
CSC2421 Topics in Algorithms: Online and
Other Myopic Algorithms

Fall 2019

Allan Borodin

October 30, 2019

1 / 40

Announcements

Announcements

My plan now is to move more quickly over some topics just to give a
better idea of the scope of topics that all fit under the umbrella or
“online computation” (or at least what we are intending to be in our
proposed textbook).

I would still like everyone, taking the course for credit or not for
credit, to choose a chapter or section or topic relating to the textbook
for their part of the reading course.

We could have shorter lectures and meet individually in my office but
I prefer to have weekly reports of what individuals are reading.

At the end of the term, we can summarize all the readings.

2 / 40

Todays agenda

A brief look at Chapter 9 which discusses a game-theory perspective
regarding online algorithms; namely,

1 Game theory argues in favour of individuals making decision based on
self interest and that is inconsistent with our view thus far where a
central authority (i.e., the online algorithm) is determining how to
make individual decisions. In this regard, we will discuss the k-server
on the line problem and a simplified parking problem.

2 Some online analysis (in particular, primal dual algorithms can be
interpreted in terms of pricing of items). At the risk of discussing the
Ranking algorithm too much, we will present a game-theorectic
interpretation and analysis of the Ranking algorithm.

Chapter 10 : Online algorithms with advice.

3 / 40

Game theory and mechanism design

In many offline and online applications, events are being generated by
self-interested agents who make their own individual decisions and do what
is best for themselves (i.e. optimize their own “utility”). This is a basic
assumption (but often challenged) in game theory; namely that agents are
rational and will act so as to optimize their utility. In doing so these
individual actions can result in significant harm to some desired “social
welfare” objective. This is often refered to as the tragedy of the commons.

The field of mechanism design refers to algorithms that use incentives
(usually but not always money) so as to lead to desired outcomes when
agents are self-interested. It is understood that an agent is self-interested
(but not malicious).

In a later Chapter, we plan to further discuss online mechanisms in the
more traditional, setting of auctions and markets. Here we will just provide
two related examples showing how costs can incentivize an online agent to
simulate a centralized decision making algorithm resulting in substantially
improved social welfare.

4 / 40

A mechanism for the online k-server on the line
problem

We recall that the natural deterministic greedy algorithm for the k server
problem on the line would result in an arbitrarily bad competitive ratio.
We also noted that any k server algorithm can be made into an equally
competitive lazy algorithm (where only one server moves to serve a
request) by using “virtual locations” for the servers to know where the
servers would be in the non-lazy algorithm.

In particular, the lazy DC algorithm for the line metric can be derived
from any non-lazy algorithm achieving the same competitive ratio.
Moreover, if the transformation to a lazy algorithm is done carefully (in
terms of which server will be chosen when there is a tie) in the DC
algorithm, then the lazy version will inherit two nice properties (“locality”
and “monotonicity”) from the non-lazy DC algorithm. Namely, a request
will always be served by an adjacent server (locality), and if a new request
r would be served by a server s, then every request in the closed interval
between r and s would be served by s (monotonicity).

5 / 40

Requests as agents

We suppose that requests for service at a location r are being made by
agents arriving online. The agent wants to minimize its cost for service
which we can initially think of as the distance that some server will have
to travel. Now we know that if agents act greedily and choose the closest
server, the overall social welfare (that is, the total cost for all requests and
hence the average time per server) can suffer arbitrarily.

We want to show how simulate the lazy DC algorithm by dynamically
assigning a cost p(s) to each server s so that when an agent decides to
use server s, the total cost to get service at location r will become
d(s, r) + p(s).

Given these server costs, when an agent decides to use server s, the total
cost to provide service at location r will become d(s, r) + p(s). So when
an online agent arrives and needs service at location r , the greedy decision
is to choose a server so as to minimize the sum of the distance to the
desired location plus the cost for the server.

6 / 40

Using prices to simulate the DC algorithm

With an approriate pricing mechanism, the resulting greedy online
algorithm will “weakly simulate” the lazy DC algorithm and inherit the
k-competiveness of the DC algorithm. Here “weakly simulate” means that
even though the lazy DC algorithm satisfies the locality and monotonicity
properties stated above and has a well defined way to break ties, greedy
agents are free to break ties unpredictably. There is a somewhat delicate
argument as to how to insure that the movement costs will remain
approximately the same even if the greedy algorithm breaks ties differently
than the DC algvkorithm.

Consider the lazy DC algorithm. After some initial requests, we can
assume that the k servers are occupying distinct locations. Consider how
each request would be served by a specific server. The mapping of servers
to locations induces a partition of the line into intervals of potential
requests that each server will be resposible for serving. Let I (s) denote the
interval that would be served by server s. If servers I (s) and I (s ′) are
adjacent then I (s) and I (s ′) are adjacent intervals.

7 / 40

The way to price servers

Furthermore, for each pair of adjacent intervals s, s ′, there is a threshold
point τ(s.s ′) such that any request in [s, τ(s, s ′) will be served by s and
requests in [τ(s, s ′), s ′) will be served by s ′.

Let the left to right order of servers be s1, . . . , sk . Once we set the price
p(s1) for the left most server s1, we can then set the remaining server
prices so as to satsify the following equation:
p(si) + |si − τ(si , si+1| = p(si+1) + |si+1 − τ(si , si+1)|

Lemma

If agents act greedily with respect to the combined server pricing and
distance movement, then the greedy decentralized response of the agent
will weakly simulate the DC algorithm.

To prove the lemma, we can show that the utility of the agent (i.e. server)
that DC uses to serve a request minimizes the total cost (i.e., the disutility
of the agent) amongst all servers.

8 / 40

The Parking Problem

An obvious example where agents are creating online events is when
drivers look for a legal place to park. They naturally want to park as near
to their intended destination as possible. We will study a simplified version
of this problem. Namely, we will consider a static problem rather than
drivers coming and going for different amounts of time.

The static version is not totally unrealistic as it does model the situation
when say indidviduals are driving to an event and everyone leaves after
that event or situations where parking is available for the evening (i.e.,
from 7PM to 6AM).

Many jurisdictions will charge for parking spaces. Note that if the charge
is fixed for all spaces, then from our perspective, this is the same as free
parking as drivers would only care about the distance between where they
park and their desired location.

Our final and main assumption is that the parking spaces are located on
discrete points on the line and that there are enough parking spaces for all
drivers. 9 / 40

Parking on a line

More specifically, suppose we are given the locations of n offline points
{xi} on the real line and let d(x , y) denote the distance between x and y ;
that is, d(x , y) = |x − y |. Suppose n ≤ m agents (e.g., shoppers) arrive
and will decide to park at some unoccupied location xi so as to shop at
some location yi .

A central authority (i.e. a mechanism) will determine a cost pi (xi) for
each parking spot xi based on the current location of available spaces. An
agent parking at xi incurs a total cost of d(xi , yi) + pi (xi). The social
welfare objective is to minimize

∑n
i=1 d(xi , yi).

The social objective then becomes the special case of min cost metric
matching restricted to the line metric. Of course, this is a different social
objective than when the goal is to generate revenue for the central
authority.

10 / 40

The cost of free parking

We can assume that n = m. An offline optimum algorithm can compute a
min cost perfect matching in polynomial time for any weighted graph
problem. For the special case of matching on the line, there is a very
simple linear time optimal algorithm. Namely if the locations are sorted so
that x1 ≤ x2 . . . ≤ xn and y1 ≤ y2 . . . ≤ yn, then match xi to yi .

In the absense of parking costs, when an agent arrives, the natural greedy
decision is to choose an available location closest to the goal destination.
(Without loss of generality, we can assume that all distances between
adjacent vertices are distinct so as to not need a tie-breaking rule.)

This suggests two immediate questions; namely, what is the competitive
ratio of the best online algorithm and what is the competitive ratio when
decisions are being made greedily by agents. We will first observe that the
natural greedy algorithm has a very poor performance.

11 / 40

The cost of free parking continued

Fact

The competitive ratio for the natural greedy algorithm (and hence if agents
act greedily) is exponential in n where n is the number of online requests.

Proof.

Consider the following instance for any ε > 0: y1 = 1− ε, yi = 2i−1 for
2 ≤ i ≤ n, x1 = 1.5, and xi = 2i−1 for i = 2, . . . , n. The optimum
matching has cost .5 + ε (for matching x1 with y1 and 0 for matching
xi = yi for i 6= 1). However, the greedy solution will match x1 with y2
forcing xi to match with yi+1 for i = 2, . . . , n− 1 and xn to match with y1.
The cost of the greedy solution will be ≈ 2n+1.

12 / 40

Using parking costs to allow for greedy parking

There is a natural (non-greedy) randomized online algorithm
(Harmonic) that achieves a competitive ratio of O(log n) for matching
on the line. Harmonic is motivated by the deterministic double
coverage algorithm for the k-server problem with respect to the line
metric space and its canonical randomization (analogous to the
canonical randomization in the double sided greedy USM algorithm).

There is a randomized dynamic pricing algorithm for parking locations
that will incentivize the shopper to simulate the Harmonic algorithm
and hence achieve a competitive ratio of O(log n). The pricing
algorithm does not know the arrival location nor the desired location
for the i th arrival but only knows which locations are now occupied
given the previous i − 1 arrivals.

Each arriving agent knows the cost of each available space and
chooses a location xi so as to minimize the total cost function (i.e.,
distance to travel and cost of parking spot).

13 / 40

The Harmonic algorithm for matching on the line

If there are n′ shopping locations y is to the left (respectively, right) of all
available parking places, then match the leftmost {xi} (resp. rightmost
{xi}) to those locations.

Assume then that a desired shopping location y lies beteen two available
spots xj and xj+1. If d` (resp., dr) is the distance of the available spots to

the left (resp. right) of y , then match y with xj with probability d`
d`+dr

and

match y with xj+1 with probability dr
d`+dr

.

The Harmonic algorithm achieves a competitive ratio of O(dmax
dmin

) where
dmax (resp. dmin) is the maximnum (resp. minimum) distance between
two vertices.

Using a doubling strategy to modify estimates of OPT and then
mlodifying the metric distances accordingly the algorithm can be modified
to obtain competitive ratio O(log n).

14 / 40

An economic interpretation and analysis of the
Ranking algorithm

We saw last lecture a primal dual analysis for the Ranking algorithm.
Instead of using the notation Yj (in determining the random ranking of the
offline vertices), we will use pj .

In economic terms, we now interpret each pj as a price that an online
buyer ui is willing to pay for matching with an offline item vj ; that is,
choosing the edge (ui , vj) if it exists. In game theory terminology, each
buyer has a unit demand valuation vali ,j and utility utili = vali ,j − pj for
purchasing item vj and 0 if ui does not purchase any item. Here vali ,j = 1
iff (ui , vj) is an edge and 0 otherwise. The revenue revj for item vj is pj if
the item is sold and 0 otherwise.

15 / 40

Economic interpretation of Ranking continued

The goal is to maximize the social welfare of a matching M which is
defined as |M| =

∑
ui ,vj)∈M vali ,j . Equivalently, social welfare can be

defined as
∑

i utili +
∑

j revj ; that is, the total utility of the buyers plus
the total revenue of the sellers for all items sold.

In this interpretation, for any matching M, the social welfare is∑
vj∈M(1− pj) +

∑
vj∈M pj =

∑
vj∈M 1 = |M|. The desired competitive

ratio will follow from the following insightful lemma.

Lemma

Let the rj be chosen uniformly at random and independently in [0, 1] and
let pj = erj−1. Then for every ordering of the online ui vertices and for
every edge (ui , vj) in the input bipartie graph, we have :
E{rj}[

∑
ui
utili +

∑
j pj] ≥ 1− 1

e .

16 / 40

Sketch of Ranking proof in the economic
interpretation

We consider a fixed arrival order, buyer ui and item vj . We need to bound
E{rj}[utili] and E{rj}[pj]. Let (ui , vj) ∈ E and let p = ey−1 for some y be
the price of the item purchased by ui and let p = 1 if ui does not purchase
any item. We bound the utility of ui and the expected revenue of item vj .

utili ≥ 1− p

E[rev vj] = E[pj · Ivj is sold] ≥ E[pj · Ipj<p] =
∫ y
0 erj−1drj = p − 1

e

Let M∗ denote a maximum matching and MR the matching given by the
Ranking algorithm. Then Erj [|M|] ≥ (1− 1

e)|M∗|.

We have |MR | = |E{rj}[
∑

i utili +
∑

j pj] ≥ E{rj}[
∑

(ui ,vj)∈M∗(utili + pj)] ≥
(1− 1

e)|M∗|
where the first inequality is an inequality rather than an equality as the
matching M might include an edge where pj = 1,

17 / 40

Online algorithms with advice

In practice, an algorithm designer often has some side information about
the input, e.g., input length, maximum weight of an input item, maximum
degree of a vertex in a graph, number of distinct input item types, and so
on. This side-knowledge can be formally captured by the notion of advice,
which we study in Chapter 10.

There are two prominent models by which an algorithm receives advice
from a trusted oracle, namely, the per request model and the tape model.
(Last Friday, Spyros Angelpoulos spoke about online algorithms with
untrusted advice.)
Aside I personall favour the tape model but that is personal taste.

As an example of the tape model, recall the Time-Series Search problem.
Prior to receiving any input items (daily exchange rates pj), an algorithm
is supplied a lower bound L and an upper bound U on exchange rates.
This is an example of side information about future input items, i.e.,
L ≤ pj ≤ U for all j . This side information is necessary to design a
non-trivial online algorithm for the Time-Series Search.

18 / 40

The per request model

The oracle fixes a universe of answers U . When the algorithm receives an
online input item xi , it receives some side information ai ∈ U from the
oracle alongside xi . The side information ai is written in binary using
dlog |U|e bits.

The decision di of the algorithm can now depend on all previously
observed input items as well as all oracle answers received so far. More
formally, di is a function di := di (x1, . . . , xi , a1, . . . , ai).

If the input length is n, then the total length of advice, also known as the
advice cost of the algorithm, is dlog |U|en in this model.
Aside: This why I favour the tape model, where sometimes even 1 bit of
advice can have great impact.

19 / 40

The tape model

The oracle populates an infinite advice tape. The algorithm reads from the
advice tape sequentially. At any point in time during the execution of the
online algorithm, the algorithm can decide to read more advice bits. The
advice cost of the algorithm on inputs of length n is the maximum number
of bits read by the algorithm to process an input sequence, where the
maximum is taken over all input sequences of length n.

The decision di of the algorithm is now a function of all previously
observed input items as well as all the advice bits that have been read by
the algorithm so far.

A feature of this model is that an algorithm does not have an a priori
bound on the number of advice bits. But I prefer to just think of this more
simply that the oracle looks at the entire input and compresses its
knowledge into some “small” number of advice bits.

I like to more simply think of the algorithm seeing the imput and prividing
all the advice bits at once. The reason for the “technical aspect of an
infinite tape” is to emphasize that the algorithm does not have to know n.20 / 40

The good and bad of the advice model

Our main focus will be the competitiev ratio that can be obtained (for a
given problem) with regard to a given amount of advice. We will see that
sometimes very little advice can dramatically change the quality of the
competitive ratio. In other cases, we can show that to achieve good
performance we need Ω(n) bits to achieve a good ratio for an n bit input.

We will also be interested in the relation between advice and
randomization.

While the basic motivation for the advice models is to model realistic
situation where it is likely that reasonable information about the input
would be known. The idea is to abstract this by saying that the amount of
advice is limited so that the oracles has to compress what it knows.

Tha bad news is that when we use a purely information theoretic view of
advice, we allow the oracle to do an arbitrary amount of computation
(e.g., to learn an optiomal solution) in creating the advice. But still I find
the results interesting.

21 / 40

Equivalent views of advice

Besides the oracle view of advice, there are some alternative views of
advice.

In the tape model, if we have b bits of advice then this is equivelnt to
having 2b parallel streams {ALG1,ALG2, . . . ,ALG2b} of online
algorithms and taking the best solutuion ALGi at the end.

In the per request model, we can view an algorithm using say b bits
per request as a tree of online algorithms where upon receiving the i th

input the algorithm performs a 2b way branch.

Advice algorithms in either model model be viewed as
non-deterministic algorithms that guess each advice bit.

As we point out, there is a model of advice in say Turing machine offline
computation that is simimilar to the tape model. In the Turing machine
tape model there is a separate advice tape. However, that advice only
depends on the length of the input whereas in the online tape advice
model the advice is based on the entire input.

22 / 40

An example where 1 bit of advice is critical

Recall the proportional knapsack problem that we used in Chapter 3 to
illustrate the power of randomness. We are given the sequence
w1,w2, . . . ,wn with wi ∈ (0, 1] for all i . The goal is to find choose a subset
S ⊆ {1, 2 . . . n} so as to maximize

∑
i∈S wi subject to

∑
i∈S wi ≤ 1.

We showed that without any advice, any deterministic online algorithm has
unbounded competitive ratio. But just as we used 1 but of rendomness to
obtain a 1

4 competitive ratio, we can use 1 bit of advice to obtain
competitive ratio 1

2 . Namely, the one bit of advice indicates whether or
not there is an input wj ≥ 1

2 . If so, it waits for this item before packing
any other item. Otherwise, it packs greedily accepting all items that fit.

More generally, any online algorithm using b bits of randomness to achieve
competitive ratio ρ (against an oblivious adversary) is easily converted into
a deterministic algorithm with b bits of advice achieving ratio (at least as
good as) ρ.

23 / 40

Advice vs randomness

We just saw that b random bits can always be replaced with b advice bits,
which works really well for “barely random” algorithms. There is a rather
trivial converse for maximization problems that also works well for small
values of b. Namely, consider a deterministic algorithm with b bits of
advice. We can replace the advice bits by b random bits and then run the
advice algorithm using the b random bits as the advice. Provided that the
value of the objective function is always nonnegative, the expected
competitive ratio of this randomized algorithm is at least ρ/2b.

What if a randomized algorithm is not barely random and uses some
potentially very large number of random bits? Turns out that it is still
possible to replace random bits with very few advice bits provided that the
number of distinct input sequences of length n is not too high and that we
allow a slight deterioration in the competitive ratio.

24 / 40

Converting a randomized minimization algorithm
into a determninistic advice algorithm

Consider a minimization problem. Let I(n) denote all possible input
sequences of length n. Set I (n) := |I(n)|. Suppose there exists a
randomized algorithm ALG that achieves worst-case expected competitive
ratio ρ(n) ≥ 1 on inputs of length n. Then for any ε > 0 there exists a

deterministic algorithm ALG ′ that uses log n + 2 log log n + log
(

log I (n)
log(1+ε)

)
bits of advice and achieves competitive ratio (1 + ε)ρ(n).

Consider a maximization problem. Let I(n) denote all possible input
sequences of length n. Set I (n) := |I(n)|. Suppose there exists a
randomized algorithm ALG that achieves worst-case expected competitive
ratio ρ(n) ≤ 1 on inputs of length n. Then for any ε > 0 there exists a

deterministic algorithm ALG ′ that uses log n + 2 log log n + log
(
log I (n)
log δ

)
bits of advice and achieves competitive ratio (1− ε)ρ(n), where

δ = 1−(1−ε)ρ(n)
ρ(n) .

25 / 40

The proof of the minimization result

The idea behind the proof is as follows. Although ALG can potentially use
a lot of randomness, we can identify a small set G of “good strings” of
randomness such that on each input x there is at least one string r ∈ G
that guarantees ALGr (x)/OPT (x) ≤ (1 + ε)ρ(n). Both the oracle and the
algorithm ALG ′ can construct the set G by knowing n = |x | only. Thus,
the oracle can specify the value n on the advice tape using
log n + 2 log log n bits (using one of the uniquely decodable codes with
such guarantees). In addition, the oracle specifies the index of a good
string of randomness relative to G . This requires log |G | more advice bits.
The proof is completed by using a standard counting argument to show
that |G | ≤ log I (n)

log(1+ε) .

The argument is very similar to the argument that RP ∈ P/poly (i.e., that
decision problems computable by 1-sided error randomized time
computation can be computed by polynomial size circuits for each input
length n). The argument for online algorithms is due to Böckenhauer et al
[2014].

26 / 40

Details of the conversion of randomness to advice
for a minimization problem

Initially, G is set to be ∅. We identify the first “good string” of
randomness as follows. Suppose that ALG uses b(n) random bits. Let
B(n) := 2b(n) denote the number of possible random strings. Consider an
I (n)× B(n) matrix M such that M(x , r) is the competitive ratio of ALG
on input x when random bits are fixed to the string r . That is
M(x , r) := ALGr (x)/OPT (x). By the definition of competitive ratio, for
each x ∈ I(n) we have

1

B(n)

∑
r

M(x , r) = Er (ALGr (x)/OPT (x)) ≤ ρ(n).

Therefore, we have
∑

r M(x , r) ≤ B(n)ρ(n). Adding these inequalities over
all values of x we get that∑

x ,r M(x , r) =
∑

r

∑
x M(x , r) ≤ I (n)B(n)ρ(n). Thus, there exists a

string r such
∑

x M(x , r) ≤ I (n)ρ(n). We add r to G : G ← G ∪ {r}.

27 / 40

Proof for minimization result continued

An input x such that M(x , r) ≤ (1 + ε)ρ(n) is said to be “covered” by r ,
since ALG ′ knowing r on input x can guarantee that competitive ratio of
at most (1 + ε)ρ(n) by simulating ALGr (x). Thus, these inputs can be
excluded from further consideration. We shall continue the above
approach of identifying “good strings” of randomness with respect to
those inputs x that are not covered by r . It is left to see that each time we
identify a “good string” of randomness, we cover a large fraction of the
inputs. This will bound the number of times we need to iterate the process
of identifying the next “good string” until all inputs I(n) are covered.

28 / 40

Proof for minimization result continued

Let s denote the number of strings that are covered by r . Then I (n)− s
are not covered by r , so for those inputs x we have
ALGr (x) > (1 + ε)ρ(n). Therefore, we have∑

x

ALGr (x) > (I (n)− s)(1 + ε)ρ(n).

Since r was chosen so that
∑

x M(x , r) ≤ I (n)ρ(n), we get

(I (n)− s)(1 + ε)ρ(n) < I (n)ρ(n).

Simplifying, we obtain that s > I (n)ε
1+ε . Therefore, each time we find a

“good string” of randomness, the number of uncovered instances reduces
by a multiplicative factor 1

1+ε . Therefore, after log I (n)
log(1+ε) iterations there will

be no more uncovered instances. Hence, it follows that |G | ≤ log I (n)
log(1+ε) .

29 / 40

A consequence of this randomness to advice result

For many optimization problems, we have the bound I (n) ≤ 2n
O(1)

.
Therefore, the above theorems let you convert a randomized algorithm
with competitive ratio ρ(n) into a deterministic algorithm with Oε(log n)
bits of advice with competitive ratio (1 + ε)ρ(n) (resp ratio (1− ε)ρ(n))
for a minimization (resp. maximization) problem.

Consider the Ranking algorithm for the BMM problem. Specifically lets
assume n online and n offline nodes. Then I (n) = n! ≈ nn = 2n log n so
that we can apply the randomness to advice result to obtain the following.

There is a deterministic online algorithm with O(log n) bits of advice for
the BMM problem with competitive ratio (1− ε)(1− 1

e for any ε > 0.

Nicolas Pena and I showed that Ω(log log n) advice bits are required to
asymptotically improve upon the 1

2 competitive ratio achieved by any
deterministic greedy BMM algorithm.

30 / 40

Repeatable problems: Converting an advice online
algorithm into a randomized online algorithm

For some problems, there is a converse result due to Mikkelsen [2016]
which is both somewhat technical to state and requires a non-trivial proof.

While the exact definition of repeatable problems is slightly technical, the
main idea is rather straightforward. Consider r input sequences I1, . . . , Ir .
A problem is called repeatable if processing the combined sequence
I = I1 · · · Ir essentially amounts to processing each I1, I2, . . ., Ir
individually. In other words, no matter which online algorithm is used to
process the prefix I1 . . . Ij , the past information and decisions about I1 . . . Ij
cannot significantly affect the performance of the algorithm on Ij+1 as
compared to running the algorithm on Ij+1 alone.

31 / 40

What is and what is not repeatable

Consider the paging as an example of a repeatable problem. Processing I1
can affect the number of cache misses on I2 by ±k only. Introduce the
notation ALG (I1I2)|I2 which corresponds to running ALG on the combined
input I1I2 and counting the number of cache misses just on the I2 part of
the input. Thus, we have ALG (I2) = ALG (I1I2)|I2 ± k . Provided that
OPT (I1),OPT (I2)→∞ the term ±k becomes negligible. Thus, past
history doesn’t significantly affect ALG .

A typical example of a non-repeatable problem in the literature is Bin
Packing. Consider I1 = (1/2− ε, . . . , 1/2− ε) of length n followed by
I2 = (1/2 + ε), . . . , (1/2 + ε) also of length n. If the first sequence is
processed by placing the items in pairs into n/2 bins, then the second
input sequence requires n additional bins. However, if the first input
sequence is processed by placing the items into n different bins, then the
second input sequence requires 0 extra bins, since an item 1/2 + ε can be
placed into a bin with an item 1/2− ε.

32 / 40

Two types of repeatable problems

Σ-repeatable problems : the value of the objective achieved on
I1 . . . In is approximately the sum over j of the objective value
achieved on Ij individually.

∨-repeatable: the value of the objective achieved on I1 . . . In is
approximately the maximum over j of the objective value achieved on
Ij individually.

We will not state the formal definition of repeatable problems. The general
definition is quite technical for several reasons: firstly, all our informal
statements involving words“approximately” and “significantly” need to be
formally quantified; secondly, the general definition of repeatable allows
arbitrary transformations f of input sequences I1, . . . , In to obtain the
combined input sequence I = f (I1, . . . , In). In our examples above, we
have only considered the simplest kind of f , namely concatenation.

33 / 40

The Mikkelsen results for repeatable prolems

Informal result for Σ-repeatable

Let P be a Σ-repeatable problem. Suppose that the number of input
sequences of length n is finite. Fix c > 0. If randomized online algorithms
cannot achieve competitive ratio better than c for P even when the length
n of the input is known to the algorithm in advance, then every
deterministic algorithm with o(n) bits of advice cannot achieve
competitive ratio better than c.

Informal result for ∨-repeatable

Let P be a ∨-repeatable problem. Suppose that the number of input
sequences of length n is finite. Fix c > 0. If deterministic online
algorithms cannot achieve competitive ratio better than c for P even when
the length n as well as the value of OPT are known in advance, then every
(possibly randomized) algorithm with o(n) bits of advice cannot achieve
competitive ratio better than c.

34 / 40

A consequence for Σ repeatable problems

The Σ repeatable theorem allows you to transfer lower bounds on
randomized online algorithms to lower bounds on deterministic algorithms
with o(n) bits of advice.

We note that the biprtite matching problem is a Σ-repeatable problem. It
follows that any online algorithm with o(n) advice bits can substantially
improve on the (1− ε)1e competiive ratio using Oε(log n)advice bits.

It should be clear that n log n advice bits provides an optimal solution.
Moreover, Miyazaki [2014] has shown that Ω(n log n) advice bits are
required to obtain optimality.

The following result due to Dürr, Konrad, and Renault [2016] fills in the
results for the BMM problem when using Θ(n) advice bits:

There is a deterministic (1− ε)-competitive algorithm using O(n
ε5

)
advice bits.

Every deterministic (1− ε)-competitive algorithm must use
Ω(log(1ε)n) advice bits.

35 / 40

Other impossibility results

In spite of the power of the adversary to see the entire input, there are
problems where the number of advice bits to obtain optimality or a (small)
constant approximation requires almost as many advice bits as “the naive
advice optimal solution”. Some impossibility results discuss the number of
advice bits to beat the best known (poly time) offline approximations.

I am just going to mention some results where I am now taking the
information from a survey by Boyar et al [2016]. I will post this survey.
(I’ll also check with the authors if there are any major new developments.)

It is not surprising that the bin packing problem would be well studied
given its prominent role in offline algorithms. Note that the input to the
bin packing problem is the same as the input to the proportional knapsack
problem (where 1 bit of advice gave a “good” approximation) but, of
course, with different objective function.
When considering the advice-competitiveness needed for online bin packing
we should keep in mind the current best known NP hardness and polytime
(strict) approximation results, namely 1.54037 and 1.5815 (respectively).

36 / 40

Advice results for bin packing

Let OPT be the number of bins used by an optimal solution for an input
of n items. Then n · log(OPT) advice bits are clearly sufficient to obtain
optimality by an online algorithm. In the text, we show that something
close to this number of advice bit is necessary. Namely,

Every online algorithm with advice that is optimal for bin packing must
use (n − 2OPT) logOPT advice bits.

Here are some additional results (see Boyar et al for references)

For any ε > 0, there is an online algorithm with ratio 1.47012 + ε
using some constant f (ε) advice bits

In particular, 16 advice bits is sufficient to obtain ratio 1.530

For any ε > 0, O(1ε log(1ε)) advice bits are sufficient to obtain a
(1 + ε) competitive ratio.

37 / 40

Reductions using the string guessing problem

We will conclude for now our discussion of advice complexity. (Kaman is
doing his project on this topic.)

There is a rather artificial problem where we have pretty tight necessary
and sufficient bounds on the advice complexity. This problem can be used
by an appropriate reduction to prove negative results for more natural
problems. We state such a result for the online set cover problem in the
text. (The following problem has also been useful in studying priority
algorithms with advice.)

The artificial problem is the string guessing game asks an online algorithm
to guess the next symbol from an alphabet Σ of size q which comes in two
varieties:

String guessing game with known history (q-SGKN) where after each
guess the true symbol is relvealed

String guessing game with unknown history (q-SGUN) where the true
sequence of symbols are bot revealed until the end.

38 / 40

Tight results for the string guessing game

Fix α ∈ [1/q, 1). There is an online algorithm that guarantees at most
(1− α)n mistakes for q-SGKH and q-SGUH and uses advice of length at
most⌈(

1 + (1− α) logq

(
1− α
q − 1

)
+ α logq α

)
n log q +

3

2
log n + log(ln q) +

1

2

⌉
.

Any online algorithm with advice for q-SGKH that makes at most
(1− α)n mistakes on inputs of length n, where α ∈ (1/q, 1), reads at least(

1 + (1− α) logq

(
1− α
q − 1

)
+ α logq α

)
n log q

bits of advice.

39 / 40

Consequences of string guessing game for online set
cover

To obtain a strict (1− α)n competitive ratio requires
(1 + (1− α) log(1− α) + α logα) n bits of advice.

For asymptotoic results, fixing c ≤ 1.5, any online algorithm that
achieves asymptotic competitive ratio c for Set Cover must use:

1 b ≥ (1 + (c − 1) log(c − 1) + (2− c) log(2− c)) n
3

2 b ≥ (1 + (c − 1) log(c − 1) + (2− c) log(2− c))m
3

where m = |S| and n = |X |.

40 / 40

	Week 7

