
CSC2421 Topics in Algorithms: Online and
Other Myopic Algorithms

Fall 2019

Allan Borodin

November 6, 2019

1 / 35

Todays agenda

I would like the few people we have doing projects to give us updates
weekly
Anyone want to provide an update today?

I will be going rather quickly over two new topics today and perhaps
expand later.

1 Streaming algorithms
2 Stochastic analysis

2 / 35

The streaming model

In the data stream model, the input is a sequence A of input items
(or input elements) a1, . . . , an which is assumed to be too large to
store in memory. Each ai ∈ U for some universe U with m = |U|. .
We assume that the sequence is generated by an adversary and arrives
online. We usually assume that n is not known.
While the streaming model is similar to the online model in that an
algorithm has no control over the order of arrival of input items, that
is where the similarity ends. While the online setting focuses on
irrevocable immediate decisions for each input arrival, the streaming
setting focuses on the amount of memory required to process the
input.
The space available S(n,m) is some sublinear function. The input
items stream by and one can only store information in space S .
In some applications, a streaming algorithm is only required to
produce an answer after seeing the entire stream, thus “revocable
decisions” are possible provided they can be implemented within the
given space requirements.

3 / 35

The streaming model continued

In other applications, a streaming algorithm may have to frequently output
various statistics about the input stream.

Although time and space complexity are always an algorithmic issue, from
a theoretical perspective, online competitive analysis does not impose any
time and space restrictions. Similarly, streaming algorithms do not impose
any time restrictions (although in practice, the total time or even time per
input item is usually important).

The streaming model is motivated by practical applications. In networking
it is quite common to have throughput around 2.56 terabits per second for
the top of the rack switch. One needs to compute some statistics about
this stream, e.g., the number of distinct IP addresses, skewness of packet
sizes, etc. It is not feasible to store all that information locally and run
some offline algorithm on it, instead the computation has to be performed
with very limited memory compared to the size of the stream.

Similar requirements often arise in experimental physics and astronomy
and other applications. 4 / 35

The streaming model continued

In some papers, space is measured in bits (which is what we will
usually do) and sometimes in words, each word being O(log n) bits.

As stated, It is also desirable that that each input item is processed
efficiently, say log(n) + log(m) time, and perhaps even in time O(1)
(assuming we are counting operations on words as O(1)).

The initial (and primary) work in streaming algorithms is to
approximately compute some function (say a statistic) of the data or
identify some particular item(s) in the data stream.

Lately, the model has been extended to consider “semi-streaming”
algorithms for optimization problems. For example, for a graph
problem such as matching for a graph G = (V ,E), the goal is to
obtain a good approximation using space Õ(|V |) rather than O(|E |).

Most results concern the space required for a one pass algorithm. But
there are results concerning multi-pass algorithms and also results
concerning the tradeoff between the space and number of passes.

5 / 35

A simple deterministic streaming algorithm

Chapter 11 now only contains some positive results concerning streaming
algorithms. We will be adding negative results. Most negative results are
obtained through a beautiful connection between streaming algorithms and
two-party communication protocols.

We will start with a simple deterministic streaming algorithm. The
problem is to find the unique missing item in a set of integers. I have
given this problem just as an exercise without a hint and it is easy to come
up with online and offline and online algorths that are much worse than
what can be obtained by a simple online streaming algorithm.

6 / 35

Finding the missing item

You are given a sequence/stream of integers x1, . . . , xn such that each
xi ∈ {1, 2, . . . , n + 1}. Moreover, you are promised that all the xi are
distinct. This means that exactly one integer in {1, 2, . . . , n + 1} is missing
from {x1, . . . , xn}. Your goal is to find this integer making a single pass
over the sequence and using as little memory as possible.

A trivial solution is to keep an array A of size n + 1 initialized to all zeros.
When xi arrives, you can update the corresponding array entry A[xi]← 1.
After making a single pass over the sequence, you can find the index x of
the array entry that is equal to 0, i.e., A[x] = 0. Then x is the missing
number. This approach requires n bits of memory. We would like to design
an algorithm that uses exponentially fewer bits of memory, i.e., O(log n)
bits.

7 / 35

Missing item continued

A O(log n) space streaming algorithm is easily obtained since the missing
number x can be recovered via the following simple calculation:

x =

(
n+1∑

i=1

i

)
−
(

n∑

i=1

xi

)
=

(n + 1)(n + 2)

2
−
(

n∑

i=1

xi

)
.

The sum S =
∑n

i=1 xi can be computed in a single pass over the sequence
using O(log S) = O(log(n + 1)2) = O(log n) bits of space.

Observe that we cannot have an exact deterministic algorithm using
o(log n) bits of space for this problem. If such an algorithm ALG existed,
then by the pigeonhole principle there would exist two streams with
different missing numbers on which ALG would give the same answer.

8 / 35

Generalizing to k missing elements

Now suppose we are promised a stream A of length n − k whose input
elements consist of a permutation of n − k distinct elements in {1, . . . , n}.
We want to find the missing k elements.

Generalizing the one missing element solution, to the case that there
are k missing elements we can (for example) maintain the sum of j th

powers (1 ≤ j ≤ k) sj =
∑

i∈A(ai)
j = cj(n)−∑i /∈A x ji . Here cj(m) is

the closed form expression for
∑n

i=1 i
j . This results in k equations in

k unknowns using space k2 log n but without an efficient way to
compute the solution.

As far as I know there may not be an efficient small space
deterministic streaming algorithm for this problem.

Using randomization, much more efficient methods are known;
namely, there is a streaming alg with space and time/item
O(k log k log n); it can be shown that Ω(k log(n/k)) space is
necessary.

9 / 35

Frequent items

You are given a sequence/stream of integers x1, . . . , xn such that
xi ∈ {1, 2, . . . ,m}. For this problem we can think of m as being much
smaller than n, so certain values have to repeat. For each
i ∈ {1, 2, . . . ,m}, we define the frequency fi of integer i as the number of
occurrences of i in the stream:

fi = |{j : xj = i}|.
Fix an additional parameter k ∈ N such that k ≥ 2. We say that an
integer i is k-frequent if fi > n/k . The goal is to identify all k-frequent
integers by making a single pass over the sequence and using as little
memory as possible. Observe that there can be at most k − 1 frequent
integers. We are interested in an exact, deterministic, one pass algorithm.
Unfortunately, such an algorithm with small memory does not exist, so we
need to relax at least one of the conditions. Instead of requiring the
algorithm to perform a single pass over the stream, we allow the algorithm
to perform 2 passes over the stream.

This problem is also know as the k heavy hitters problem.
10 / 35

The majority element

As a special case, lets first consider the case of k = 2. That is, we are
looking to find (if one exists) an integer i such that fi > n/2; that is a
mahjority element.

There is a temptation to solve this problem by divide and conquer; divide
the sequence in half, find the heavy hitters in each half and then check.

The streaming model fascilitates thinking about a much better solution. In
the case of majority, lets just try to maintain one possible candidate in the
first pass and then check to see if the candidate is a true more than
majority item in the second pass.

11 / 35

The Misra-Gries algorithm

Aside: This is named for David Gries, father of our own Paul Gries.

Maintain a candidate for the majority element and a counter for that
candidate.

When the counter is empty, the next element in the stream becomes the
candidate.

Every time the next element in the stream is the candidate increase the
counter by 1. If the next element is not the candidate decrease the
counter by 1.

Claim: If there is a majority element then it has to be the current
candidate.

We can use a second pass over the elements to check if the candidate
occurs more than n/2 times.

The space used is O(log n + logm) and the time is (log n) (or O(1) if
counting element comparisons) per input element.

12 / 35

Returning to the general k-frequent elements

We generalize the majority algorithm as follows: during the first pass, we
identify a small set of candidates for k-frequent elements. Each k-frequent
element is guaranteed to appear in this set, but not every element in the
set is necessarily a k-frequent element. During the second pass, we
maintain an explicit count of the number of times each candidate appears
in the stream, so we can simply check which of the candidates are actually
k-frequent. Next, we concentrate just on the first pass over the stream.

We present a classical algorithm for this. Since computing fi exactly for all
i requires a lot of space, the main idea behind the algorithm is to estimate
the frequencies fi up to an additive error n/k . That is we wish to compute
f̃i such that

fi − n/k ≤ f̃i ≤ fi .

If we can compute f̃i , then candidates for k-frequent integers can be
identified as those satisfying f̃i > 0. We are aiming for the space bound of
the form O(logm + log n) for constant k .

13 / 35

k-frequent elements continued

The algorithm maintains a counter for at most k − 1 candidates. When a
new integer xi arrives in the stream, it is processed as follows. If xi is
present among the current candidates then the corresponding counter is
incremented. If xi is not present among the keys, we check to see if it can
be added without violating the number of candidates constraint. If it can,
then we add xi to the map and initialize the corresponding counter to 1. If
xi cannot be added to the map, then all the counters corresponding to the
current is decremented by one. If a counter gets down to 0, then the
corresponding element is removed from the current candidates, potentially
making space for new candidates.

14 / 35

The k-frequent element algorithm

11.1. MOTIVATING PUZZLES 181

If a value corresponding to a key gets down to 0 then the corresponding key is removed from the
map, potentially making space for new keys. The high level idea is that the map A maintains
approximate count of the frequencies of most frequent elements seen so far. If a particular element
is not among the keys, but it starts appearing frequently, it will get the value of some key down to
0 and take the position of that key in the map. Formally, we have the following theorem.

Algorithm 31 An algorithm for identifying frequent integers in a stream.

procedure FrequentIntegers
A a map from integers to integers
i 1
while i n do

if xi 2 A.keys() then
A[xi] A[xi] + 1

else if |A.keys()| < k � 1 then
A[xi] 1

else
for x 2 A.keys() do

A[x] A[x]� 1
if A[x] = 0 then

Remove x from A.keys()

for x from 1 to m do
if x 2 A.keys() then

efx A[x]
else

efx 0

Theorem 11.1.1. Algorithm 31 computes efi such that

1. total space used is O(k(log n + log m)), and

2. for each x 2 {1, 2, . . . , m} we have fx � n/k efx fx.

Proof. For the first part of the theorem, note that for each (key, value) pair we have 1 key m
and 0 value n. Thus, each (key, value) pair requires O(log m + log n) bits. Since there are at
most k � 1 di↵erent (key, value) pairs in A at any point during the runtime of the algorithm, the
total space required to store A is O(k(log m + log n)).

For the second part of the theorem, observe that A[x] can be incremented only when xi = x.
This immediately implies that efx fx. To see that efx � fx � n/k, note that a decrement in the
approximate count of any element occurs only when xi 62 A.keys() and |A.keys()| = k � 1. Hence
when this happens, k counts decrease by 1 simultaneously: k� 1 of these come from decrementing
each value in A, and 1 more is the virtual count associated with xi itself, as it can be considered as
an implicit sequence of operations A[xi] 1 followed by A[xi] A[xi] � 1 followed by removing
xi from A.keys(). Thus, for any x each decrement of A[x] can be charged to k distinct elements of
the stream. Since there are n elements in total, the total number of decrements for a fixed x can
be at most n/k. It follows that efx � fx � n/k.

Thus, the set of candidates for elements consists of all those x such that efx > 0, i.e., all the x
appearing in A.keys(). This completes the specification of the first pass.

15 / 35

Analysis of the k frequent algorithm

Theorem

The Algorithm computes f̃i such that

1 total space used is O(k(log n + logm)), and

2 for each x ∈ {1, 2, . . . ,m} we have fx − n/k ≤ f̃x ≤ fx .

The only part of the theorem that requires some explanation is that
fx − n/k ≤ f̃x . To see this, note that a decrement in the approximate
count of any element occurs only when xi 6∈ A.keys() and
|A.keys()| = k − 1. Hence when this happens, k counts decrease by 1
simultaneously: k − 1 of these come from decrementing each value in A,
and 1 more is the virtual count associated with xi itself, as it can be
considered as an implicit sequence of operations A[xi]← 1 followed by
A[xi]← A[xi]− 1 followed by removing xi from A.keys(). Thus, for any x
each decrement of A[x] can be charged to k distinct elements of the
stream. Since there are n elements in total, the total number of
decrements for a fixed x can be at most n/k. It follows that f̃x ≥ fx − n/k.

16 / 35

Approximate Randomized Solutions

We just presented algorithms that use logarithmic space. Moreover, these
algorithms gave exact and correct answers and the algorithms were
deterministic. Problems admitting exact deterministic solutions are
extremely rare in the area of streaming algorithms.

For most streaming problems it is possible to prove that both
approximation and randomness are required for non-trivial algorithms.
This results in two extra parameters ε > 0 and δ > 0 describing a
particular streaming algorithm. The parameter ε bounds the approximation
guarantee, and the parameter δ bounds the probability of failing to achieve
the approximation guarantee.

17 / 35

Approximate randomized solutions continued

We have two definitions for randomized approximations:
Fix ε ≥ 0 and 0 ≤ δ < 1. A randomized algorithm ALG is said to (ε, δ)
multiplicatively approximate fn if for all inputs x1, . . . , xn we have

Pr

(∣∣∣∣
ALG (x1, . . . , xn)

fn(x1, . . . , xn)
− 1

∣∣∣∣ > ε

)
≤ δ,

where the probability is taken over the randomness of the algorithm.
A randomized algorithm ALG is said to (ε, δ) additively approximate fn if
for all inputs x1, . . . , xn we have

Pr (|ALG (x1, . . . , xn)− fn(x1, . . . , xn)| > ε) ≤ δ,

where again the probability is taken over the randomness of the algorithm.

18 / 35

Approximate randomized solutions continued

The condition for multiplicative approximation is equivalent to
P((1− ε)fn(x1, . . . , xn) ≤ ALG (x1, . . . , xn) ≤ (1 + ε)fn) ≥ 1− δ. We will
mainly use multiplicative approximation more often than additive, so we
shall refer to multiplicative approximation simply as approximation.
Additive approximation is often used when the objective fn is a small
constant, since multiplicative approximation with small ε might be too
much to hope for.

We are only interested in the space used and the approximation guarantee.
In particular, we do not put any computational restrictions on processing
xi , although (like online algorithms) algorithms designed in this model are
usually efficient in that sense. If we have k ≥ n log |U| (for finite U) then
an algorithm can store the entire stream. Note that with k ≥ |U| log n we
can record frequencies of all elements of the universe, which is often (but
not always!) enough to solve a streaming problem optimally. Thus, we are
interested in designing algorithms that have memory requirements
sublinear in n and |U|, and ideally, even polylogarithmic in n and |U|.

19 / 35

Read once random bits

We have to be a little careful in the use of the random bits in our
randomized algorithms since we are concerned about the amount of space.

Imagine that an algorithm has access to an infinite tape populated with
random bits, but the reading head only moves in one direction. The tape
is not counted towards space requirements. Thus, if an algorithm wants to
generate a number of random bits, it can simply read from the random
tape and this does not cost anything. However, if an algorithm needs to
reuse those bits in a later computation, the algorithm has to store those
bits in its memory, since it cannot rewind the tape.

20 / 35

Computing the `th Frequency Moment

Recall that given the stream x1, . . . , xn where each xi ∈ [m] the i th

frequency is defined as fi := |{j | xj = i}|. F` =
∑n

j=1 f
`
i .

Given an error bound ε and confidence bound δ, the goal in the frequency
moment problem is to compute an estimate f ′i such that
Prob[|fi − f ′i | > εfi] ≤ δ.

The seminal paper in this regard is by Alon, Matias and Szegedy
(AMS) [1999]. AMS establish a number of results:

1 For ` ≥ 3, there is an Õ(m1−1/`) space algorithm. The Õ notation
hides factors that are polynomial in 1

ε and polylogarithmic in m, n, 1δ .
2 For ` = 0 and every c > 2, there is an O(log n) space algorithm

computing F ′0 such that
Prob[(1/c)F0 ≤ F ′0 ≤ cF0 does not hold] ≤ 2/c .

3 For ` = 1, log n is obvious to exactly compute the length but an
estimate can be obtained with space O(log log n + 1/ε)

4 For ` = 2, they obtain space Õ(1) = O(log(1/δ
ε2)(log n + logm))

5 They also show that for all ` > 5, there is a (space) lower bound of
Ω(m1−5/`).

21 / 35

Results following AMS

A considerable line of research followed this seminal paper. Notably
settling conjectures in AMS:

The following results apply to real as well as integral `.
1 An Ω̃(m1−2/`) space lower bound for all ` > 2 (Bar Yossef et al [2002]).
2 Indyk and Woodruff [2005] settle the space bound for ` > 2 with a

matching upper bound of Õ(m1−2/`)

The basic idea behind these randomized approximation algorithms is
to define a random variable Y whose expected value is close or equal
to F` and variance is sufficiently small such that this r.v. can be
calculated under the space constraint.

We will mainly present the result for F2.

The quantity F2 :=
∑n

i=1 f
2
i has important applications in many areas

including databases and statistical analysis. In databases, F2 is
sometimes called “the skew” of the data and it is equal to the size of
the result of applying a SELF-JOIN operation on a table. In statistical
analysis, F2 is used for computing the Gini coefficients.

22 / 35

Estimating the 2nd frequency moment

We present an algorithm that computes a (1 + ε)-approximation to F2
with probability at least 1− δ. The approach is as follows:

Define an unbiased estimator Z 2 for F2, i.e., Z is a random variable
such that E(Z 2) = F2.

Compute the variance of Z 2 to bound the probability of significant
deviation of Z 2 from E(Z 2) via a Chebychev inequality.

Show how to compute Z 2 in a single pass using a 4-wise independent
family of hash functions to reduce memory requirements.

The variance of Z 2 turns out to be too large, so we reduce the
variance by averaging several independent copies of Z : Z1, . . . ,Zk .

Our final estimator is Y = 1
k

∑
1≤i≤k Z

2
i for a suitably chosen k that

depends on the parameters ε and δ.

23 / 35

An idealized algorithm for estimating F2

We first present an idealized algorithm for the desired estimator. The
algorithm begins by sampling a random function h : [m]→ {−1, 1}. It
then initializes Z ← 0. When xi arrives the value of Z is updated
Z ← Z + h(xi). The returned estimator is Z 2. Note that h is sampled
once and for all at the beginning of the algorithm and then it is fixed for
the duration of the entire stream: for example, if h(5) = −1 then 1 is
subtracted from Z every time 5 appears in the stream.

The reason that this algorithm is idealized is because storing random h
requires m bits of memory and our goal is to use only Oε,δ(log n + logm)
bits of memory eventually. Later we will show how to reduce memory
requirements for computing Z 2. For now, we analyze the idealized
algorithm.

24 / 35

The idealized algorithm for estimating Z 2

11.4. ESTIMATING 2ND FREQUENCY MOMENT 185

and regenerate column Mj on demand from the seed. Thus, if there is a suitable pseudo-random
generator with short seed, we can represent M implicitly in small space.

11.4 Estimating 2nd Frequency Moment

Recall that given the stream x1, . . . , xn where each xi 2 [m] the ith frequency is defined as fi :=
|{j | xj = i}|. In this section we consider the task of estimating the 2nd frequency moment
F2 :=

Pn
i=1 f2

i . This is an important quantity that has useful applications in many areas including
databases and statistical analysis. In databases, F2 is sometimes called “the skew” of the data and
it is equal to the size of the result of applying a SELF-JOIN operation on a table. In statistical
analysis, F2 is used for computing the Gini coe�cients.

Computing F2 deterministically or exactly requires a lot of memory, so we present an algo-
rithm that computes a (1 + ✏)-approximation to F2 with probability at least 1� � as discussed in
Section 11.1.3. Our approach is the following:

• Define an unbiased estimator Z2 for F2, i.e., Z is a random variable such that E(Z2) = F2.

• Compute the variance of Z2 to bound the probability of significant deviation of Z2 from
E(Z2) via a Chebychev inequality.

• Show how to compute Z2 in a single pass using a 4-wise independent family of hash functions
to reduce memory requirements.

• The variance of Z2 turns out to be too large, so we reduce the variance by averaging several
independent copies of Z: Z1, . . . , Zn.

• Our final estimator is Y = 1
k

P
1ik Z2

i for a suitably chosen k that depends on the param-
eters ✏ and �.

An idealized algorithm for computing an unbiased estimator Z2 is presented in Algorithm 32.
The algorithm begins by sampling a random function h : [m]! {�1, 1}. It then initializes Z 0.
When xi arrives the value of Z is updated Z Z + h(xi). The returned estimator is Z2. Note
that h is sampled once and for all at the beginning of the algorithm and then it is fixed for the
duration of the entire stream: for example, if h(5) = �1 then 1 is subtracted from Z every time 5
appears in the stream.

Algorithm 32 The idealized algorithm for computing an unbiased estimator for F2.

procedure IdealizedUnbiasedEstimator
h : [m]! {�1, 1} – a random hash function
Z 0
i 1
while i n do

Z Z + h(xi)
return Z2

The reason that this algorithm is idealized is because storing random h requires m bits of
memory and our goal is to use only O✏,�(log n + log m) bits of memory eventually. Later we will
show how to reduce memory requirements for computing Z2. For now, we analyze the idealized
algorithm.

Lemma

E[Z 2] = F2.

25 / 35

Analysis of idealized Z 2 alhorithm

Proof.

The total number of appearances of i is fi , therefore Z =
∑

1≤i≤m h(i)fi .

Using linearity of expectation we can show that E(Z 2) = F2 as follows:

E(Z 2) = E
((∑

1≤i≤m h(i)fi

)2)

= E
(∑

1≤i≤m h(i)2f 2i

)
+ E

(∑
i 6=j h(i)h(j)fi fj

)

=
∑

1≤i≤m f 2i +
∑

i 6=j E(h(i))E(h(j))fi fj = F2 where the third equality

follows because h(i)2 = 1 and h(i), h(j) are independent for i 6= j . The
last equality follows since E(h(i)) = 0.

26 / 35

Bounding the variuance of Z 2

In following the approach that has been laid out, we now to bound the
variance of Z 2. This will follow from the definition of variance, and some
obersvation concerning the expectations of products of the {hi}.

Lemma

Var(Z 2) ≤ 2F 2
2 .

By definition,

Var(Z 2) = E(Z 4)−
(
E(Z 2)

)2
= E

 ∑

1≤i≤m
h(i)fi

4
− F 2

2 ,

27 / 35

Bounding the variance of Z 2 continued

The main technical thing is to expand
(∑

1≤i≤m h(i)fi

)4
.

Upon expanding We get the following terms:∑
i h(i)4f 4i only 1 such summation,∑
i 6=j h(i)2h(j)2f 2i f

2
j

(4
2

)
= 6 such summations,

∑
i 6=j h(i)h(j)3fi f

3
j ,

∑
i 6=j 6=k h(i)2h(j)h(k)f 2i fj fk , and∑
i 6=j 6=k 6=` h(i)h(j)h(k)h(`)fi fj fk f`.

All summations that have an odd power of h(i), h(j), h(k), or h(`) will
turn into 0 after applying the expectation, because for any odd power p we
have E(h(i)p) = E(h(i)) = 0 and the expectation distributes over + and ·
since h(i), h(j), h(k), h(`) are independent provided i 6= j 6= k 6= `. Thus
the only surviving terms are those that only contain even powers of
h(i), h(j), h(k), h(`); that is, the 6 quadratic terms and the one term with
homogeneous degree 4.

28 / 35

Finishing the probabilistic analysis

We first complete the bound on the variance.

Var(Z 2) =
∑

i f
4
i + 6

∑
i<j f

2
i f

2
j − F 2

2 ≤ 3
∑

i f
4
i + 6

∑
i<j f

2
i f

2
j − F 2

2

= 3
(∑

i f
4
i + 2

∑
i<j f

2
i f

2
j

)
− F 2

2 = 3F 2
2 − F 2

2 = 2F 2
2 .

We can now complete the probabilistic analysis of the streaming algorithm
by combining (in parallel) sufficiently many independent copies of the Z 2

estimator.

Theorem

Fix ε > 0 and δ > 0. Define k = 2/(ε2δ). Let Z1, . . . ,Zk be i.i.d. copies of
Z , as computed by the idealized Algorithm for the F2 estimator. Define
Y = (1/k)

∑
1≤i≤k Z

2
i . Then

P((1− ε)F2 ≤ Y ≤ (1 + ε)F2) ≥ 1− δ.

The proof of the theorem is just an application of the Chebyshev
inequality, applied to Y resulting in:

P(|Y − E(Y)| > εF2) ≤ Var(Y)
ε2F 2

2
≤ ε2δF 2

2

ε2F 2
2

= δ 29 / 35

The space used by the streaming algorithm for
approximating F2

The requirement for the random function h is that in the analysis of E[F 2]
and Var [F 2], the expectations that are needed will distribute over addition
(which always holds) and multiplication (where we need independence for
h(i), h(j), h(k) and h(`)).

In fact, all we need is that we choose the random h from a 4-wise
independent family of functions H. That is, H satsifies:
P[h(x1) = y1] ∧ P[h(x2) = y2] ∧ P[h(x3) = y3] ∧ P[h(x4) = y4] = 1

m4

for disctinct values of x1, x2, x3, x4 ∈ {1, . . . ,m} and any
y1, y2, y3, y4 ∈ {−1, 1}
Such families H of functions are known to exist and each hi can be
represented in O(logm) bits. Storing each Zi requires O(log n) bits and
we have k = 2

ε2δ
copies of the Zi ,

30 / 35

Streaming turnstile models

So far, we have only been considering a restricted (but the most
prominent) class of streaming problems in which we are interested in some
function depending on the frequency counts of elements in
[1,m] = {1, 2, . . . ,m}. For such problems, there are three special models
for the nature of the input to the streaming algorithm.

In each of the three models, the universe U of input elements consists of
pairs (j ,∆j) where j ∈ [m] and ∆j ∈ R. The idea is that there is an
underlying vector S of dimension m and the stream describes how this
vector changes over time.

Note: We have implicitly been using the turnstill model with
∆j ∈ {−1,+1} for all j as determined by the hash functions h applied to j .

Initially, S starts out as an all-zero vector. Each time an element
xi = (ji ,∆i) arrives, the vector S is updated according to the rule
S [ji]← S [ji] + ∆i . To maintain small space, we will need S to collapse the
information about the input; hence we will not be able to recover
individual input items or the order of individual input items from S . 31 / 35

The three turnstile models

What distinguishes the special models from each other is the allowable
values of the ∆j .

General Turnstile Model. This is the most general model of the
three where ∆ is allowed to be an arbitrary real number at all times in
the stream. We can just refer to this as the Turnstile model.

Strict Turnstile Model. In this model S [i] has to be non-negative at
all times during the execution of the algorithm. Thus you are allowed
to decrement component S [i] (corresponding to ∆ < 0) provided that
S [i] > 0 and |∆| ≤ S [i].

Cash Register Model. In this model ∆ is restricted to be
non-negative at all times in the stream

32 / 35

Linear sketching

The algorithm for estimating F2 is an example of a very general class of
techniques for achieving small space streaming algorithms. Linear
sketching applies in the Turnstile Model, where there is an underlying
vector S ∈ Rm and the input items xi describe updates (j ,∆j) where
j ∈ [m] to the vector S . In the linear sketching approach, the idea is to
maintain the result of applying a (random) matrix M to S . The matrix M
has m columns and k � m rows. The result of applying M to S is a
k-dimensional vector R, so R requires much less space to store than S
directly.

More explicitly, the approach provided for estimating F2 is typically how
we deal with turnstile model problems. The rows in the sketching matrix
correespond to independently drawn haahs functions, drawn from some
appropriate family of hash functions. We restate the approach on the next
slide to apply more generally to tunrstile problems.

33 / 35

Restating the turnstile approach

Suppose we are (ε, δ) computing some function F of the input item
frequencies.

Define an unbiased estimator X for F , i.e., X is a random variable
such that E(X) = F .

Compute the variance of X to bound the probability of significant
deviation of X from E(F).

Show how to compute X in a single pass using an appropriate hash
function drawn from an appropriate family F of hash finctions.

If the variance of X turns out to be too large, we reduce the variance
by averaging, taking the median, taking the min, etc of k
independent copies X1, . . . ,Xk . Each Xi is derived by randomly and
independently drawing a hash function from the family F . We
compute these Xi in parallel as the elements are streaming by.

Our final estimator is Y , is derived from these independent {Xi} for a
suitably chosen k that depends on the parameters ε and δ.

34 / 35

Other examples of sketching

In Chakrabarti’s lecture notes, there are a variety of sketching based
results.

Note: Chakrabarti uses n = |U| whereas we use m since we reserve n to
be the length of the input sequence.

Chakratbarti gives a number of sketching results for F0 (i.e., the number
of distinct elements), computing the frequencies of all elements (i.e., being
able t report an approximation for fi upon a query), and frequency
moments.

He also presents some streaming algorithms beyond turnstile problems.

35 / 35

	Week 8

