
CSC2421 Topics in Algorithms: Online and
Other Myopic Algorithms

Fall 2019

Allan Borodin

November 13, 2019

1 / 1

Announcements

Today, in the second half of the lecture, I will discuss online
algorithms with stochastic inputs.

In the first half, Kayman will present his reading project on online
algorithm with advice

Next week, Caroline will present her reading project on papers relating
to chapter 6, namely non monotone submodular maximization and
max-sat.

No class on Wednesday, November 27

Final class on Wed, December 4. Greg will present his project on
dynamic algorithms.

2 / 1

Beyond worst case

So far in the course, our discussions have assumed an adversarial input
model. For each of the problems and computational models we have
considered, once we have formulated both a precise definition of an input
item, and a set of all possible input items, an adversary is free to choose a
worst case sequence of input items. There is growing interest within
theoretical computer science to take a less adversarial approach so that the
theory becomes a more accurate reflection of what we experience “in
practice”. There are essentially two ways to go beyond worst case analysis:

Restrict the set of possible input items to a set of items that better
reflect real applications. We have seen this approach, for example,
when we considered restricted classes of graphs in Chapter 5 of the
text. However, this is still done within an adversarial input model.
Assume that the input items are coming from some known or
unknown input distribution. This is, of course, a (or even the most)
common practice in both experimental and theoretical aspects of
science. Note: We considered stochastic inputs when using Yao’s
Principle for proving negative results for randomized algorithms.

3 / 1

The secretary problem and the ROM model

We will begin a discussion of some results in what is commonly called
stochastic optimization as well studied within the field of operations
research. This discussion will be continued in later chapters of the text,
especially when we consider problems directly related to online advertising.

We start our discussion of stochastic input models with the random order
model (ROM) which was arguably first formally articulated with regard to
the famous secretary problem. The secretary problem has an interesting
history as discussed in the Historical Notes for this chapter. Although
often stated in terms of choosing the best secretary, the basic problem
obviously applies to choosing the winning candidate for any position. The
secretary problem is also the starting point for the study of optimal
stopping rules and for more general variants of the secretary problem (e.g.,
selecting a set of candidates subject to some constraint).

4 / 1

The secretary problem

The problem is essentially the online bipartite matching problem when
there are n online nodes and one offline node. The i th online node (i.e.,
the i th candidate) arrives with a value vi and the goal is to choose the
candidate with the highest value.

If the values and order of arrivals is chosen adversarially, then it is nxiot
hard to see that no deterministic or randomized algorithm can have a
constant probability of choosing the winning candidate (having the highest
value). When the values are arbitrary this is equivalent to saying that
there is no constant competitive ratio.

Note that this problem is equivalent to what we called the time-series
problem in chapter 2. But there we analyzed the problem when say we are
given lower L and upper U bounds on the possible values.

5 / 1

The random order model

To get beyond the impossibility result for arbitrary values, we change the
input model and consider the random order model (ROM). In this model,
an adversary selects a set S = {v1, . . . , vn} of n values, and then the input
sequence is {vπ(1), . . . , vπ(n)} for a permutation π : [1, n]→ [1, n] chosen
uniformly at random. The goal now is to maximize the probability (wrt the
the random choice of π) of choosing the best candidate (equivalently,
maximizing the expected competitive ratio).

For stochastic inputs (such as the ROM model) when the distribution is
essentially unknown, a standard idea is to sample some initial sequence of
input items to “learn” information about the distribution. The secretary
algorithm (next slide) is sampling an initial sequence to gain information
about the maximum value in the input sequence.

6 / 1

The secretary algorithm

198 CHAPTER 16. STOCHASTIC INPUTS

Output: i 2 [n]
Objective: To compute i so as to maximize the probability that vi > vj forall j 6= i.

Here we are following the standard formulation of the problem in terms of the probability of
choosing the best candidate. This implies that either the algorithm or the input sequence (or
both) must use randomness. If we can bound this probability to be some constant c > 0, then
it immediately follows that E[vi] � c · OPT where i is the index of the chosen candidate and
OPT = maxj vj . Conversely, given that the values in the input set are arbitrarry, any secretary
algorithm must have probability c of success in order to achieve an expected value of c · OPT . In
the adversarial input model, it is easy to see that no deterministic or randomized algorithm can
achieve probability better than 1

n (or expected value better than 1
nOPT).

Algorithm 33 The Secretary algorithm

procedure secretary
vbest v1

i 2
r n/e
while i  r do . Find the best candidate amongst the first r = n/e candidates

if vi > vbest then
vbest = i

i i + 1
while i  n do . Output next candidate (if any) better than initial best

if vi > vbest then
Halt and return i

The Secretary algorithm is a deterministic algorithm and as noted, no deterministic or random-
ized algorithm for the Secretary problem can achieve a non trivial approximation of the optimal
value in the adversarial input model. Instead, we assume the random order input model (ROM)
that weakens the power of the adversary as follows:.

Definition 16.1.1. In the ROM model, an adversary creates an input set S = {x1, . . . xn} of n
input items. Then “nature” randomly creates the input sequence I = {x⇡(1), . . . , x⇡(n)} by choosing
a permutation ⇡ : [1, n]! [1, n] uniformly at random. Of course we can often consider this to be a
randomized online algorithm if we let the algorithm create the permuation ⇡ but we usually reserve
the terminology of randomized online algorithm to mean just randomized decisions.

In the above description, we are assuming that the objective function (and, in particular,
whether an input-solution is valid) for a problem depends only on the set of inputs and not on
the order in the input sequence. For example, for an online graph problem in the VAM-PH vertex
adjacency model (as defined in Chapter 5), the above definition would not be applicable unless we
also apply the permutation to the names of the vertices.

For stochastic inputs (such as the ROM model) when the distribution is essentially unknown,
a standard idea is to sample some initial sequence of input items to “learn” information about
the distribution. Clearly, in e↵ect the Secretary algorithm is sampling an initial sequence to gain
information about the maximum value in the input sequence.

Theorem 16.1.1. Algorithm 33 selects the best candidate with probability p = 1
e .

Before providing a proof of Theorem 16.1.1, it is instructive to gain some insight into why the
initial “sampling” at r = c·n with 0 < c < 1 will result in a constant probability of success. Consider

Theorem

As n→∞, the secretary algorithm selects the best candidate with
probability 1

e .

7 / 1

Proof of the secretary theorem

It is interesting to ask why an initial “sampling” at r = c · n inputs with
0 < c < 1 will result in a constant probability of success.

Consider the following simple (but limited) combinatorial argument for a
modified secretary algorithm where we use r = n/2 rather than n/e for the
initial sampling. A sufficient condition for this modified algorithm to
output the best candidate is that the second best candidate must occur in
the first half and the best candidate must occur in the second half of the
input sequence. The probability for this to happen is n/2

n ·
n/2
n−1 ≈ 1

4 .

But, of course, this is not a necesary condition. It could, for example, be
that the third best candidate is in the first half of the input sequence and
the best and second best are both in the second half of the input sequence
with the best candidate preceding the second best. Trying to enumerate
all the cases or just estimating probabilities for any given initial sampling
of r = c · n inputs becomes a combinatorial nightmare.

8 / 1

Proof of the secretary theorem continued

We will now see why choosing r = n/e is the right place to stop sampling.
We are interested in an asymptotic result as n→∞. We can assume that
all candidate values are distinct. In the ROM model, for all i , the
maximum value will occur as the i th input with probability 1

n . Since we are
interested in an asymptotic constant result as t →∞, we can ignore the
possibility that the maximum value occurs as the 1st item. The following
is then a necessary and sufficient condition for the algorithm to choose the
correct candidate: :

The best applicant [1, t] is the same as the best applicant in [1, r] for
t ≥ r .

The best applicant occurs in position t + 1.

These conditions are met with probability r
t · 1

n .
Let Er be the event that the algorithm outputs the best candidate for a
given r . It follows then that the probability of outputting the best
candidate for a given r is Pr(Er) = r

n

∑n−1
t=r

1
t .

9 / 1

Continuous analysis to avoid the combinatorial
nightmare

Now here is where we use the continuous analysis. Letting x = limn→∞ r
n

and y = limn→∞ t
n , we have;

Prob(Er) = lim
n→∞

r

n

n−1∑
t=r

n

t

1

n
= x

∫ 1

x

1

y
dy = x ln x

To obtain the optimal choice of r , we differentiate and set
Prob′(Er) = − ln x − 1 = 0 so that x = 1

e and therefore Prob(E(n
e

)) = 1
e .

This is of course only an optimal choice of r in the limit but for sufficiently
large n, it is a very good approximation.

We have left open the question as to whether or not there is a different
type of algorithm (yielding a better probability of success) other than one
than chooses a “stopping rule” r as in the Secretary algorithm.

10 / 1

Optimality of the secretary algorithm

Consider any algorithm for the Secretary problem. The algorithm must at
some point output its choice for the best candidate. That is after seeing
(but not acting on) some r candidates, it eventually outputs candidate
r + 1. Cleary vj > vi for any i ≤ r otherwise the probability of success is
zero. Combined with the analysis of the secretary algorithm, we can
conclude that the secretary algorithm is asymptotically optimal. That is,
we have an oprtimal stopping rule.

Corollary

The scretary algorithm with r = n/e provides the asymptiotically best
approximation for the Secretary prooblem.

11 / 1

Extensions of the basic secretary problem

We again note that the secretary problem is a special case of edge
weighted online bipartite matching when there is only one offline vertex. It
is natural to consider the edge weighted bipartite matching problem in the
ROM model. We know that we cannot do better than the 1

e
approximation ratio, so the question is whether or not we can achieve this
ratio. The following algorithm achieves the optimal ROM bound.

200 CHAPTER 16. STOCHASTIC INPUTS

16.1.1 Extensions of the Basic Secretary Problem

There are a number of extensions of the basic Secretary problem. We will consider two such
extensions. We first note that the Secretary problem is a special case of edge weighted online
bipartite matching when there is only one o✏ine vertex. For our first extension, it is natural to
consider the edge weighted bipartite matching problem in the ROM model. We know that we
cannot do better than the 1

e approximation ratio, so the question is whether or not we can achieve
this ratio. The following algorithm achieves the optimal ROM bound.

Algorithm 34 The Edge-weighted bipartite matching algorithm

procedure weighted matching
. V is the set of o✏ine vertices
. Online vertices u1, . . . , un arrive according to the ROM model
U 0 {u1, . . . , ubn/ec} . U 0 is the current set of online vertices
M ; . M will be the constructed matching
` dn/ee
while `  n do

U 0 U 0 [{u`}
M (`) optimal matching on edge weighted graph with online vertices U 0 and o✏ine

vertices V
if (`, r) 2M (`) and r not yet matched then

M M [{(`, r)}
` ` + 1

Theorem 16.1.3. Algorithm 34 has expected approximation ratio 1
e in the ROM model. More

spefically

E[w(M)] � (
1

e
� 1

n
) · OPT

The proof of Theorem 16.1.3 relies on the following lemma for estimating the expected contri-
bution of each online node u` for ` � dn/ee.

Lemma 16.1.4. Let A` denote the contribution (i.e. the weight added to the solution) of online

vertex u` 2 U for dn/ee  `  n. Then E[A`] � bn/ec
`�1 · OPT

n .

Proof. It is helpful to view the random order of online vertices so that u` is chosen uniformly at
random from U 0. Then, conditioned on r being unmatched thus far, the expected weight E[(u`, r)]
of the edge (u`, r) is

(1) w(M(`))
` where w(M `) is the weighted of the optimal matching on the current set of vertices.

Furthermore, U 0 is a uniformly at random set of size ` chosen from U so that
(2) E[w(M (`)] � `

nOPT . It follows that

E[w(u`, r)] �
OPT

n

The expectation of the above inequality is in terms of the random choice of U 0 and the choice
of ` as the last arrival in U 0.

We now need to consider the randomness in the preceding ` � 1 arrivals to determine the
probability that the intended match r for u` was not already matched. Using the same view that

12 / 1

Statement and proof of the ROM edge weighted
bipartite matching algorithm

Theorem

The Algorithm (due to Kesselheim et al [2013]) has expected
approximation ratio 1

e in the ROM model. More spefically

E[w(M)] ≥ (
1

e
− 1

n
) · OPT

The proof relies on the following lemma for estimating the expected
contribution of each online node u` for ` ≥ dn/ee.

Lemma

Let A` denote the contribution (i.e. the weight added to the solution) of

online vertex u` ∈ U for dn/ee ≤ ` ≤ n. Then E[A`] ≥ bn/ec`−1 · OPT
n .

13 / 1

Proof of the lemma for the edge weighted matching
algorithm

It is helpful to view the random order of online vertices so that u` is
chosen uniformly at random from U ′. Then, conditioned on r being
unmatched thus far,

(1) the expected weight E[(u`, r)] of the edge (u`, r) is w(M(`))
`

where w(M`) is the weight of the optimal matching on the current set of
vertices.
Furthermore, U ′ is a uniformly at random set of size ` chosen from U so
that
(2) E[w(M(`)] ≥ `

nOPT . It follows that

E[w(u`, r)] ≥ OPT
n

The expectation of the above inequality is in terms of the random choice
of U ′ and the choice of ` as the last arrival in U ′.

14 / 1

Proof of the lemma for the edge weighted matching
algorithm continued

We now need to consider the randomness in the preceding `− 1 arrivals to
determine the probability that the intended match r for u` was not already
matched. Using the same view that the last element in any initial input
sequence is being chosen randomly from the initial set of inputs and
independent of the order of the previous elements, the probability that r is
not chosen in the kth iteration (for k = `− 1, `− 2, . . . 1) is k−1

k .

Hence Prob(r is unmatched) when u` arrives is equal to∏`−1
k=dn/ee

k−1
k = dn/ee−1

`−1

s Summarizing, the expected contribution of the `th online vertex is
E[A`] = E[(u`, r)|r is not yet matched] · Prob(r is not yet matched).

Namely E[A`] ≥ bn/ec`−1 · OPT
n as claimed.

15 / 1

Completing the proof of the ROM matching
algorithm

The bound on the competitive ratio is obtained by summing up the
individual contributions E[A`]. That is,

E[w(M)] = E[
n∑
`=1

A(`) ≥
n∑
dn/ee

bn/ec
`− 1

· OPT
n

=
bn/ec
n

n−1∑
bn/ec

OPT

`

This can be simplified to yield the desired bound on E[w(M)] by observing
that
bn/ec

n ≥ (1
e − 1

n) and
∑n−1
bn/ec

1
` ≥ ln(n

bn/ec) ≥ 1

16 / 1

Other extensions of the secretary problem

The matching algorithm is selecting a set of winners; that is, a subset of
the online nodes. Of course, the nodes chosen are subject to a condition,
namely the selected set can be matched to the offline side. This condition
is the defintion of a traversal matroid. Note that this is different than
saying we are selecting a matching as in a set of edges, which is the
intersection of two matroids.

We want to discuss the general problem of selecting (within the ROM
model) a set of elements subject to a matroid condition. Which means we
have to define the concept of a matroid and the resulting generalized
seccrtary problem. There are many equivalent defintions but we will use
what is probably the most often stated defintion.

17 / 1

Matroids

Let U be a set of elements and I be a collection of subsets of U. (U, I) is
a matroid if the following hold:

(Hereditary property) If I ∈ I and I ′ ⊂ I , then I ′ ∈ I.

(Exchange property) If I ′, I ∈ I and |I ′| < |I |, then ∃u ∈ I \ I ′ such
that I ′ ∪ {u} ∈ I.

An hereditary set system (U, I) is any set system satisfying the hereditary
property so that a matroid is an hereditary set system that also satisfies
the exchange property.
The sets I ∈ I are referred to as the independent sets. As we noted, there
are alternative equivalent definitions. In particular, an alternative to the
exchange property is that every maximal independent set has the same
size, and this maximum size is call the rank of the matroid.

18 / 1

Matroid secretary problems

Let (U, I) be a matroid and w : U → R≥0. The matroid secretary
problem is to choose an independent set I ⊆ U in the matroid so as to
maximize

∑
u∈I wu.

As an immediate consequence of the ROM bipartitie matching result, we
obtain a constant competitive ratio 1

e for three secretary problems, namely
choosing a set of candidates so as to maximize the sum of the element
weights for the following matroid constraints.

A uniform matroid; that is, where the independent sets I have
cardinality at most k for some fixed k . Here it is immediate to see
that the rank of such a matroid is the cardinality constraint k .
A partition matroid; that is, there is a partition (U1, . . . ,Um) (for
some m) of the universe U and for each Uj there is a capacity kj ; the
independent sets I are those satisfying |u ∈ Uj ∩ I | ≤ kj . Clearly,
every uniform matroid is a partition matroid.
A transversal matroid; Every partition matroid is a transversal
matroid.

19 / 1

The general matroid secretary problem

Of course, since these particular matroid constraint problems are special
cases of the bipartite matching problem it may be possible to obtain better
constant approximation ratios.

Indeed this is the case for the uniform matroid with cardinality constraint
k for which there is a 1

(1−Ω(
√

1/k)
approximation. Hence for uniform

matroids the approximation ratio limits to 1 as k increases. (Here I am
still using a fraction to indicate the competitive ratio to be consistent with
the original secretary problem.

It is an open problem whether or not there is a constant approximation for
all matroid constraints. Currently, the best known approximation guarantee
for an arbitrary matroid constraint is 1

Ω(log log k) for matroids of rank k.

20 / 1

The Ranking Algorithm in the ROM Model

While the Secretary problem and algorithm seem to be the first explicit use
of the ROM model, it has become an important input model following the
introduction of the Ranking algorithm for the unweighted bipartite
maximimum matching (BMM) problem. The Ranking algorithm can be
viewed as a randomized algorithm in the adversarial input model or
alternatively as a deterministic algorithm in the ROM input model. This
duality in perspectives of the Ranking algorithm can be seen as follows.

Consider an arbitary (i.e. adversarialy created) priority order of the offline
nodes. Let Fixed Rank refer to the deterministic matching of each online
node to the highest (if any) priority available offline node. Fixed Rank has
as asymptotically optimal approximation ratio of 1

2 . Considering Ranking
as a deterministic ROM algorithm, we think of the offline vertices being
ordered arbitarily while nature creates a random order for the online nodes.
Fixed Rank then becomes a deterministic 1− 1

e approximatiom in the
ROM input model. The analysis is exactly the same.

21 / 1

The Ranking Algorithm in the ROM Model
continued
The same duality in perspective holds for the vertex weighted case. That
is, we can think of the offline vertices being unweighted and ordered
arbitrarily and the online vertices ariving in random order, each online
vertex having a weight.

While Ranking is the optimal randomized algorithm in the adversarial
online model, it is an open problem if the dual interpretation as the Fixed
Ranking ROM algorithm is optimal amongst all deterministic ROM
algorithms for BMM. However, using randomization for both the offline
and online vertices does lead to an improved approximation ratio.

Theorem

Consider the Ranking algorithm as a randomized algorithm (i.e., the offline
nodes are randomly ordered) in the ROM input model for the unweighetd
maximum bipartite matching problem. The expected approximation ratio
ρ(Ranking) satisfies the following bounds: .696 ≤ ρ(Ranking) ≤ .727

22 / 1

Stochastic input models

Although most of complexity theory as well as the analysis of algorithms
(as taught in undergraduate CS courses) is based on worst case
complexity, a more traditional approach was to analyze algorithms
assumming that inputs are derived from some distribution. Of course,
trying to define the appropriate distribution is very application specific.
The reality of many current applications is that large amounts of data is
making it more realistic to be able to understand how data is distributed.

It is interesting that an initial argument for competitive analysis (i.e. a
worst case perspective) was that stochastic analysis (especially if in terms
of some naive distribution) did not model real applications. With the
emergence of large amounts of data it now becomes more plausible that
the data can be utilized to better understand the possible distribution that
underlies a given application. Of course, it is a much more general
approach if we can just assume that there is an input distribution without
assuming a specific distribution.

23 / 1

What is the measure of performance when the
inputs are being generated by a distribution

In offline or online computation, we need an analogue for the
approximation ratio (respectively, the competitive ratio). Since we are now
discussing a maximization problem, lets stay with the fractional way to
express the ratio.

Let I be a set (or sequence) of inputs and let D be a distribution, then
the accepted definition for the (distributional) competitive ratio wrt D is

liminfE[OPT (I)]→∞
E[ALG(I)
E[OPT (I)]

Here the expectation is with respect to the distribution. For an online
algorithm, we would have a sequence of distributions D1, . . . ,Dn where
the i th input xi is drawn from Di .

We can refer to this ratio as the distributional competitive ratio noting
that the distributions are chosen by an adversary. In the context of
stochastic inputs it is implied that the competitive ratio means the
distributional competitive ratio.

24 / 1

Online computation and the i.i.d. model

With regard to online computation, there has been a substantial amount
of interest in the i.i.d. independent identically distributed input model. In
this model, each input item is independentally drawn in sequence from
some underlying distribution. The distribution D may be known to the
algorithm (the known i.i.d. model) or unknown (the unknown i.i.d.
model). In either the known or unknown i.i.d. model, it is usually assumed
that independent samples from D can be obtained. The generality in this
model is that D can be an arbitrary distribution.

Of course, there is major assumption of independence whereas in many
applications input items are correlated. In particular, in paging, locality of
reference induces an obvious correlation between consecutive input items
in the input sequence. It might still be argued that the i.i.d. model is
applicable in some applications and in any case can provide useful and
additional insight into the “real” performance of an algorithm, arguably
better than what can be obtained from worst case performance.
Of course, a worst case guarantee is an absolute guarantee that protects
against rare but still possible and potentially problematic instances. 25 / 1

ROM results imply i.i.d. results

The following result might be termed an observation; however, it is a very
basic and useful observation that we will label as a Theorem.

Theorem

Consider any problem P for which the ROM model and i.i.d. models are
applicable. Suppose there is an algorithm A such that A obtains expected
competitive ratio c in the ROM model. Then A achieves expected
competitive ratio at least c in the unknown i.i.d. model. This of course,
implies that A obtains at least that ratio in the known i.i.d. model.

The proof is remarkably simple given how useful is this fact. Consider the
algorithm on problem instances (i.e. multi sets) consisting on n input
items. Partition the input instances into classes, each of size n! such that
the class is made up of the n! ways to permute some set of input items.
Each input sequence in a class occurs with the same probability. Thus
each class becomes an instance of the random order model and hence
algorithm A has competitive ratio at least c on each class. We can then
take the expectation over the different clssses to obtain the desired result.26 / 1

Bipartite matching in the i.i.d. model

For the unweighted bipartite maximum matching (BMM) we just observed
that Ranking ca be viewed as a deterministic algorithm in the ROM model
that achieves expected competitive ratio 1− 1

e . It then follows
immediately that Fixed Rank achieves the same 1− 1

e ratio in the
unknown (and hence also known) i.i.d. model for the BMM problem. It is
currently unknown if there is a better deterministic approximation for the
BMM problem in the ROM model. However, there are significantly better
approximations for both the unweighted (and even edge weighted)
bipartite matching problems in the known i.i.d. model.

For the edge weighted case, the i.i.d. approximations are therefore much
better than what can be achieved in the ROM model since in the ROM
model we know that the ratio 1

e is asymptotical the best we can do.

For the unweighted (or offline vertex weighted) case the known results are
better than what is known for the ROM model so far, we do not know
what is the best possible ROM approximation nor do we know what is the
best i.i.d. approximation.

27 / 1

The known i.i.d. model for the BMM problem

In the known i.i.d. model, an adversary first chooses a type graph
G = (L,R,E) and a distribution p : L→ [0, 1] on the LHS nodes. In this
case, the nodes in L are also referred to as types. The type graph together
with the distribution is given to the algorithm in advance.

In the known i.i.d. model, an actual input instance Ĝ = (L̂,R, Ê) is a
random variable and is generated from G as follows. The right hand side
R is the same in G and Ĝ , but the left-hand-side of Ĝ consists of m i.i.d.
samples from p. Thus, say a given node ˆ̀∈ L̂ has type ` ∈ L, then the
neighbors of ˆ̀ in Ĝ are the same as the neighbors of ` in G . The graph Ĝ
is presented to the algorithm in the vertex arrival model (the order of
vertices is the same as the order in which they were generated).

Note that a particular type ` can be absent altogether or can be repeated
a number of times in Ĝ . We refer to Ĝ as the instance graph.

28 / 1

Known i.i.d. distributions with integral types

A known i.i.d. problem is said to have integral types if the expected
number of times a particular type occurs is integral. We will denote the
number of times type ` occurs in an instance by the random variable Z`.
Then the condition of integral types is that E[Z`] = p(`) ·m ∈ Z.

While the parameters |L|, |R|, and m can all be different, the most
common setting is m = |L|. This assumption together with integral types
implies that without loss of generality one can take p to be the uniform
distribution on L (by duplicating types as necessary). An additional
common assumption is that |L| = |R|. In that case we talk about a single
parameter n = |L| = |R| = m.

The first algorithm to beat the 1− 1/e barrier in the known i.i.d. model is
due to Feldman et al. [2009]. Their algorithm achieved a competitive ratio
of .73. We rushed the explanation of Feldman et al so we will start the
next lecture with this first i.i.d. result for the BMM problem.

29 / 1

