
CSC2421 Topics in Algorithms: Online and
Other Myopic Algorithms

Fall 2019

Allan Borodin

October 23, 2019

1 / 42

Announcements amd agenda

Reminder: Seminar Friday, 11AM, Oct 25
Spyros Angelopolous will speak on “Online computationn with untrusted
advice

Todays agenda: The primal dual framework

2 / 42

The primal dual framework

We will temporarily skip over chapter 7 and move on to chapter 8. In
Chapter 8, we describe a framework for designing and analyzing online
algorithms based on linear programming (LP) duality. The design and
analysis of algorithms based on the primal-dual correspondence is a
fundamental idea that goes well beyond online algorithms.

We begin by recalling some basic definitions from the theory of linear
programming in the offline setting. Then we describe how linear
programming can be stated in the online setting. The key idea is for the
algorithm to maintain two online solutions: one to the primal formulation
and another to the dual formulation. The goal of the algorithm is to
minimize the gap between the objectives achieved by each of the two
online solutions. The competitive ratio can be readily derived from the gap
by using approximate complementary slackness. This is called the
primal-dual approach.

3 / 42

Linear programming

Linear programs can arise naturally for some problems, but our interest will
be with respect to linear programs as a relaxation of integer programs.

For example, consider the following (conseptually simple) way to derive an
offline approximation for the weighted vertex cover problem. Let the input
be a graph G = (V ,E) with a weight function w : V → <≥0. To simplify
notation let the vertices be {1, 2,n}. Then we want to solve the
following “natural IP representation” of the problem:

Minimize w · x
subject to xi + xj ≥ 1 for every edge (vi , vj) ∈ E
xj ∈ {0, 1} for all j .

The intended meaning is that xj = 1 iff vertex vj is in the chosen cover.
The constraint forces every edge to be covered by at least one vertex.

Solving an IP is an NP-hard problem. Instead we relax the integral
xj ∈ {0, 1} constraints and instead allow fractional solutions xj ∈ [0, 1].
Here the rounding is quite obvious: round LP solution x∗j to integral x̄j iff
x∗j ≥ 1/2. The “rounding step” can sometime be non-trivial.

4 / 42

The integrality gap

For LP relaxations of an IP we can define the integrality gap (for a
minimization problem) as maxI IP−OPT

LP−OPT ; that is, we take the worst
case ratio over all input instances I of the IP optimum to the LP
optimum. (For maximization problems we take the inverse ratio.)

Note that the integrality gap refers to a particular IP/LP relaxation.

The same concept of the integrality gap can be applied to other
relaxations such as in semi definite programming (SDP).

It should be clear that the simple IP/LP rounding we just used for the
vertex cover problem shows that the integrality gap for the previously
given IP/LP formulation is at most 2.

By considering the complete graph Kn on n nodes, it is also easy to
see that this integrality gap is at least n−1

n/2 = 2− 1
n .

5 / 42

Linear programming continued

A linear program is a maximization or minimization problem with a linear
objective function subject to linear non-strict inequality constraints. We
will first consider minimization problems. Every linear program has an
equivalent formulation in the standard form which is the following program
P for a minimization problem:

minimize
n∑

i=1

cixi

subj. to
n∑

j=1

aijxj ≥ bi i ∈ [m]

xi ≥ 0 i ∈ [n]

In the above linear program we have n variables x1, . . . , xn and m
constraints involving aij and bi constants, as well as n nonnegativity
constraints xi ≥ 0.

minimize ctx

subj. to Ax ≥ b

x ≥ 0

6 / 42

Linear programming continued

We can write down the above program in matrix form as follows:

minimize ctx

subj. to Ax ≥ b

x ≥ 0

In the above, A = (aij) is the matrix of coefficients, x = (x1, . . . , xn),
b = (b1, . . . , bm) and c = (c1, . . . , cn) are vectors1 of variables, right-hand
side constant terms, and coefficients of the objective function, respectively.
For two vectors v and u of the same dimension, the notation v ≥ u is
interpreted component-wise, i.e., vi ≥ ui for all i .

1All vectors are column vectors unless stated otherwise. Note that we represent
contents of all vectors as row vectors inside text for typographical reasons.

7 / 42

And more linear programming

Any vector x ∈ Rn satisfying the constraints of a given LP, i.e., Ax ≥ b, is
called feasible. A feasible vector x∗ that optimizes the value of the
objective is called an optimal solution, or simply, an optimum.

A linear program might not admit any feasible vectors: a simple example is
when there are clearly contradictory constraints such as x1 − x2 ≥ 1,
x2 − x1 ≥ 1, and x1, x2 ≥ 0. An LP that does not admit any feasible
vectors is called infeasible.

When a linear program does have feasible vectors it can be either
bounded, i.e., has a finite optimum, or unbounded, i.e., has an infinite
optimum. A simple example of an unbounded LP is to minimize −x1
subject to x1 ≥ 0. We shall denote the value of an optimal solution of a
linear program P by OPT (P).

8 / 42

Duality

One way of proving lower bounds on the value of OPT (P) is to take
non-negative combinations of constraints of P. Let Ai denote the i th row
of matrix A. Then the i th constraint of P is Aix ≥ bi . Consider
multiplying constraint i by yi ≥ 0 and adding up all the resulting
inequalities. Then you get

∑m
i=1 yiAix ≥

∑m
i=1 biyi . In matrix form we

can write it as (Aty)tx ≥ bty . If we choose y so that (Aty) ≤ c then we
get ctx ≥ (Aty)tx ≥ bty . Thus, such a choice of y demonstrates a lower
bound bty on the value of P for any feasible x . What is the best possible
lower bound that can be derived this way? This is given by another linear
program, the dual program D:

maximize bty

subj. to Aty ≤ c

y ≥ 0

9 / 42

Relating the primal and the dual

The original linear program P is referred to as primal, and (as we just said)
the derived linear program D is referred to as dual. We have just derived
the basic fact about the relationship between the primal and the dual:

Theorem (Weak Duality)

OPT (D) ≤ OPT (P).

We also state the stronger version of this theorem without proof. The
proof of the following Strong Duality Theorem relies on more advanced
machinery from polytope theory and can be found in any standard text on
linear programming.

Theorem (Strong Duality)

If the primal P is feasible and bounded then so is its dual D and,
moreover, we have

OPT (D) = OPT (P).

10 / 42

Approximate complementary slackness

Using linear programming formulations, one of the main tools for proving
offline approximation ratios and online competitive ratios is the following
approximate complementary slackness theorem.

Theorem (Approximate Complementary Slackness)

Suppose that x is a feasible solution to the primal P and y is a feasible
solution to the dual D. If there exist α, β > 1 such that

if xi > 0 then (ci/α) ≤ (At)iy ≤ ci ; and

if yi > 0 then bi ≤ Aix ≤ βbi
then ctx ≤ (αβ)bty.

11 / 42

Proof of complememtary slackness theorem

Proof.

The proof is rather straightforward:

ctx =
∑

i :xi>0

cixi ≤
∑

i :xi>0

(α(At)iy)xi

=
∑

i :xi>0

α
∑

j :yj>0

Ajiyjxi =
∑

j :yj>0

(αyj)Ajx

≤
∑

j :yj>0

(αyj)(βbj) = (αβ)bty .

12 / 42

Applying approximate complementary slackness

Approximate complementary slackness can be used to design competitive
online algorithms. Suppose that an algorithm maintains a primal solution
x and a dual solution y , such that they satisfy the approximate
complementary slackness conditions with parameters α and β. Then the
solution x is immediately (αβ) competitive, since

OPT (P) = ctx∗ ≤ ctx ≤ (αβ)bty ≤ (αβ)bty∗ = (αβ)OPT (D),

where P is the primal, D is the dual, x∗ is an integral optimum for P, and
y∗ is an LP optimum for D.

There is often a very elegant and general way to uitlize the primal dual
framework. We use the primal dual approach to construct a fractional
slolution to a problem. We then use the fractional solution to derive a
randomized (or maybe even deterministiic) algorithm for the (integral)
problem. We will first demonstrate the framework for the online set cover
problem.

13 / 42

The offline and online set cover problem

In the offline and online Set Cover problems, a universe of elements X and
a family S ⊆ 2X of subsets of X are given to an online algorithm in
advance. Moreover, each set S ∈ S is associated with a cost cS ∈ R,
which is also known in advance. We assume that cS ≥ 1 for all S . The
goal is to select sets from the collection S to cover X while minimizing the
total cost.

It is known that the “natural greedy algorithm” achieves an Hn

approximation for the offline set cover problem and it is NP-hard to
achieve an approximation better than Ω(log n) where n = |X |. Using a
stronger complexity assumption it is hard to approximate better than Hn.

In the online set cover problem, a target set X ′ ⊆ X arrives online one
element at a time in an adversarial order. The goal is to select sets from
the collection S to cover X ′ while minimizing the total cost. That is the
goal is to find S ′ ⊆ S such that X ′ ⊆ ⋃S∈S′ S and c(S ′) :=

∑
S∈S′ cS is

as small as possible.

14 / 42

The online set cover problem continued

An online algorithm maintains a solution S ′ that is initially empty. When
an element e ∈ X ′ is revealed if it is already “covered” by one of the sets
in the partial solution S ′ then the online algorithm doesn’t have to do
anything and the next element from X ′ can be revealed. If e is not yet
covered by one of the sets in S ′ then a deterministic (resp. randomized)
algorithm has to pick some new sets S ∈ S ′ to add to S ′ such that e is
now in at least one set partial solution S ′. This way, the algorithm
maintains the invariant that each of the revealed elements is covered by at
least one set from S ′ at all times. We shall denote the size of X by n and
(as stated) the size of S by m.

15 / 42

Primal dual statement for set cover

To state the primal-dual formulation for Online Set Cover, we introduce
primal variables xS for S ∈ S with the intended meaning “xS = 1”
indicating that S is part of the solution, and “xS = 0” indicating that S is
not part of the solution. In the relaxed LP formulation, the variables xS
can take on fractional values. We denote the dual variables by ye for
e ∈ X . The primal and dual LPs are stated below.

Primal Dual

minimize
∑

S∈S
cSxS maximize

∑

e∈X ′
ye

subject to
∑

S∈S:e∈S
xS ≥ 1 e ∈ X ′ subject to

∑

e∈S
ye ≤ cS S ∈ S

xS ∈ [0, 1] S ∈ S ye ≥ 0 e ∈ X ′

16 / 42

The fractional primal dual online set cover problem

The online version of Set Cover translates into the following online version
of the above primal-dual formulation as follows:

Primal online input: constraints
∑

S∈S:e∈S xS ≥ 1 arrive one at a time in
the primal; and

Dual online input: variables ye arriving one at a time in the dual; and

Online decisions: an online algorithm for primal-dual is allowed to update
values of variables xS , ye only in a monotonically increasing
fashion.

17 / 42

A deterministic algorithm for the set cover primal
dual formulation

The primal dual formulation just given will lead to a deterministic
algorithm that computes a fractional set cover solution with a “good”
competitive ratio. Then, as previously foretold, we will be able to
transform the fractional algorithm into an integral randomized algorithm
with a somewhat worse competitive ratio. And finally we will be able to
transform the fractional algorithm into a deterministic online algorithm
maintaining the competitive ratio of the randomized algorithm.

We need some additional notation. Let Fe denote the frequency of
element e among sets in S, i.e., Fe := |{S ∈ S : e ∈ S}|. Let F denote
the maximum frequency among input elements, i.e., F = maxe∈X ′ Fe .
Clearly F ≤ m.

18 / 42

The fractional “water-level” algorithm

All primal variables are initially set to 0
While new elements e ∈ X ′ arrive

A new constraint
∑

S∈S:e∈S xS ≥ 1 for the primal arrives.
A new variable ye for the dual is introduced.
While

∑
S∈S:e∈S xS < 1

For S ∈ S such that e ∈ S
xS ← xS(1 + 1/cS) + 1/(cSFe)

EndFor
ye ← 1

EndWhile
EndWhile

Theorem

The Algorithm produces a feasible primal fractional solution. The
algorithm yields an integral dual solution that can be scaled down by a
factor O(log F) = O(logm) to obtain a feasible dual fractional solution.
This then establishes that the primal fractional is O(log F) = O(logm)
competitive. 19 / 42

Some motivation for the fractional set cover
algorithm

While the framework for the primal dual algorithm is pretty well
prescribed, the creative aspect of the algorithm is in how the primal
variable is being increased. (Here we want to increase the dual to reflect
that the element is covered so lets mainly focus on the primal update.)

This is analogous to the use of priority functions in online algorthms that
we previously considered. There it was the specification of an appropriate
priority function that was the creative step. In hindsight, knowing what a
possible proof might look like, we can possibly see how one can discover
an appropriate priority function.

The same is true here. It is reasonable to want to charge the cost of
covering an element to the sets that cover it. Since in the online problem,
the elements X ′ that need to be covered is unknown and only being
revealed online, it seems reasonable to want to gradually fractionally
charge all the possible Fe sets for an element e (in proportion to the costs
of the sets) and this is what the primal update step is doing.

20 / 42

Motivation for the fractional set cover algorithm
continued

Note that we could also do the while loop in the primal update for an
element in one step by incrementing the sets by some µ determined by the
values cS and the values xS just before e arrives.

Note that while we are updating the Xe covering the current element e, we
are also indirectly amortizing that charge againt possible future elements
just as the charge for the current element was possibly already partially
charged to previous elements.

Then considering how the analysis would proceed (i.e. relating the change
in the primal and the dual after processing an element), we can then hope
to come up with an appropriate way to define the primal update step.

21 / 42

The analysis for the fractional set cover algorithm

The analysis of the above primal-dual algorithm consists of the following
three steps:

1 The primal solution (xS)S∈S is feasible. The inner while loop insures
that the primal constraint is satisfied. Future increases in xS cannot
make the constraint infeasible after it has already been satisfied.

2 Let ∆Pe (∆De) denote the change in the objective of the primal
(dual) after processing constraint (variable) corresponding to the
arrival of element e ∈ X ′. We show that ∆Pe ≤ 2∆De .

3 We need to show that the dual solution (ye)e∈X ′ can violate dual
constraints by a factor of at most O(log F) (per each constraint), i.e.,∑

e∈S ye = O(cS log F) for all S ∈ S.
Observe that as soon as xS reaches 1, the variable ye stops being
updated for e ∈ S . Moreover, each update of xS in the innermost for
loop corresponds to increasing exactly one ye by 1. Thus, the
maximum value

∑
e∈S ye can get is bounded by the number of

updates required to increase xS from 0 to 1. (See text.)

22 / 42

Finishing the analysis for the fractional set cover

From part 3 of the proof above it follows that we can scale the dual
solution ye down by a factor ` = O(log F) = O(logm) and obtain a
fractional solution to the dual that satisfies all the constraints.

Let ŷe = ye/` denote such a fractional solution. Let ∆D̂e denote the
change in the dual according to ŷe when element e is processed by the
online algorithm. It follows that ∆D̂e = ∆De/`.

Thus, we have

OPT ≤ ALG =
∑

e

∆Pe ≤ 2
∑

e

∆De = 2`
∑

e

∆D̂e ≤ 2`OPT ,

where the first inequality follows since primal solution xS is feasible, the
second inequality follows from part (2) above, and the last inequality
follows from the feasibility of the dual solution ŷe .

This completes the analysis

23 / 42

Converting the fractional solution to a randomized
online algorithm for the integral set cover problem

We note that in the offline (integral) set cover problem, there is a greedy
algorithm that achieves approximation Hk ≤ Hn ≤ log n + 1 where
k = max|S |:S∈S . Furthermore under well accepted complexity assumptions,
this is the optimal approximation ratio. It is not suprising then that in
what follows an additional O(log n) factor will arise when we try to
transform the fractional solution to an integral solution.

We can design a randomized online algorithm that with high probability
achieves competitive ratio O(log n logm) for the integral Online Set Cover
problem. Algorithm 24 on the next slide presents the pseudocode.
(Algorithm 23 is the fractional set cover algorithm.) In words, the
algorithm can be described as follows: for each S ∈ S choose 2 ln n
independent random variables ZS ,i , if xS exceeds the minimum of the
corresponding ZS,i then include S in the integral solution.

24 / 42

The randomized online set cover algorithm
138 CHAPTER 8. PRIMAL-DUAL METHOD FOR ONLINE PROBLEMS

Algorithm 24 A randomized algorithm for the Online Set Cover.

procedure RandomizedSetCover
R ; . stores integral solution
for S 2 S do

ZS 1
for i 1 to 2 ln n do

ZS,i an independent random variable distributed uniformly on interval [0, 1].
ZS min(ZS , ZS,i)

Run Algorithm 23 and include S into R as soon as xS exceeds ZS .
return R

Theorem 8.4.2. Algorithm 24 produces an integral solution such that

• the expected competitive ratio is at most O(log n log F) = O(log n log m), and

• the solution is feasible with probability at least 1� 1/n.

Proof. For the first part, we will show that the expected cost is at most O(log n) times the cost
of the fractional solution (xS)S2S . The claim then follows by Theorem 8.4.1. Let AS,i denote
the event that ZS,i  xS , which happens with probability exactly xS . The probability that S is
included in R is the probability that one of the AS,i happens for i 2 [2 ln n], i.e.,

Pr

2 ln n[

i=1

AS,i

!


2 ln nX

i=1

Pr(AS,i) = (2 ln n)xS .

By the linearity of expectation, the expected value of the objective function achieved by Algo-
rithm 24 is then X

S2S
(2 ln n)cSxS ,

which establishes the first part of the theorem.

Next, observe that the probability of a given S being not included in the solution is

Pr

2 ln n\

i=1

AS,i

!
= (1� xS)2 ln n.

The probability that the constraint corresponding to element e 2 X 0, i.e.,
P

S2S:e2S xS , is violated
is the probability that none of the sets from S 2 S : e 2 S are included in the solution. This
probability is

Y

S2S:e2S

(1� xS)2 ln n 
Y

S2S:e2S

exp(�xS(2 ln n)) = exp

�(2 ln n)

X

S2S:e2S

xS

!

 exp(�2 ln n)  1/n2,

where the second inequality follows from the feasibility of the fractional solution xS . Since there
can be at most n di↵erent constraints, the probability that one of them is violated is at most 1/n
by the union bound.

Theorem

The randomized set cover algorithm produces an integral solution such
that

the expected competitive ratio is at most
O(log n log F) = O(log n logm), and

the solution is feasible with probability at least 1− 1/n.

25 / 42

Proof of analysis

The expected cost is at most O(log n) times the cost of the fractional
solution (xS)S∈S . The claim then follows by fractional set cover
competitive bound. Let AS ,i denote the event that ZS,i ≤ xS , which
happens with probability exactly xS . The probability that S is
included in R is the probability that one of the AS ,i happens for

i ∈ [2 ln n], i.e., Pr
(⋃2 ln n

i=1 AS,i

)
≤∑2 ln n

i=1 Pr(AS ,i) = (2 ln n)xS . By

the linearity of expectation, the expected value of the objective
function achieved by the randomized algorithm is

∑
S∈S(2 ln n)cSxS

The probability of a given S being not included in the solution is

Pr
(⋂2 ln n

i=1 AS ,i

)
= (1− xS)2 ln n. The probability that the constraint

corresponding to element e ∈ X ′, i.e.,
∑

S∈S:e∈S xS , is violated is the
probability that none of the sets from S ∈ S : e ∈ S are included in
the solution. This probability is∏

S∈S:e∈S(1− xS)2 ln n ≤∏S∈S:e∈S exp(−xS(2 ln n)) =
exp

(
−(2 ln n)

∑
S∈S:e∈S xS

)
≤ exp(−2 ln n) ≤ 1/n2

26 / 42

Some comments on fractional and randomized
algorithms

The statement of the competitive bound for the fractional solution
(and then for the randomized integral solution) is in terms of
log F ≤ logm. If we are willing to just state the bounds in terms of
m, then the update step in the fractional algorithm can be simplified
to xS ← xS(1 + 1/cS).
The algorithm as stated obtains a good competitive ratio but has a
small probability of not being feasible (ie.. one or more elements may
not be covered). This can happen even though there is only a small
probability that none of the sets we have probabilistically chosen to
cover an element doesn’t actually get chosen. This can likley be
avoided at a small cost in the expected ratio.

What will be done instead is to provide a potential function argument
that will tell us when to include a set leading to a deterministic online
set cover algorithms.

27 / 42

The integral set cover algorithm

In what follows we will indicate how the fractional algorithm can be
directly converted into a deterministic integral algorithm for set cover.
This will be done so as to achieve the same O(log n logm) competitive
ratio and will also insure that the solution obtained will aways be feasible
and will obtain the competitive ratio with certainty.

We employ one familiar idea, namely assume the existence of an algorithm
SETCOVERα that will compute the desired approximation if α ≥ OPT .

SETCOVERα also has to be able to report failure if we have not chosen a
sufficiently large α.

28 / 42

The deterministic SETCOVERα

The subroutine SetCoverα relies on the fractional solution xS produced by
the fractional set cover algorithm. Define xe :=

∑
S∈S:e∈S xS . The

subroutine keeps track of an integral solution R and makes use of the
following potential function:
Φ =

∑
e 6∈∪S∈RS n

2xe + n ·
exp

(
1
2α

(∑
S∈R(cS − 3xScS log n)−∑S 6∈R 3xScS log n

))
. The

pseudocode of the subroutine SetCoverα is as follows:

8.4. PRIMAL-DUAL APPROACH FOR ONLINE SET COVER 139

which establishes the first part of the theorem.

Next, observe that the probability of a given S being not included in the solution is

Pr

2 ln n\

i=1

AS,i

!
= (1� xS)2 ln n.

The probability that the constraint corresponding to element e 2 X 0, i.e.,
P

S2S:e2S xS , is violated
is the probability that none of the sets from S 2 S : e 2 S are included in the solution. This
probability is

Y

S2S:e2S

(1� xS)2 ln n 
Y

S2S:e2S

exp(�xS(2 ln n)) = exp

�(2 ln n)

X

S2S:e2S

xS

!

 exp(�2 ln n)  1/n2,

where the second inequality follows from the feasibility of the fractional solution xS . Since there
can be at most n di↵erent constraints, the probability that one of them is violated is at most 1/n
by the union bound.

Next, we show how to obtain a deterministic algorithm that produces an integral solution to
the Online Set Cover problem and has the same asymptotic competitive ratio as Algorithm 24,
i.e., O(log n log m). The deterministic algorithm relies on a subroutine. Given a number ↵ the
subroutine is called SetCover↵ and it either produces a feasible integral solution for the given
instance of Online Set Cover or the subroutine fails. Moreover, for any ↵ � OPT the subroutine is
guaranteed not to fail.

The subroutine SetCover↵ relies on the fractional solution xS produced by Algorithm 23. Define
xe :=

P
S2S:e2S xS . The subroutine keeps track of an integral solution R and makes use of the

following potential function

� =
X

e 62[S2RS

n2xe + n · exp

0
@ 1

2↵

0
@X

S2R

(cS � 3xScS log n)�
X

S 62R

3xScS log n

1
A
1
A .

The pseudocode of the subroutine SetCover↵ is given in Algorithm 25.

Algorithm 25 A subroutine for the integral Online Set Cover.

procedure SetCover↵
R ;
Run Algorithm 23 and each time xS is updated perform the following:
if S 62 R then

� value of the potential function before increasing xS

�0 value of the potential function after increasing xS

�00 value of the potential function after increasing xS and including S into R
if �00  � then

R R [{S}
if � > max(�0,�00) then

return fail.

The following lemma summarizes the properties of the subroutine SetCover↵.

29 / 42

What needs to be proved about SETCOVERα

The following lemma (so far without proof) summarizes the properties of
the subroutine SetCoverα.

Lemma

During the execution of the Algorithm the following hold:

1 if α ≥ OPT, the algorithm doesn’t fail;

2 if xe > 1 then e is covered by one of the sets in R;

3
∑

S∈R cS = αO(log n logm).

The full algorithm then just proceeds as in the standard doubling strategy;
that is, double α whenever SETCOVERα reports failure.

30 / 42

A nearly matching inapproximation

Finally, we just state (see the text for the proof) that there is a “nearly”
matching inapproximation even for the unweighted problem (i.e., cS = 1
for all sets S . .

Theorem

Let ALG be an online deterministic algorithm for the Unweighted Online
Set Cover problem. Fix δ > 0. Then for values of n and m satisfying
log n ≤ m ≤ e

√
n−δ we havea

ρ(ALG) = Ω

(
logm log n

log log n + log logm

)
.

aWe note that for the exceptional values of m outside of the stated bounds,
there are better competitie ratios that can be obtained.

31 / 42

The makespan problem in the unrelated machine
model.

Recall in this most general machine model, every job Jj is represented by a
vector (p1,j , p2,j , . . . , pm,j) where pi ,j is the load or processing time
incurred if the j th job is scheduled on machine i . The objective is as in
other makespan problems to minimize the maxiumum (over all machines)
load on any machine where the load on a machine is the sum of the loads
of jobs assigned to that machine.

Since makespan for identical machine is NP-hard, it follows that this is
also an NP-hard problem. In fact it is hard to approximate within a factor
3
2 + ε. It is also known that there is an IP/LP rounding algorithm that
solves the problem with a 2-approximation.

Closing this gap has attracted some recent attention but the gap remains.

32 / 42

Setting up the LP and dual

We again want to use the doubling strategy but this time applied to the
dual. That is, if we knew OPT , then we would want schedule all jobs
while insuring that every machine does not exceed load OPT . So we now
ask how many job can be scheduled within some estimate α of OPT . If
α ≥ OPT , then we will insure that all jobs are scheduled. If we learn that
α is not sufficient then we will double α.

We make one more observation so as to simplify the primal and dual LPs.
Namely, if we can schedule all jobs within makespan α, then we can
schedule all “normalized jobs” p̂i ,j = pi ,j/α within makespan 1.

For each job j we define the set of compatible machines, denoted by
M(α, j), as those on which normalized processing time is at most 1. We
are applying the doubling strategy to the dual problem D, a maximization
problem, so in keeping with the framework as stated for minimnization
problems, we take the dual of the dual D to obtain the primal P.

33 / 42

The LPs for the normalized makespan problem

maximize
∑

j∈[n]

∑

i∈M(α,j)

xi ,j

subj. to
∑

i∈M(α,j)

xi ,j ≤ 1 j ∈ [n]

∑

j∈[n]
p̂i ,jxi ,j ≤ 1 i ∈ [m]

xi ,j ≥ 0 i ∈ [m], j ∈ [n]

minimize
∑

j∈[n]
yj +

∑

i∈[m]

zi

subj. to yj + p̂i ,jzi ≥ 1 j ∈ [n], i ∈ M(α, j)

yj , zi ≥ 0 i ∈ [m], j ∈ [n]

34 / 42

A primal dual analysis of the Ranking algorithm for
bipartite matching

Recall that nodes V = {vj} are offline and known in advance, while nodes
U = {ui} appear online one at a time. When node ui arrives, we also learn
its neighbors N(ui) ⊆ V and we must declare which node ui is matched to
or that ui is not matched. We also write Nc(ui) for the “current
neighborhood” of ui , i.e., the set of neighbors of ui that are currently
unmatched.

We previously proved that the Ranking algorithm achieves competitive
ratio 1− 1/e in expectation and that no other algorithm can do better. In
this section, we present an analysis of Ranking (for the unweighted BMM
problem) via a primal-dual approach and then we extend this analysis to
work for the offline vertex-weighted version of bipartite matching where
weights are on vertices in V .

Rather than ranking the offline vertices by a random permutation, we can
equivalently choose random Yi ∈ [0, 1] for each vi ∈ V and prioritize the
{vi} in order of increasing values of Yi .

35 / 42

The fractional LPs for the BMM problem

Once again, we will present the maximization BMM problem as the dual.
We introduce variables xi ,j with the intended meaning “xi ,j = 1” indicates
that ui ∈ U is matched with vj ∈ V . The fractional version of the Online
BMM can be stated as a linear program as follows.

144 CHAPTER 8. PRIMAL-DUAL METHOD FOR ONLINE PROBLEMS

2. If the algorithm doesn’t fail then

3. If the algorithm doesn’t fail then the dual solution violates constraints by at most O(log m).
Actually, the first type of constraints in the dual is not violated at all, since a job is assigned
to one and only one machine. As for the second type of constraints of the dual, let J(↵, i)
denote the set of jobs that are assigned to machine i by the algorithm.

4. If ↵ > OPT then the algorithm doesn’t fail.

8.6 Bipartite Maximum Matching Revisited: Primal-Dual Anal-
ysis

We have previously encountered Online Bipartite Maximum Matching in Section 5.4 of Chapter 5.
Recall that nodes V = {vj} are o✏ine and known in advance, while nodes U = {ui} appear online
one at a time. When node ui arrives, we also learn its neighbors N(ui) ✓ V and we must declare
which node ui is matched to or that ui is not matched at all (indicated by ?). We also write
Nc(ui) for the “current neighborhood” of ui, i.e., the set of neighbors of ui that are unmatched
at the time of consideration. We proved that the Ranking algorithm achieves competitive ratio
1 � 1/e in expectation and that no other algorithm can do better. In this section, we present an
analysis of Ranking via a primal-dual approach and then we extend this analysis to work for the
vertex-weighted version of Online BMM where weights are on vertices in V only.

We introduce variables xi,j with the intended meaning “xi,j = 1” indicates that ui 2 U is
matched with vj 2 V . Fractional version of Online BMM can be stated as a linear program.
Since it is a maximization problem, we state its formulation as a formal dual and the dual of that
formulation as a formal primal:

Primal Dual

minimize
X

ui2U

�i +
X

vj2V

↵j maximize
X

(ui,vj)2E

xi,j

subj. to �i + ↵j � 1 (ui, vj) 2 E subj. to
X

j:(ui,vj)2E

xi,j  1 ui 2 U

�i � 0 ui 2 U
X

i:(ui,vj)2E

xi,j  1 vj 2 V

↵j � 0 vj 2 V xi,j � 0 (ui, vj) 2 E

Recall that Ranking picks a permutation � of V uniformly at random. When ui arrives, it is
matched to the first, according to �, available vertex from Nc(ui) provided that Nc(ui) 6= ;. It is
easy to see that the algorithm can be equivalently restated as follows. Initially, choose uniform and
independent random variables Yj 2 [0, 1] for each vertex vj 2 V . When ui arrives, it is matched to
arg min{Yj | vj 2 Nc(ui)}. Algorithm 29 presents the pseudocode. To aid the primal-dual analysis
of Ranking, we also included explicit updates to the primal as well as dual variables.

Theorem 8.6.1. The primal solution {xi,j} constructed by Algorithm 29 is feasible. The dual
solution {�i, ↵j} constructed by Algorithm 29 is feasible in expectation. The expected competitive
ratio of Ranking is 1� 1/e.

36 / 42

The primnal dual version of the Ranking algorithm
8.6. BIPARTITE MAXIMUM MATCHING REVISITED: PRIMAL-DUAL ANALYSIS 145

Algorithm 29 Ranking as a primal-dual algorithm.

procedure RankingPD
xi,j 0 for (ui, vj) 2 E
�i 0 for ui 2 U
↵j 0 for vj 2 V
M ;
for j 2 V do

Yj uniformly random number in [0, 1]

while new online vertex ui with neighborhood N(ui) arrives do
if Nc(ui) 6= ; then

vj arg min{Yj | vj 2 Nc(ui)}
M M [{(ui, vj)}
xi,j 1
�i (1� exp(Yj � 1))/(1� 1/e)
↵j exp(Yj � 1)/(1� 1/e)

return M

Proof. Observe that the primal solution {xi,j} achieves the value of the objective function
P

(ui,vj)2E xi,j =

|M |. Also, each time xi,j is set to 1, ↵j and �i are set such that ↵j + �i = 1/(1 � 1/e).
Therefore, the value achieved by the dual solution {�i, ↵j} is |M |/(1 � 1/e). Therefore we have
|M |  OPT  |M |/(1 � 1/e), so Algorithm 29 is (1 � 1/e)-competitive provided that primal and
dual solutions are feasible (on average).

It is easy to see that the primal solution is always feasible, since M forms a matching and
indicator variables xi,j encode this matching. It is harder to see that the dual solution is feasible,
partly because it is feasible only in expectation. To that end, we need to establish that for every i
and j it holds that

EY1,...,Yn(�i + ↵j) � 1.

Fix an arbitrary edge {ui, vj} 2 E. Consider

EY1,...,Yn(�i + ↵j) = E
Y1,...,cYj ,...,Yn

⇣
EYj (�i + ↵j | Y1, . . . , bYj , . . . , Yn)

⌘
,

where the hat indicates that the corresponding entry is missing from the vector. We will show that
EYj (�i + ↵j | Y1, . . . , bYj , . . . , Yn) � 1 for any values of Yj0 for j 6= j0. As such, fix values of Yj0 for
j 6= j0. Let V 0 = V \ {vj}. Consider running RankingPD on the instance G0 where the o✏ine side
is V 0 with the fixed values of Yj0 . If RankingPD leaves online node ui unmatched, then set y⇤ = 1,
otherwise set y⇤ to the value of Yj0 for j0 6= j such that vj0 is matched with ui. Let �⇤

i the value of
�i in this run, i.e., �⇤

i = (1� exp(y⇤ � 1))/(1� 1/e). Now return to the run of RankingPD on the
original instance G with o✏ine side V and consider the same values of Yj0 for j0 6= j and random
Yj . We have the following observations:

• If Yj < y⇤ then node vj gets matched. If vj is matched prior to arrival of ui we are done.
Otherwise suppose vj is not yet matched when ui arrives. Then this run is so far identical to
the run on G0. Now, vj has the corresponding value Yj which is smaller than the value y⇤ by
assumption. Therefore vj will be selected in the arg min step to be matched with ui. This
implies that

EYj (↵j | Y1, . . . , bYj , . . . , Yn) �
Z y⇤

0
exp(z � 1)/(1� 1/e)dz. (8.1)

37 / 42

The primal dual analysis of Ranking

Aside: The authors Devanur, Jain and R. Kleinberg say “we provide what
we believe to be the simplest analysis yet of the Ranking algorithm”. Of
course, simplicity is in the eye of the beholder. Or rather, what individuals
are most familiar with. I am not personally convinced that this is a simpler
analysis even assuming that the assignments to βi and αi are what is
needed.

Theorem

The primal solution {xi ,j} constructed by the primal dual Ranking
algorithm is feasible. The dual solution {βi , αj} is feasible in expectation.
The expected competitive ratio of Ranking is 1− 1/e.

It is easy to see that the primal solution is always feasible, since M forms a
matching and indicator variables xi ,j encode this matching. It is harder to
see that the dual solution is feasible in expectation.

38 / 42

The dual is feasible in expectation

We need to establish that for every i and j it holds that
EY1,...,Yn(βi + αj) ≥ 1.
I’ll repeat the proof in the text just to get an indication that this is not a
straightforward proof.

Fix an arbitrary edge {ui , vj} ∈ E . Consider

EY1,...,Yn(βi + αj) = E
Y1,...,Ŷj ,...,Yn

(
EYj

(βi + αj |Y1, . . . , Ŷj , . . . ,Yn)
)
,

where the hat indicates that the corresponding entry is missing from the
vector. We will show that EYj

(βi + αj |Y1, . . . , Ŷj , . . . ,Yn) ≥ 1 for any
values of Yj ′ for j 6= j ′. As such, fix values of Yj ′ for j 6= j ′. Let
V ′ = V \ {vj}. Consider running RankingPD on the instance G ′ where the
offline side is V ′ with the fixed values of Yj ′ . If RankingPD leaves online
node ui unmatched, then set y∗ = 1, otherwise set y∗ to the value of Yj ′

for j ′ 6= j such that vj ′ is matched with ui . Let β∗i the value of βi in this
run, i.e., β∗i = (1− exp(y∗ − 1))/(1− 1/e). Now return to the run of
RankingPD on the original instance G with offline side V and consider the
same values of Yj ′ for j ′ 6= j and random Yj . 39 / 42

The dual is feasible in expectation continued

We have the following observations:

If Yj < y∗ then node vj gets matched. If vj is matched prior to arrival
of ui we are done. Otherwise suppose vj is not yet matched when ui
arrives. Then this run is so far identical to the run on G ′. Now, vj has
the corresponding value Yj which is smaller than the value y∗ by
assumption. Therefore vj will be selected in the argmin step to be
matched with ui . This implies that

EYj
(αj |Y1, . . . , Ŷj , . . . ,Yn) ≥

∫ y∗

0
exp(z − 1)/(1− 1/e)dz . (1)

We have βi ≥ β∗i regardless of the value of Yj . Consider executing
RankingPD on G ′ and G in parallel. Then at any point during the
execution it can be easily seen by induction that the set of unmatched
V vertices contains all unmatched V ′ vertices. Thus, when vertex ui
arrives in the execution of RankingPD on G , its current neighborhood
contains its current neighborhood from the execution of RankingPD
on G ′. Therefore, the Y -value of a node matched with ui can only
decrease compared to the y∗. 40 / 42

The dual is feasible in expectation continued

Since exp(z − 1) is increasing in z , it follows that
(1− exp(z − 1))/(1− 1/e) is decreasing in z . Therefore, the value of
βi cannot decrease. This implies that

EYj
(βi |Y1, . . . , Ŷj , . . . ,Yn) ≥ β∗ = (1− exp(y∗− 1))/(1− 1/e). (2)

Combining Equations (1) and (2) we obtain:

EYj
(βi + αj |Y1, . . . , Ŷj , . . . ,Yn) ≥ 1−exp(y∗−1)

1−1/e +
∫ y∗

0
exp(z−1)
1−1/e dz

= 1−exp(y∗−1)
1−1/e +

(
exp(z−1)
1−1/e

)∣∣∣
y∗

0

= 1−exp(y∗−1)
1−1/e + exp(y∗−1)

1−1/e − 1/e
1−1/e = 1

41 / 42

The extension to the offline vertex weighted casse

Aggarwal et al [2011] extend the 1− 1
e competitive ratio to the case where

each offline vj ∈ V has a weight wj . The goal then is to match the online
verteics so as to maximize the sum of weights of matched offline vertices.

If Nc(ui) are the currently available neighbors in V , then if Nc(ui) 6= ∅,
then we match ui to vj ∈ Nc(ui) where vj = argmax{vj(1− eYi−1)}.
Note that when wj = 1 for all j , this is the ranking algorithm.

In the primal dual formulation, the primal is unchanged and now the dual
is to minimize

∑
αi +

∑
βj subject to αi + βj ≥ wj

The αi , βj variables are now set to be :
βj ← wj(1− exp(Yj − 1))/(1− 1/e)
αi ← wj exp(Yj − 1)/(1− 1/e)

Note: If the online vertices are weighted then we cannot achieve any
competitive ratio that does not depend on these values.

42 / 42

	Week 6

