gk−1|12 tuples are built. For each

tuple, 26 graphs are added to Gk in the following way. Let τ be any fixed tuple. Six graph pairs are

formed. For i = 1, . . . , 6, let Gi,lk−1 and Gi,rk−1 be the graphs in tuple entries 2i− 1 and 2i, respectively.

To the i-th pair a clique Ri of size d/2 may or may not be added. The possible additions, over the six

pairs, can be represented by a bit vector ~b = (b1, . . . , b6). More specifically, given τ and any such bit

vector ~b, a graph Gk is constructed as follows. For i = 1, . . . , 6, a subgraph Gik is generated. If bi = 0,

then Gik is the union of Gi,lk−1 and Gi,rk−1. The set r(Gik) of root vertices is the union of r(Gi,lk) and

r(Gi,rk). If bi = 1, then a clique Ri of size d/2 is added to Gi,lk−1 and Gi,rk−1. Every vertex of Ri has an

edge to every vertex of r(Gi,lk−1). Subgraph Gik consists of the newly created component rooted at

Ri and r(Gi,rk−1), i.e. r(Gik−1) = Ri ∪ r(Gi,rk−1). Graph Gk is the union of the Gik and the set r(Gk) is

the union of the r(Gik), 1 ≤ i ≤ 6. When Gk is presented to A , the subgraphs Gik are revealed one

by one, 1 ≤ i ≤ 6. For each Gik the graphs Gi,lk−1 and Gi,rk−1 are presented recursively. Finally, the

vertices of Ri, if they exist, are shown. It remains to verify the invariants.

(1) Let Gk be a graph drawn uniformly at random from Gk. Consider any subgraph Gik, 1 ≤ i ≤ 6,

containing Gi,lk and Gi,rk . By the construction of Gk, both Gi,lk and Gi,rk represent graphs drawn

uniformly at random from Gk−1. Let A be any deterministic online algorithm. Invariant (1) for k − 1

implies Pr[|CA(r(Gi,lk−1))| ≥ d(k− 1)/4] > 1/2 and Pr[|CA(r(Gi,rk−1))| ≥ d(k− 1)/4] > 1/2. Moreover it

implies Pr[|CA(r(Gi,lk−1))| ≥ d(k − 1)/4 and |CA(r(Gi,rk−1))| ≥ d(k − 1)/4] > 1/4. Let E i be the latter

event that |CA(r(Gi,lk−1))| ≥ d(k − 1)/4 and |CA(r(Gi,rk−1))| ≥ d(k − 1)/4 hold.

9

Assume that E i holds. There are two cases, which correspond to those analyzed in the proof of

Lemma 1. If |CA(r(Gi,lk−1)∪ r(Gi,lk−1))| ≥ dk/4, then |CA(r(Gik))| ≥ dk/4 if Ri is not added to Gi,lk and

Gi,rk , which happens with probability 1/2. On the other hand, if |CA(r(Gi,lk−1)∪r(Gi,rk−1))| < dk/4, then

the addition of Ri ensures that |CA(r(Gik))| ≥ dk/4. Again, Ri is added with probability 1/2. In either

case, given E i, Pr[|CA(r(Gik))| ≥ dk/4] ≥ 1/2. We obtain Pr[|CA(r(Gik))| ≥ dk/4] ≥ Pr[|CA(r(Gik))| ≥
dk/4 | E i] · Pr[E i] ≥ 1

2 · 14 = 1
8 . Equivalently, Pr[|CA(r(Gik))| < dk/4] ≤ 7/8. If |CA(r(Gk))| < dk/4,

then |CA(r(Gik))| < dk/4 must hold true for i = 1, . . . , 6. The latter event occurs with probability at

most (7/8)6. We conclude Pr[|CA(r(Gk))| ≥ dk/4] ≥ 1− (7/8)6 > 1/2. This holds independently of

A’s coloring decisions made in other components.

Invariants (2–4) are immediate, based on the arguments given in the proof of Lemma 1. As for the

number of vertices of any Gk ∈ Gk, we observe that it is upper bounded by 12 ·d · (12k−1−1)+6 ·d/2 <
d · (12k − 1).

If d is odd, the above construction of sets Gk, k ≥ 1, is performed for parameter d − 1. In G1,
graph G1 is extended by a single vertex having edges to all other vertices in G1. Invariant (5) holds

because any graph Gk ∈ Gk contains 12k−1 copies of G1.

The lemma follows from (1) and (3–5). In particular, (1) implies that the expected number of

colors used by any deterministic online algorithm is at least 1/2 · (d− 1)k/4 = (d− 1)k/8.

Proof of Theorem 2. For the given d and n, choose k = blog(n/d)c. In this proof, logarithms are

base 12. There holds k ∈ N, because n ≥ 12d2 > 12d. By Lemma 2, there exists a probability

distribution on a set Gk of chordal graphs with chromatic number d such that the expected number of

colors used by every deterministic online algorithm is at least (d − 1)k/8. The number of vertices

of any graph in Gk is at most d12k. Hence, by the choice of k, it is upper bounded by n. For

every Gk ∈ Gk, we add a suitable number of vertices so that the total number of vertices is equal

to n. Every new vertex has one edge to an arbitrary vertex in the original graph Gk. Hence, there

exists a probability distribution on a set of n-vertex graphs with chromatic number d such that the

expected number of colors used by any deterministic online algorithm is at least (d − 1)k/8. By

Yao’s principle [28], for every randomized online algorithm, there exists an n-vertex chordal graph

G with χ(G) = d such that the expected number of color is ck ≥ (d − 1)k/8 ≥ dk/16. We have

k ≥ log n− log d− 1 = log(n/12)− log d ≥ 1/2 · log(n/12), because 12d2 ≤ n, and hence d ≤
√
n/12.

Since 12d2 ≤ n, we have log(n/12) ≥ 1/3 · log n and thus ck ∈ Ω(d · log n).

Again, in Theorem 2 we can reduce the lower bound on n from 12d2 to 12d1+ε, for any 0 < ε < 1.

The expected number of colors used by A is Ω(ε · d · log n).

4 Further graph classes

Given Theorem 2, we can derive lower bounds on the performance of randomized online coloring

algorithms for other important graph classes.

4.1 Trees, planar, bipartite, d-inductive and bounded-treewidth graphs

Corollary 1. For every randomized online algorithm A and every n ∈ N with n ≥ 48, there exists a

n-vertex tree T , presented by an oblivious adversary, such that the expected number of colors used by

A to color T is Ω(log n).

10

Proof. The corollary follows from Lemma 2 and Theorem 2 because, for d = 2, the constructed graphs

are trees. Every clique of size d/2 added in the construction is a singleton vertex. Indeed, every

constructed graph is a forest whose components can be linked by an additional vertex.

Since trees are planar and bipartite graphs, we obtain the following two corollaries.

Corollary 2. For every randomized online algorithm A and every n ∈ N with n ≥ 48, there exists a

n-vertex planar graph G, presented by an oblivious adversary, such that the expected number of colors

used by A to color G is Ω(log n).

Corollary 3. For every randomized online algorithm A and every n ∈ N with n ≥ 48, there exists

a n-vertex bipartite graph G, presented by an oblivious adversary, such that the expected number of

colors used by A to color G is Ω(log n).

Every chordal graph G is (χ(G)− 1)-inductive and has treewidth ω(G)− 1 = χ(G)− 1 [7]. Hence,

Theorem 2 gives the following two results.

Corollary 4. Let d ∈ N be an arbitrary positive integer. For every randomized online algorithm A
and every n ∈ N with n ≥ 12d2, there exists a n-vertex d-inductive graph G, presented by an oblivious

adversary, such that the expected number of colors used by A to color G is Ω(d · log n).

Corollary 5. Let d ∈ N be an arbitrary positive integer. For every randomized online algorithm

A and every n ∈ N with n ≥ 12d2, there exists a n-vertex graph G of treewidth d, presented by an

oblivious adversary, such that the expected number of colors used by A to color G is Ω(d · log n).

The following corollary gives a result for strongly chordal graphs.

Corollary 6. Let d ∈ N be an arbitrary positive integer. For every randomized online algorithm

A and every n ∈ N with n ≥ 12d2, there exists a n-vertex strongly chordal graph G with chromatic

number χ(G) = d, presented by an oblivious adversary, such that the expected number of colors used

by A to color G is Ω(d · log n).

Proof. We prove that every graph Gk ∈ Gk constructed in Lemma 2 is strongly chordal. The corollary

then immediately follows from Theorem 2. Let N(v) denote the neighborhood of a vertex v in Gk.

For d ≤ 3, Gk does not posses an even cycle and thus Gk is strongly chordal. For d ≥ 4, consider an

even cycle C of length at least six in Gk. We first argue that there must exist two non-consecutive

vertices u and v in C that are part of the same tree node wT . If C visits only one or two tree nodes,

this is obvious, given the length of C. If C visits at least three tree nodes, the desired fact follows

from invariant (2) in Lemma 2, which ensures that each connected component of Gk forms a tree of

tree nodes.

Hence let u and v be two non-consecutive vertices in C belonging to the same tree node wT . As

wT is a clique, {u, v} is an edge in Gk. Moreover N(u)\{v} = N(v)\{u} because, again, wT is a

clique and its vertices are connected to the same vertices that are not part of wT . Consider a neighbor

s of v in C. We differ between two cases. First, if s is also a neighbor of u in C, then there must exist

a neighbor x of u and a neighbor y of v in C because C has length at least six. Therefore, starting

at x, cycle C visits vertices x, u, s, v, y in this order. We have N(u)\{v} = N(v)\{u}, which implies

that {u, y} is an edge in Gk. The distance between u and y in C is three so that {u, y} is an odd

chord of C. On the other hand, if s is not a neighbor of u in C, then {u, s} is an edge in Gk since

N(u)\{v} = N(v)\{u}. Thus {u, s} is a chord of C. Moreover {u, v} is a chord of C because u and

v are non-consecutive in C. We conclude that either {u, v} or {s, u} is an odd chord of C because

distances between vertices u and v and vertices s and u in C differ by exactly one.

11

4.2 Disk graphs

A disk graph is the intersection graph of disks in the Euclidean plane. Every vertex corresponds

to a disk; two vertices are connected by an edge if the respective disks intersect. The following

theorem implies that it is not possible to improve on the performance of deterministic online coloring

algorithms by using randomization. We use the common assumption that when an online algorithm

makes coloring decisions, it does not use the disk representation [9, 12, 13].

Theorem 3. Let A be an arbitrary randomized online algorithm. For every n ∈ N and ρ ∈ R with

min{n, ρ} ≥ 25, there exists a n-vertex disk graph G with chromatic number χ(G) = 2, presented by

an oblivious adversary, in which the ratio of the largest to smallest disk radius is ρ, such that the

expected number of colors used by A is Ω(min{log n, log ρ}).

d∗

ρ

wk

Figure 4: The disk graph Dk

1

1

Figure 5: The disk graph D1

The proof of Theorem 3 relies on the following lemma, which we prove first.

Lemma 3. For every k ∈ N and every ρ ∈ R with ρ > 12k−1, there exists a probability distribution

on a set Dk of disk graphs with the following properties. In every Dk ∈ Dk, the number of vertices

is at most 2 · 12k, the ratio of the largest to smallest disk radius is ρ and χ(Dk) = 2. The expected

number of colors used by every deterministic online algorithm for a graph drawn according to the

distribution is at least k/8.

Proof. We use the graph sets Gk, constructed in Lemma 2, focusing on d = 2. Let k ∈ N be arbitrary.

We show that if ρ > 12k−1, every Gk ∈ Gk with nk vertices translates to a disk graph Dk with nk + 1

vertices in which the ratio of the largest to smallest disk radius is ρ.

Again d = 2. Assume that ρ > 12k−1. Let Gk ∈ Gk be an arbitrary graph. The corresponding

disk graph is constructed in a top-down manner. In a first step we generate a graph Dk in which

disks touch each other but do not intersect. At the end of the construction we slightly increase the

disk radii so as to create intersections among the disks.

First in the construction of Dk a disk d∗ of radius ρ, centered at the origin (0, 0), is placed

in the Euclidean plane. Determine an ε > 0 such that ρ > 12k−1 + ε(12k−1 − 1)12/11. Such

an ε exists because ρ > 12k−1. Disk d∗ has diameter 2ρ. Let Sk be the vertical strip of width

12

wk = 2(12k−1 + ε(12k−1 − 1)12/11) below d∗. The center line of Sk has x-coordinate 0. Figure 4

depicts the arrangement. Since 2ρ > wk, disk d∗ extends past both boundaries of Sk. In Sk a disk

representation of Gk will be placed recursively below d∗. Recall that Gk consists of twelve graphs of

Gk−1 that form six pairs (Gi,lk−1, G
i,r
k−1), 1 ≤ i ≤ 6. To each pair a clique Ri of size d/2 might have

been added. Since d = 2, this clique is a single vertex.

The disk representation of Gk in Sk is as follows. Strip Sk of width wk is divided into twelve

substrips of width wk/12 = 2(12k−2 + ε(12k−1 − 1)/11) each, see again Figure 4. In the m-th substrip

a strip Smk−1 of width wk−1 = wk/12 − 2ε = 2(12k−2 + ε(12k−2 − 1)12/11) is located, 1 ≤ m ≤ 12.

Strip Smk−1 lies in the middle of the m-th substrip so that its left and right boundaries have a distance

of ε from those of the substrip. The strips Smk−1, 1 ≤ m ≤ 12, will host the representations of the

twelve subgraphs of Gk.

Consider any pair (Gi,lk−1, G
i,r
k−1), 1 ≤ i ≤ 6. If Ri is added to the pair, a disk di of radius

rk−1 = wk−1/2 is placed in the odd numbered strip S2i−1
k−1 below d∗. Disk di is positioned so that it

touches d∗. Then a representation of Gi,lk−1 is placed in S2i−1
k−1 below di. Since 2rk = wk, disk di fully

covers S2i−1
k−1 . If Ri is not added to (Gi,lk−1, G

i,r
k−1), a representation of Gi,lk−1 is placed in S2i−1

k−1 below

disk d∗. In any case a representation of Gi,rk−1 is created in the neighboring strip S2i
k−1 below d∗. Since

the left and right boundaries of Smk−1 have a distance of ε from those of the m-th substrip containing

Smk−1, disks and graph representations placed in Smk−1 do not touch or overlap with disks placed in

other strips Shk−1, h 6= m.

In general assume that a graph Gj ∈ Gj , k > j > 2, has to be represented in a strip Sj of width

wj = 2(12j−1 + ε(12j−1 − 1)12/11) below a disk d. The construction proceeds in the same way as

described in the last paragraph for j = k. Strip Sj is divided into twelve substrips, which in turn

contain strips of width wj−1 = 2(12j−2 + ε(12j−2 − 1)12/11). These strips host the subgraphs of Gj .
For each pair of subgraphs for which a new vertex is added, a disk of radius rj−1 = wj−1/2 is placed

so that it touches disk d from below. The top-down construction ends when graphs G1 have to be

placed in a strip of width w1 = 2 below a disk d. Graph G1 is represented by a combination of two

disks of radius 1, see Figure 5. The two disks are placed on top of each other so that the upper one

touches d from below.

Graph Dk is constructed in a top-down manner. However, when presented to an online coloring

algorithm, the vertices are of course revealed bottom-up, with the vertices of graphs representing

G1 revealed first. Disk d∗ in Dk does not correspond to a vertex in Gk. For every other vertex of

Gk, exactly one disk was introduced. Hence, the analysis in the proof of Lemma 2 implies that Dk

contain at most 1 + 2(12k − 1) ≤ 2 · 12k vertices. In Dk the contact points among disks correspond to

edges in Gk. More precisely, any two disks d and d′ touch each other in Dk if and only if the vertices

corresponding to d and d′ are connected by an edge in Gk. It is easy to modify Dk so that the contact

points are replaced by real intersections among the respective disks. Let δ be the minimum distance

of any disks that do not touch each other. The radius of disk d∗ is increased by δ/2. For every other

disk the radius is increased by δ/(2ρ).

Let Dk be the set of all disk graphs generated for any Gk ∈ Gk. Consider the uniform distribution

on Dk. By Lemma 2, if a graph is drawn uniformly at random from Dk, the expected number of

colors used by any deterministic online algorithm is at least k/8.

Proof of Theorem 3. Let k = blog(min{n, ρ}/2)c. Logarithms are base 12. Since min{n, ρ} ≥ 25,

there holds k ∈ N. Moreover, ρ > 12k−1. Consider the set Dk of disk graphs, defined in Lemma 3,

each of which consists of at most 2 ·12k disks. Hence by the choice of k, they consist of at most n disks.

13

To each Dk ∈ Dk with, say, nk disks we add n−nk additional disks. Their radius may be an arbitrary

value between the smallest and the largest disk radius occurring in Dk. Lemma 3, together with

Yao’s principle [28], implies that for every randomized online algorithm there exists an n-vertex disk

graph in which the ratio of the largest to smallest disk radius is ρ such that the expected number of

colors used by A is at least k/8. There holds k ≥ log(min{n, ρ}/2)− 1 = log(min{n, ρ})− log(24) ≥
1/100 · log(min{n, ρ}) because min{n, ρ} ≥ 25. We conclude that k/8 ∈ Ω(min{log n, log ρ}).

5 Lookahead and buffer reordering

We explore the settings where an online algorithm has lookahead or is equipped with a reordering

buffer.

5.1 Lookahead

We first assume that a randomized online coloring algorithm A has lookahead l. Theorem 4 below

shows that, for chordal graphs, a lookahead of size O(n/ log n) leads to no improvement.

Theorem 4. Let d ∈ N and c ∈ R be arbitrary numbers with d ≥ 2 and c ≥ 1. For every randomized

online algorithm A with lookahead l and every n ∈ N with n ≥ max{12d2, d·122c} and l ≤ cn/ log(n/d),

there exists a n-vertex chordal graph G with chromatic number χ(G) = d, presented by an oblivious

adversary, such that the expected number of colors used by A to color G is Ω(1c · d · log n).

Proof. For any l ∈ N, consider the class of deterministic online algorithms with lookahead l. We

refine the graph sets Gk, defined in the proof of Lemma 2, by specifying an order in which vertices

arrive and by extending the individual graphs. Let k ∈ N be arbitrary and Gk ∈ Gk be an any graph.

The vertices of Gk are presented to an online coloring algorithm in phases, based on the subgraphs

Gj ∈ Gj with j < k contained in Gk.

More precisely, at the bottom level Gk contains several instances of G1. The vertices of all the

copies of G1 form a set P1. They are presented first and are part of phase 1. Next Gk contains graphs

G2 ∈ G2. Let P2 be the set of vertices in all instances of G2 ∈ G2 that are not yet contained in P1.

Using the notation of the proof of Lemma 2, the vertices of P2 belong to sets Ri that are added to

graph pairs of G1. In general, let Pj be the set of vertices in instances of Gj ∈ Gj that are not yet

contained in P1 ∪ . . . ∪ Pj−1, 1 < j ≤ k. Graph Gk is presented to an online algorithm A by revealing

the vertices of Pj , for increasing j = 1, . . . , k. The vertex sequence of Pj forms phase j, 1 ≤ j ≤ k.

In order to render A’s lookahead useless, at the end of each phase j, exactly l new dummy vertices

are presented, 1 ≤ j ≤ k. These new vertices can for example be isolated vertices. Alternatively, they

could be combined to form a chain of cliques having size at most d. The new vertices increase the

graph size by no more than kl. When coloring the vertices of Pj , an online algorithm with lookahead l

has no information about vertices of Pj′ , j
′ > j. Let Gk be the set of all extended graphs. Lemma 2

implies that if a graph is drawn uniformly at random from Gk, the expected number of colors used by

any deterministic online algorithm with lookahead is at least (d− 1)k/8.

We conclude that for any k, l ∈ N, there exists a probability distribution on a set Gk of chordal

graphs with the following properties. For every Gk ∈ Gk, χ(Gk) = d and the number of vertices

satisfies nk ≤ d · 12k + kl. The expected number of colors used by any deterministic online algorithm

with lookahead l is at least (d− 1)k/8.

In order to prove the theorem, for d, c and n with the stated properties, choose k = b 2
3c · log(nd)c.

Logarithms are base 12. There holds k ∈ N because n ≥ d·122c. Consider the set Gk of extended graphs

14

defined above. Each graph in Gk has at most d · 12k + kl vertices. We argue that, for l ≤ cn/ log(n/d),

this expression is upper bounded by n. For the chosen k, we have d · 12k ≤ d1/3n2/3 ≤ n/3. The

first inequality holds because c ≥ 1. The second inequality is equivalent to 27 ≤ n/d, which holds for

n ≥ d · 122c. Obviously, if l ≤ cn/ log(n/d), then kl ≤ 2n/3. Hence, as desired, d · 12k + kl ≤ n. To

each graph of Gk we add a suitable number of vertices so that the graph size is exactly n.

Using Yao’s principle we obtain that, for every randomized online algorithm A with lookahead

l, where l ≤ cn/ log(n/d), there exists an n-vertex chordal graph G with χ(G) = d such that

the expected number of colors used by A is at least ck ≥ (d − 1)k/8, which in turn is lower

bounded by dk/16. There holds k ≥ 2/(3c) · log(n/d)− 1 = 2/(3c) · (log(n/d))− (3c/2)). Moreover,

log(n/d) − (3c/2) ≥ (1/4) · log(n/d), for n ≥ d · 122c. Also, log(n/d) ≥ 1/2 · log n, for n ≥ d2. In

conclusion, k ≥ 1/(12c) · log(n) and therefore ck ∈ Ω(1c · d · log(n)).

Based on Theorem 4 we can derive analogous results for all the other graph classes considered

in Section 4. Loosely speaking, a lookahead of size O(n/ log n) is of no help. The next Corollary 7

addresses trees. Exactly the same statement holds for planar and bipartite graphs, respectively. For

brevity, we omit the corresponding corollaries.

Corollary 7. Let c ≥ 1 be an arbitrary real number. For every randomized online algorithm A with

lookahead l and every n ∈ N with n ≥ max{48, 2 · 122c} and l ≤ cn/ log(n/2), there exists a n-vertex

tree G, presented by an oblivious adversary, such that the expected number of colors used by A to

color G is Ω(1c · log n).

For d-inductive graphs, graphs of treewidth d and strongly chordal graphs with chromatic number

d, the formulation of Theorem 4 directly carries over. In fact, the result holds for all integers d ≥ 1.

For disk graphs, Theorems 3 and 4 give the following corollary.

Corollary 8. Let c ∈ R with c ≥ 1 be arbitrary. For every randomized online algorithm A with

lookahead l, every n ∈ N and ρ ∈ R with min{n, ρ} ≥ 2 · 122c and l ≤ cn/ log(n/2), there exists a

n-vertex disk graph G with chromatic number χ(G) = 2, presented by an oblivious adversary, in which

the ratio of the largest to smallest disk radius is ρ, such that the expected number of colors used by A
to color G is Ω(1c · log n).

5.2 Buffer reordering

Next we examine the setting in which a deterministic online coloring algorithm A has a reordering

buffer. We prove that a buffer of size n1−ε, for any 0 < ε ≤ 1, does not improve the asymptotic

performance of the algorithms.

Theorem 5. Let d ∈ N and ε ∈ R be arbitrary numbers with d ≥ 2 and 0 < ε ≤ 1. For every

deterministic online algorithm A having a buffer of size b and every n ∈ N with b ≤ n1−ε and

n ≥ max{2d2, 27/ε}, there exists a n-vertex chordal graph G with chromatic number χ(G) = d such

that the number of colors used by A is Ω(ε · d · log n).

Proof. We extend the adaptive graph construction presented in the proof of Lemma 1 and, as in the

proof of Theorem 4, let the adversary generate a graph in a bottom-up fashion. Given d, ε and n with

the stated properties, let k = blog(n/d)c. The adversary constructs a graph Gk ∈ Gk consisting of

2k−j subgraphs Gj ∈ Gj , for any 1 ≤ j ≤ k. In phase 1, 2k−1 graphs G1 are constructed. As always

each G1 is a clique of size d in which d/2 arbitrary vertices form a set of distinguished root vertices.

15

We assume that d is even and address the case that d is odd at the end of the proof. The vertices of

all the copies of G1 may be presented in an arbitrary order to the deterministic online algorithm A.

In general in phase j, 1 < j ≤ k, the adversary presents the vertices of subgraphs Gj ∈ Gj that have

not been revealed in previous phases.

More specifically, let k′ = b12(k − log(4n1−ε/d))c. There holds k′ ≥ 1: The last inequality is

satisfied if 1
2(log(n/d)− 1− log(4n1−ε/d))− 1 ≥ 1. This inequality in turn is equivalent to n ≥ 27/ε,

which holds true by the choice of n. Consider any phase j, 1 < j ≤ k′. We say that algorithm A
has made progress on a subgraph Gj ∈ Gj if at the end of phase j the algorithm has colored at least

half of the root vertices of Gj . We prove that at the end of every phase j, 1 ≤ j ≤ k′, the following

invariant (1) holds. Invariants (2–5) are as in the proof of Lemma 1.

(1) At the end of phase j, A has made progress on at least 2k−2j subgraphs Gj ∈ Gj . For each of

these subgraphs, |CA (r(Gj))| ≥ d
8j.

For j = 1, the analysis is simple. Suppose that at the end of phase 1 A has made progress on less

than 2k−2 subgraphs G1. Then there exist more than 2k−1 − 2k−2 = 2k−2 graphs G1 for which less

than half of the root vertices have been colored. Thus at the end of phase 1 the buffer must contain

more than d
42k−2 vertices. We observe that for any j with 1 ≤ j ≤ k′, there holds d

42k−2j ≥ n1−ε

because the latter inequality is equivalent to 1
2(k − log(4n1−ε/d)) ≥ j, which is satisfied by the choice

of k′. Since the buffer size is at most n1−ε, A cannot store more than d
42k−2 vertices in the buffer at

the end of phase 1. Hence A must have made progress on at least 2k−2 subgraphs G1. For each of

those subgraphs at least half of the root vertices have been colored, i.e. at least d/4 > d/8 colors have

been used.

Assume that invariant (1) holds for phases 1, . . . , j−1, where j ≤ k′. The adversary takes 2k−2(j−1)

subgraphs Gj−1 ∈ Gj−1 for which A has made progress and |CA (r(Gj−1))| ≥ d
8(j − 1) holds. The

adversary pairs them in an arbitrary way so that 2k−2j+1 graph pairs are formed. Consider any such

pair (Glj−1, G
r
j−1). By inductive assumption |CA(r(Glj−1))| ≥ d

8(j − 1) and |CA(r(Grj−1))| ≥ d
8(j − 1).

If |CA(r(Glj−1) ∪ r(Grj−1))| ≥ d
8j, then the adversary creates a graph Gj that is simply the union of

Glj−1 and Grj−1. No further vertices are added. On the other hand, if |CA(r(Glj−1) ∪ r(Grj−1))| < d
8j,

the adversary creates a graph Gj by adding a clique R of size d/2 to (Glj−1, G
r
j−1). Each vertex of

R has an edge to every vertex of r(Glj−1). As in the proof of Lemma 1 we can show that if A has

colored at least half of the vertices of R, there holds |CA(r(Gj))| ≥ d
8j. Phase j consists of the arrival

of the vertices of R, taken over all the 2k−2j+1 graph pairs for which such a clique is added. Finally,

the adversary takes the subgraphs Gj−1 not combined so far and pairs them in an arbitrary way so as

to create graphs Gj . No further vertices are added.

It remains to verify that invariant (1) holds. Again, consider the 2k−2j+1 graph pairs composed

of subgraphs Gj−1 satisfying invariant (1) for phase j − 1. The adversary has constructed 2k−2j+1

corresponding subgraphs Gj . We argue that at the end of phase j, A has made progress on at least

half of them. Consider any Gj , based on graph pair (Glj−1, G
r
j−1). If no clique has been added, then

A has made progress on Gj , because by inductive assumption A has colored at least half of the root

vertices of Glj−1 and Grj−1. On the other hand, if a clique R had been added and A has not made

progress on Gj , then more than d/4 vertices of R must reside in the buffer at the end of phase j.

Hence, if A had not made progress on more than half of the 2k−2j+1 considered subgraphs Gj , then

more than d
4 · 122k−2j+1 = d

42k−2j vertices must reside in the buffer. This is impossible because, as

verified in the second to last paragraph, d
42k−2j ≥ n1−ε. We obtain that A has made progress on at

least 1
22k−2j+1 = 2k−2j subgraphs Gj . For each of these subgraphs, the potential addition of a clique

16

R ensures that A must use at least d
8j colors for the root vertices.

After phase k′ the formation of graphs Gj , k
′ < j ≤ k is simple. The adversary takes arbitrary

pairs of graphs Gj−1 and combines them to form graphs Gj . No further vertices are added. Finally,

when the generation of a graph Gk consisting of, say, nk vertices is complete, the adversary adds n−nk
vertices to form a final graph G with n vertices. Invariant (1) for j = k′ ensures that A uses at least
d
8k
′ colors. We show that k′ is in Ω(ε · log n). There holds k′ ≥ 1

2(log(n/d)− 1− log(4n1−ε/d))− 1 =
1
2(ε log n− 5) ≥ 1

8ε log n, for n ≥ 27/ε.

Finally, if d is odd, the above graph construction is performed for d− 1. A single vertex is added

to each subgraph G1 to form a graph with clique size d.

Given Theorem 5, we derive analogous results for the other graph classes. Corollary 9 shows a

result for trees. Identical statements hold for planar and bipartite graphs. Again, for brevity, we omit

the corresponding corollaries.

Corollary 9. Let ε ∈ R with 0 < ε ≤ 1 be arbitrary. For every deterministic online algorithm A
having a buffer of size b and every n ∈ N with b ≤ n1−ε and n ≥ 27/ε, there exists a n-vertex tree G

such that the number of colors used by A is Ω(ε · log n).

For d-inductive graphs, graphs of treewidth d and strongly chordal graphs with chromatic number

d, the statement of Theorem 5 directly carries over. In this case it holds for any d ≥ 1. The corollaries

are omitted here. Finally, we give a result for disk graphs.

Corollary 10. Let A be an arbitrary deterministic online algorithm having a buffer of size b and let

ε ∈ R be an arbitrary real number with 0 < ε ≤ 1. For every n ∈ N and ρ ∈ R with b ≤ min{n1−ε, ρ1−ε}
and min{n, ρ} ≥ 27/ε, there exists a n-vertex disk graph G with chromatic number χ(G) = 2, in

which the ratio of the largest to smallest disk radius is ρ, such that the number of colors used by A is

Ω(ε ·min{log n, log ρ}).

Acknowledgments

We thank anonymous referees for their valuable comments.

References

[1] N. Avigdor-Elgrabli and Y. Rabani. An optimal randomized online algorithm for reordering

buffer management. In Proc. 54th Annual IEEE Symposium on Foundations of Computer Science

(FOCS), pages 1–10, 2013.

[2] A. Bar-Noy, P. Cheilaris, S. Olonetsky, and S. Smorodinsky. Online conflict-free colouring for

hypergraphs. Combinatorics, Probability & Computing, 19(4):493–516, 2010.

[3] A. Bar-Noy, P. Cheilaris, and S. Smorodinsky. Deterministic conflict-free coloring for intervals:

From offline to online. ACM Trans. Algorithms, 4(4):44:1–44:18, 2008.

[4] D. Bean. Effective coloration. J. Symbolic Logic, 41(2):469–480, 1976.

[5] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. On the power of randomization

in on-line algorithms. Algorithmica, 11(1):2–14, 1994.

17

[6] M. P. Bianchi, H.-J. Böckenhauer, J. Hromkovic, and L. Keller. Online coloring of bipartite

graphs with and without advice. Algorithmica, 70(1):92–111, 2014.

[7] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11(1-2):1–21, 1993.

[8] E. Burjons, J. Hromkovic, X. Muñoz, and W. Unger. Online graph coloring with advice and

randomized adversary. In Proc. 42nd International Conference on Current Trends in Theory and

Practice of Computer Science (SOFSEM’16), pages 229–240. Springer LNCS 9587, 2016.

[9] I. Caragiannis, A. V. Fishkin, C. Kaklamanis, and E. Papaioannou. A tight bound for online

colouring of disk graphs. Theoretical Computer Science, 384(2):152–160, 2007.

[10] R. G. Downey and C. McCartin. Online promise problems with online width metrics. Journal of

Computer and System Sciences, 73(1):57–72, 2007.

[11] M. Englert, D. Özmen, and M. Westermann. The power of reordering for online minimum

makespan scheduling. SIAM J. Comput., 43(3):1220–1237, 2014.

[12] T. Erlebach and J. Fiala. On-line coloring of geometric intersection graphs. Computational

Geometry, 23(2):243–255, 2002.

[13] T. Erlebach and J. Fiala. Independence and coloring problems on intersection graphs of disks. In

E. Bampis, K. Jansen, and C. Kenyon, editors, Efficient Approximation and Online Algorithms:

Recent Progress on Classical Combinatorial Optimization Problems and New Applications, pages

135–155. Springer LNCS 3484, 2006.

[14] Martin Farber. Characterizations of strongly chordal graphs. Discrete Mathematics, 43(2-3):173–

189, 1983.

[15] A. Gyárfás and J. Lehel. On-line and first fit colorings of graphs. Journal of Graph Theory,

12(2):217–227, 1988.

[16] M. M. Halldórsson. Parallel and on-line graph coloring. J. Algorithms, 23(2):265–280, 1997.

[17] M. M. Halldórsson and M. Szegedy. Lower bounds for on-line graph coloring. Theoretical

Computer Science, 130(1):163–174, 1994.

[18] S. Irani. Coloring inductive graphs on-line. Algorithmica, 11(1):53–72, 1994. Preliminary version

in FOCS’90 .

[19] H. A. Kierstead. Coloring graphs on-line. In A. Fiat and G. J. Woeginger, editors, Online

Algorithms, pages 281–305. Springer LNCS 1442, 1998.

[20] H. A. Kierstead and W. A. Trotter. An extremal problem in recursive combinatorics. Congressus

Numerantium, 33:143–153, 1981.

[21] S. Leonardi and A. Vitaletti. Randomized lower bounds for online path coloring. In Proc. 2nd

International Workshop on Randomization and Approximation Techniques in Computer Science

(RANDOM’98), pages 232–247. Springer LNCS 1518, 1998.

[22] L. Lovász, M. Saks, and W. T. Trotter. An on-line graph coloring algorithm with sublinear

performance ratio. Annals of Discrete Mathematics, 43:319–325, 1989.

18

[23] D. Marx. Graph colouring problems and their applications in scheduling. Periodica Polytechnica,

Electrical Engineering, 48(12):11–16, 2004.

[24] L. Narayanan. Channel assignment and graph multicoloring. Handbook of Wireless Networks

and Mobile Computing, pages 71–94, 2004.

[25] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Commun.

ACM, 28(2):202–208, 1985.

[26] S. Vishwanathan. Randomized online graph coloring. J. Algorithms, 13(4):657–669, 1992.

Preliminary version in FOCS’90 .

[27] D. B. West. Introduction to Graph Theory, 2nd Edition. Pearson, 2001.

[28] A. C. C. Yao. Probabilistic computations: Toward a unified measure of complexity. In Proc.

18th Annual Symposium on Foundations of Computer Science, pages 222–227, 1977.

19

	1 Introduction
	2 Deterministic online algorithms for chordal graphs
	3 Randomized online algorithms for chordal graphs
	4 Further graph classes
	4.1 Trees, planar, bipartite, d-inductive and bounded-treewidth graphs
	4.2 Disk graphs

	5 Lookahead and buffer reordering
	5.1 Lookahead
	5.2 Buffer reordering

