
CSC2421 Topics in Algorithms: Online and
Other Myopic Algorithms

Fall 2019

Allan Borodin

October 16, 2019

1 / 64

Announcement: Friday 11AM, October 25, MP137

Spyros Angelopolous: “Online Computation with Untrusted Advice”
The advice model of online computation captures the setting in which an
online algorithm is given some partial information concerning the request
sequence. This paradigm allows us to establish tradeoffs between the
amount of this additional information and the performance of the online
algorithm. However, unlike real life in which advice is a recommendation
that we can chose to follow or to ignore based on trustworthiness, in the
current advice model, the online algorithm typically treats it as infallible.
This means that if the advice is corrupt or, worse, if it comes from a
malicious source, the algorithm may perform poorly. In this work, we study
online computation in a setting in which the advice is provided by an
untrusted source. Our objective is to quantify the impact of untrusted
advice so as to design and analyze robust online algorithms that are
resilient and perform well even when the advice is generated in a
malicious, adversarial manner. We show how the new paradigm can be
applied to well-studied online problems such as ski rental, online bidding,
bin packing, and list update.

2 / 64

Todays agenda

A quick summary of graph coloring results. This will appear in the
clides for W4 but I am temporarily incuding them in todays slides
since we were interupted last time by an alarm.

Chapter 6 topics: Max-Sat and Maximizing an unconstrained
non-monotone submodular function

De-randomization by the method of conditional expectations

The randomized 3
4 competitive algorithm for Max-SAT

The Buchbinder et al “two-sided online algorithm” for the maximizing
an unconstrained non-monotone submodular function

The “natural” randomization of some deterministic algorithms.

Wishful thinking: Possibly start discussion of primal based ual online
algorithms.

3 / 64

Online graph coloring

Given a graph G = (V ,E), a function c : V → [k] is called a valid
k-coloring of G if for every edge {u, v} ∈ E we have c(u) 6= c(v). The
value c(v) is called a color of the vertex v . A graph is called k-colorable if
there exists a valid k-coloring.

Trivially, with the exception of the complete graph which requires n colors,
every graph on n = |V | vertices is (n − 1)-colorable. However, many
graphs can be colored with many fewer colors. Constructing a valid
coloring online in the VAM-PH input model is difficult for general graphs.
More precisely, we have the following result:

Theorem

For any deterministic online algorithm ALG for coloring in the VAM-PH
input model, there exists a log n-colorable graph G such that ALG uses at
least 2n/(log n) colors. In other words, we have ρ(ALG) ≥ 2n

log2(n)
.

4 / 64

Coloring k-colorable graphs

The theorem shows that the class of log n-colorable graphs does not admit
online algorithms that are significantly better than the trivial algorithm.
For the case of constant k ≥ 3 colors, the competitive and approximation
ratios remain an open question. Blum and Karger’s (1997) Õ(n3/14)
approximation remains the best known offline approximation for
3-colorable graphs. (Coloring 3-colorable graphs is an NP-hard problem.)

The current state of the art for the online competitive ratio is O(n1−
1
k!)

for coloring k-colorable graphs (and, additionally an improved Õ(n2/3) for
3-coloroable graphs) due to Kierstead (1998).

For the case of k = 2 (i.e., bipartite graphs), tight bounds are known. We
first note that trees are a special case of 2-colorable graphs. The following
result shows that for every deterministic coloring algorithm ALG , there is a
tree T with 2k−1 nodes such ALG uses k colors in coloring T . This will
show that the competitive ratio ρ ≥ log n

2 . A somewhat more involved
argument shows that ρ ≥ log n for which there is a corresponding positive
result.

5 / 64

A lower bound for coloring trees

Theorem

Let ALG be a deterministic online algorithm for Graph Coloring problem
restricted to bipartite graphs in the VAM-PH input model. Then there is a
tree T with n − 1 nodes such ALG uses atv least log n colors when
coloring T . That is, ρ(ALG) ≥ log n

2 .

Proof.

We prove the following statement by induction on k : given an arbitrary
sequence of input items I1, . . . , Im, the adversary can extend the sequence
with disjoint trees T1,T2,T3, . . . such that ALG colors roots of the trees
with k different colors and the combined size of the trees is ≤ 2k − 1. See
text.

6 / 64

First Fit is an optimal coloring algorithm for trees

The natural greedy coloring algorithm is First Fit. That is, for each new
node, color it with the smallest non-conflicting color.

Theorem

For online coloring of trees, First Fit achieves the optimaal (except for the
+1) ρ = log n + 1 competitive ratio.

7 / 64

Coloring bipartite graphs

Since First Fit is an optimal online coloring algorithm for trees, it is
natural to ask how well First Fit performs on the more general class of
bipartite graphs. It is easy to see that First Fit can do very poorly when
coloring some bipartite graphs.

Fact

ρ(FirstFit) ≥ n/4.

Proof.

Let Gn = (U,V ,E) be the 2n node bipartite graph where |U| = |V | = n
and E = {(ui , vj)|i 6= j}. That is Gn is a complete bipartite graph minus
the edges {ui , vi}. The adversary presents the vertices in the following
order: u1, v1, u2, v2, . . . un, vn}. First Fit wll use n colors on this input
sequence compared to the optimal 2 colors.

8 / 64

An optimal online coloring algorithm for bipartite
graphs

While First Fit performs poorly on bipartite graphs, there is an online
algorithm that will color every bipartite graph with n colors. Rather than
greedily coloring each node v , the algorithm just avoids using the same
color in the connected component in which v initially occurs. Here is the
algorithm:
When a vertex v arrives, CBIP computes the connected component Cv (so
far) to which v belongs. Since the entire graph is bipartite, Cv is also
bipartite. CBIP computes a partition of Cv into two blocks: Sv that
contains v and S̃v that does not contain v . In other words, Cv = Sv ∪ S̃v .
Note that neighbors of v are only among S̃v . Let i denote the smallest
color that does not appear in S̃v . CBIP colors v with color i .

Theorem

For coloring bipartite graphs, we have

ρ(CBIP) ≤ log n.
9 / 64

Proving the log n competitive ratio for coloring
bipartite graphs

Let n(i) denote the minimum number of nodes that have to be presented
to CBIP in order to force it to use color i for the first time. We want to
show that n(i) ≥ d2i/2e by induction on i .
Base cases: clearly we have n(1) = 1 and n(2) = 2.

Inductive step: let v be the first vertex that is colored with color i + 1 by
CBIP. Consider Cv ,Sv , and S̃v as defined.In particular, all colors 1, 2, . . . , i
appear among S̃v . Let u be a vertex in S̃v that is colored i . Let Cu,Su, S̃u
be defined for the vertex u at the time that it appeared. Since u was
assigned color i , then all colors 1, 2, . . . , i − 1 appeared in S̃u. Observe
that S̃u ⊆ Sv . Therefore, there exists vertex u1 ∈ S̃v colored i − 1 and
there exists vertex u2 ∈ Sv colored i − 1, as well.
Without loss of generality assume that u1 ≺ u2. At the time that u2 was
colored, the connected component of u2 had to be disjoint from the
connected component of u1, for otherwise u2 would not have been colored
with the same color as u1.

10 / 64

Finishing the proof for online bipartite graph coloring

Thus, we have Cu1 ∩ Cu2 = ∅. Furthermore, we can apply the inductive
assumption to each of Cu1 and Cu2 to get that |Cu1 |, |Cu2 | ≥ d2(i−1)/2e.
Hence the number of vertices that have been presented prior to v is at
least |Cu1 |+ |Cu2 | ≥ 2d2(i−1)/2e ≥ d2(i+1)/2e.

94 CHAPTER 5. GRAPH PROBLEMS

colored with the same color as u1. Thus, we have Cu1 \ Cu2 = ;. Furthermore, we can apply the
inductive assumption to each of Cu1 and Cu2 to get that |Cu1 |, |Cu2 | � d2(i�1)/2e. Thus, the number
of vertices that have been presented prior to v is at least |Cu1 | + |Cu2 | � 2d2(i�1)/2e � d2(i+1)/2e.
See Figure 5.5.

v, col = i + 1u, col = i

u1, col = i� 1 u2, col = i� 1

eSv

Sv

eSucolors 1, . . . , i

colors 1, ..., i� 1

Figure 5.5: Schematic representation of the inductive step in Theorem 5.6.3.

Observe that the bound in Theorem 5.6.2 di↵ers from the bound in Theorem 5.6.3 by a factor
of 2. It turns out that with more work one can strengthen the lower bound of Theorem 5.6.2. Next,
we present this argument.

Theorem 5.6.4. Let ALG be a deterministic online algorithm for Graph Coloring problem re-
stricted to bipartite graphs in the VAM-PH input model. There is an instance on which ALG uses
at least 2 log n� 10 colors. In other words, we have

⇢(ALG) � log n.

Proof. We give an adversarial strategy that forces ALG to use at least 2 log n � 10 colors on
the constructed bipartite graph. At each point in time during the game between the adversary
and ALG, the adversary keeps track of connected components of vertices presented so far. Each
connected component is a bipartite graph. We refer to each block of the bipartition of the component
as a side. For a given connected component C, we call the color ↵ one-sided if ↵ appears only on
one side of the bipartition of C and not the other. The color ↵ is called two-sided if it appears on
both sides of the bipartition of C. Let ts(C) denote the set of two-sided colors in C. For a given
component C, the adversary will also maintain two vertices – one on each side. Each of the two
vertices is colored with a one-sided color. We use sel(C) to denote the set of two colors associated
with these vertices.

In the following description of adversarial strategy, we will use a merge operation on several
components C1, . . . , Ck. The result of this operation is a single connected component C obtained
as follows: for each i 2 [k] associate a side of Ci with a side of C, add a vertex connected to every
vertex on one side of C, add another vertex connected to every vertex on the other side of C.

The strategy of the adversary is divided in stages. In each stage the adversary uses the first
applicable rule from the following list:

11 / 64

What other classes of graphs have small competitive
ratios for coloring? A tour of some graph classes

Since trees are such a constrained class of graphs, there are many
generalizations. One of the most studied generalizations is that of
bounded tree width graphs. Tree width graphs are further generalized by
the class of (degree) d-inductive graphs.

A graph G is called d-inductive (also called d-degenerate) if there is an
ordering of vertices such that every node u has at most d neighbors
appearing after u in the ordering. When a d-inductive graph G is given in
the VAM-PH input model, the order in which the nodes are presented is
adversarial and can be different from an inductive ordering.

12 / 64

Continued tour of some graph classes and their
online coloring

If the nodes of G are presented in the reverse order of an inductive order
then the FirstFit algorithm uses at most d + 1 colors. This implies that
every d-inductive graph is (d + 1)-colorable. We show in the text that
when a d-inductive graph is given in an adversarial VAM-PH model, the
FirstFit algorithm uses at most O(d log n) colors. In particular, this
generalizes the fact that FirstFit achieves competitive ratio log n on trees,
noting that trees are 1-inductive.

Theorem

FirstFit uses at most O(d log n) colors on any d-inductive graph G under
the VAM-PH input model.

13 / 64

Continued tour of graph classes

An interval graph is the graph induced by the intersection of intervals on
the line. Interval graphs are a special case of chordal graphs which in turn
are perfect graphs. There is a characterization of chordal graphs using the
concept of a perfect elimnination ordering. For a graph G , an order
v1, v2, . . . , vn is a prefect elimination order if for all i ,
Nbhd(vi) ∩ {vi + 1, . . . , vn} is a clique. Equivalently
Nbhd(vi)∩ {vi+1, . . . , vn} does not have 2 independent (i.e. non adjacent)
nodes.

For any graph G , we have χ(G) ≥ ω(G) where χ(G) is the chromatic
number of a graph and ω(G) is the clique number of a graph. A perfect
graph G is one that satisfies χ(G) = ω(G).

We can generalize chordal graphs to the class of d-inductively independent
graphs which have a vertex ordering v1, v2, . . . , vn such that
Nbhd(vi) ∩ {vi + 1, . . . , vn} does not have d + 1 independent nodes.

Clearly Every d-indpendent graph is d-inductively independent.
14 / 64

Online coloring of interval graphs

For interval graphs, it is known that First Fit has a constant (but not
optimal) competitive ratio. However, we have the following:

Theorem

For every deterministic online coloring algorithm ALG for interval graphs,
there is an interval graph such that ALG uses 3ω − 2 colours. There is a
deterministic online coloring algorithm ALG ∗ that colors every interval
graph G using at most 3ω(G)− 2 colors. Therefore, ρ(ALG ∗) = 3.

Albers and Schraink (2017) provide randomized online coloring lower
bounds for many graphs classes including trees, chordal graphs, and
d-inductive graphs. The tree lower bound also implies that planar and
bipartite graphs also have an Ω(log n) lower bound on the randomized
competitive ratio.

15 / 64

Sketch of the interval coloring algorithm

The algorithm might be called online recursive greedy
For a sequence of initial nodes in the interval graph, the congestion
number (i.e., clique number) is the maximum number of edge
intersections. For each clique number k , we can recursively define an
algorithm RECGk :

The base case trivially colors all nodes witn color 1.

Induction step assuming RECGk has been defined. Consider the sequence
σ = v1, . . . vi which we assume has clique number at most k + 1. Let
A = {vj1 , . . . , vjr } be a minimal set of nodes (i.e., intervals) such that
σ′ = σ \ A can be colored with k colors.
If σ′vi+1 has cliques number k , then color vi+1 using RECGk . Otherwise
use color k + 1 for vi+1.

16 / 64

The online interval coloring algorithm

The online algorithm uses RECGk until clique number k + 1 is created by
some new vertex vi and then we start using RECGk+1.

The proof of the 3ω − 2 competitive ratio relies on showing that Avi can
be colored using only 3 new colors.

The ends our discussion of Chapter 5.

Chapter 6 concerns two perhaps seemingly unrelated problems:

1 Maximizing a non-monotone submodular function (without any
constraints)

2 Max-Sat

17 / 64

Max-Sat

Max-Sat is a natural optimization problem relating to the original
NP-complete problem SAT. It is arguably the most studiend constraint
satisfaction problem.

In SAT (or more descriptive CNF-SAT), we are given a formula in CNF
form; that is F = C1 ∧ C2 . . . ∧ Cm where each Cj is a clause, which is a
disjunction of literals, where a literal is a propositional variable xi or its
negation x̄i . For example: C = x1 ∨ x̄2 ∨ x3. The objective is to decide
whether or not the input formul F is satisfiable.

In Max-Sat, we are again given a CNF formula F , and we want to obtain a
truth assignment τ so as to maximize the number of clauses satisfied by τ .
If the clauses are weighted then we want to obtain a truth assignment so
as to maximize the total weight of satisfied clauses.

18 / 64

Online Max-Sat

In the online version of this problem, input items are

(variable names xi , and information about clauses where xi appears).

Depending on what information about clauses is available in the input
item, we distinguish 4 different input models numbered 0 to 3.

(Input model 0): For each xi only the names of the clauses in which
xi occurs positively and those in which it appears negatively.

(Input model 1): Input model 0 plus the lengths of those clauses.

(Input model 2): Input model 0 plus the names of the other variables
occurring in each of those clauses but not their signs.

(Input model 3): A complete description of each of the clauses in
which xi occurs.

Clearly, Input model 3 is the most general input representation and input
model 0 is effectively a minimal representation. In the weighted version of
the problem, we also learn the weight of each clause where xi appears.

19 / 64

Max-k-Sat and Exact Max-k-Sat

Consider the exact Max-k-Sat problem where we are given a CNF
propositional formula in which every clause has exactly k literals. We
consider the weighted case in which clauses have weights. The goal is
to find a satisfying assignment that maximizes the size (or weight) of
clauses that are satisfied.

As already noted, since exact Max-k-Sat generalizes the exact k- SAT
decision problem, it is clearly an NP hard problem for k ≥ 3. It is
interesting to note that while 2-SAT is polynomial time computable,
Max-2-Sat is still NP hard.

The naive randomized (online) algorithm for Max-k-Sat is to
randomly set each variable to true or false with equal probability.
Note: This is an online algorithm. We can think of each propositional
variable arriving online and then setting its value randomily.

20 / 64

Analysis of naive Max-k-Sat algorithm continued

Since the expectation of a sum is the sum of the expectations, we just
have to consider the probability that a clause is satisfied to determine
the expected weight of a clause.

Since each clause Ci has k variables, the probability that a random
assignment of the literals in Ci will set the clause to be satisfied is
exactly 2k−1

2k
. Hence E [weight of satisfied clauses] = 2k−1

2k

∑
i wi

Of course, this probability only improves if some clauses have more
than k literals. It is the small clauses that are the limiting factor in
this analysis.

This is not only an approxination ratio but moreover a “totality ratio”
in that the algorithms expected value is a factor 2k−1

2k
of the sum of

all clause weights whether satisfied or not.

We can hope that when measuring against an optimal solution (and
not the sum of all clause weights), small clauses might not be as
problematic as they are in the above analysis of the naive algorithm.

21 / 64

Derandomizing the naive algorithm

We can derandomize the naive algorithm by what is called the method of
conditional expectations. Let F [x1, . . . , xn] be an exact k CNF formula
over n propositional variables {xi}. For notational simplicity let true = 1
and false = 0 and let w(F)|τ denote the weighted sum of satisfied clauses
given truth assignment τ .

Let xj be any variable. We express E[w(F)|xi∈u{0,1}] as
E[w(F)|xi∈u{0,1}|xj = 1] · (1/2) + E[w(F)|xi∈u{0,1}|xj = 0] · (1/2)
This implies that one of the choices for xj will yield an expectation at
least as large as the overall expectation.
It is easy to determine how to set xj since we can calculate the
expectation clause by clause.
We can continue to do this for each variable and thus obtain a
deterministic solution whose weight is at least the overall expected
value of the naive randomized algorithm.
NOTE: The derandomization can be done so as to achieve an online
algorithm. Here the (online) input items are the propostional
variables. What input representation is needed/sufficient?

22 / 64

(Exact) Max-k-Sat

For exact Max-2-Sat (resp. exact Max-3-Sat), the approximation
(and totality) ratio is 3

4 (resp. 7
8).

For k ≥ 3, using PCPs (probabilistically checkable proofs), Hastad

proves that it is NP-hard to improve upon the 2k−1
2k

approximation
ratio for Max-k-Sat.

For Max-2-Sat, the 3
4 ratio can be improved by the use of

semi-definite programming (SDP) and randomized rounding.

The analysis for exact Max-k-Sat clearly needed the fact that all
clauses have at least k clauses. What bound does the naive online
randomized algorithm or its derandomztion obtain for (not exact)
Max-2-Sat or arbitrary Max-Sat (when there can be unit clauses)?
The analysis only guarantees a 1

2 approximation

23 / 64

Johnson’s Max-Sat Algorithm

Johnson’s [1974] algorithm

For all clauses Ci , w
′
i := wi/(2|Ci |)

Let L be the set of clauses in formula F and X the set of variables
For x ∈ X (or until L empty)

Let P = {Ci ∈ L such that x occurs positively}
Let N = {Cj ∈ L such that x occurs negatively}
If
∑

Ci∈P w ′i ≥
∑

Cj∈N w ′j
x := true; L := L \ P
For all Cr ∈ N, w ′r := 2w ′r End For

Else
x := false; L := L \ N
For all Cr ∈ P, w ′r := 2w ′r End For

End If
Delete x from X

End For

Aside: This reminds me of boosting (Freund and Shapire [1997])
24 / 64

Johnson’s algorithm is the derandomized algorithm

Twenty years after Johnson’s algorithm, Yannakakis [1994] presented
the naive algorithm and showed that Johnson’s algorithm is the
derandomized naive algorithm.

Yannakakis also observed that for arbitrary Max-Sat, the
approximation of Johnson’s algorithm is at best 2

3 . For example,
consider the 2-CNF F = (x ∨ ȳ) ∧ (x̄ ∨ y) ∧ ȳ when variable x is first
set to true. Otherwise use F = (x ∨ ȳ) ∧ (x̄ ∨ y) ∧ y .

Chen, Friesen, Zheng [1999] showed that Johnson’s algorithm
achieves approximation ratio 2

3 for arbitrary weighted Max-Sat.

For arbitrary Max-Sat (resp. Max-2-Sat), the current best
approximation ratio is .7968 (resp. .9401) using semi-definite
programming and randomized rounding.
Note: While existing combinatorial algorithms do not come close to
these best known ratios, it is still interesting to understand simple and
even online algorithms for Max-Sat.

25 / 64

Improving on Johnson’s algorithm

In proving the (2/3) approximation ratio for Johnson’s Max-Sat
algorithm, Chen et al asked whether or not the ratio could be
improved by using a random ordering of the propositional variables.
The question asked by Chen et al was answered by Costello, Shapira
and Tetali [2011] who showed that in the ROM model, Johnson’s
algorithm achieves approximation (2/3 + ε) for ε ≈ .003653
Poloczek and Schnitger [same SODA 2011 conference] show that the
approximation ratio for Johnson’s algorithm in the ROM model is at
most 2

√
15–7 ≈ .746 < 3/4 , noting that 3

4 is an offline
approxaimtion ratio first obtained by Yannakakis’ IP/LP algorithm.
Poloczek and Schnitger first consider a “canonical randomization” of
Johnson’s algorithm; namely, the canonical randomization sets a

variable xi = true with probability
w ′
i (P)

w ′
i (P)+w ′

i (N) where w ′i (P) (resp.

w ′i (N)) is the current combined weight of clauses in which xi occurs
positively (resp. negatively). Their substantial additional idea is to
adjust the random setting so as to better account for the weight of
unit clauses in which a variable occurs. 26 / 64

A few comments on the Poloczek and Schnitger
algorithm

The Poloczek and Schnitger algorithm is called Slack and has
approximation ratio = 3/4.

The Slack algorithm is a randomized online algorithm (i.e. adversary
chooses the ordering) where the variables are represented within input
Model 1.

This approximation ratio is in contrast to Azar et al [2011] who prove
that no randomized online algorithm can achieve approximation
better than 2/3 when the input model is input model 0.

Finally (in this regard), Poloczek [2011] shows that no deterministic
priority algorithm can achieve a 3/4 approximation within input
model 2. This provides a sense in which to claim that the Poloczek
and Schnitger Slack algorithm “cannot be derandomized”.

The best deterministic priority algorithm in the third (most powerful)
model remains an open problem as does the best randomized priority
algorithm and the best ROM algorithm.

27 / 64

Revisiting the “cannot be derandomized comment”

Spoiler alert: we will be discussing how algorithms that cannot be
derandomized in one sense can be deramdomized in another sense.

The Buchbinder et al [2012] online randomized 1/2 approximation
algorithm for Unconstrained Submodular Maximization (USM) cannot
be derandomized into a “similar” deterministic algorithm by a result
of Huang and Borodin [2014].

However, Buchbinder and Feldman [2016] show how to derandomize
the Buchbinder et al algorithm into an algorithm that generates 2n
parallel streams where each stream is an online algorithn.

The Buchbinder et al USM algorithm is the basis for a randomized
3/4 approximation online MaxSat (even Submodular Max Sat)
algorithm.

Pena and Borodin show how to derandomize this 3/4 approximation
algorithm following the approach of Buchbinder and Feldman.

28 / 64

A two pass de-randomization for Max-Sat

Poloczek et al [2017] de-randomize a Max-Sat algorithm using a
2-pass online algorithm.

More specifically, using ideas from Buchbinder and Feldman [2015], it
can be shown how to derandomize an algorithm equivalent to the
Buchbinder et al Max Sat algorithm into a “polynomial width online
algorithm” that essentially adaptively generates the randomization
tree in such a way that it limits the support of the distribution.

This 2-pass algorithm is interesting theoretically as it is a
deterministic combinatiorial 3

4 -approximation algorithm that works
well “in practice”. See experimental paper by Polozek and Williamson
[2017]. It is online in the sense that the algorithm processses the
propositional variables in the same adversarial order in both passes.

29 / 64

A randomized online 3
4 competitive ratio for Max-Sat

The following algorithm turns out to be equivalent (when restricted to
weighted Max-Sat rather than the submodular Max-Sat) to the
Buchbinder et al algorithm that was derived from their unconstrained
(non-monotone) submodular maximization algorithm. This algorithm was
independently given by van Zuylen. The equivalence with Buchbinder et al
and the de-randomization to a two pass algorithm appears in a paper by
Poloczek, Schnitger, Williamson and van Zuylen [2017].

The idea of the algorithm is that in setting the variables, we want to
balance the weight of clauses satisfied with that of the weight of clauses
that are no longer satisfiable.

Let Si be the assignment to the first i variables and let SATi (resp.
UNSATi) be the weight of satisfied clauses (resp., clauses no longer
satisfiable) with respect to Si . Let Bi = 1

2(SATi + W − UNSATi) where
W is the total weight of all clauses.

The algorithm’s plan is to randomly set variable xi so as to increase
E[Bi − Bi−1].

30 / 64

A randomized online 3
4 competitive ratio for Max-Sat

The following algorithm turns out to be equivalent (when restricted to
weighted Max-Sat rather than the submodular Max-Sat) to the
Buchbinder et al algorithm that was derived from their unconstrained
(non-monotone) submodular maximization algorithm. This algorithm was
independently given by van Zuylen. The equivalence with Buchbinder et al
and the de-randomization to a two pass algorithm appears in a paper by
Poloczek, Schnitger, Williamson and van Zuylen [2017].

The idea of the algorithm is that in setting the variables, we want to
balance the weight of clauses satisfied with that of the weight of clauses
that are no longer satisfiable.

Let Si be the assignment to the first i variables and let SATi (resp.
UNSATi) be the weight of satisfied clauses (resp., clauses no longer
satisfiable) with respect to Si . Let Bi = 1

2(SATi + W − UNSATi) where
W is the total weight of all clauses.

The algorithm’s plan is to randomly set variable xi so as to increase
E[Bi − Bi−1]. 30 / 64

The randomized max-sat approximation algorithm
continued

Let ti (resp. fi) be the value of Bi − Bi−1 when xi is set to true (resp.
false).

For i = 1 . . . n
If fi ≤ 0, then set xi = true
Else if ti ≤ 0,

then set xi = false
Else set xi true (resp. false) with probability ti

ti+fi
(resp. fi

ti+fi
).

End For

Note that this is an online algorithm since SATi ,UNSATi can be
computed online and hence so can Bi , ti and fi .

31 / 64

The analysis of the 3
4 competitive ratio

Consider an optimal solution (even an LP optimal) x∗ and let OPTi be the
assignment in which the first i variables are as in Si and the remiaing n− i
variables are set as in x∗. (Note: x∗ is not calculated.)

We need to show the following main lemma:

E[w(OPTi−1)− w(OPTi)] ≤ E[w(Bi)− w(Bi−1)]

We will first show how the competitive ratio follows from the main lemma
above.

We will then proceed to prove the main lemma with the help of some
additional lemmas.

32 / 64

Proof of competitive ratio using the main lemma

We first note that the initial assignment is S0 = OPT0 = OPTLP and
Sn = OPTn is the final assignment of the algorithm.
Furthermore, W =

∑
j wj , w(B0) = 1

2W , and w(Bn) = w(Sn) is the
weight of the clauses satisfied by the assignment of the online algorithm.

The proof establishes something stronger than stated. Namely,

E[w(Sn)] ≥ 2w(OPTLP) + W

4
≥ 3

4
w(OPTLP) ≥ 3

4
w(OPT)

33 / 64

Proof of the stronger statement

Summing the inequalities provided by the main lemma, we have

n∑

i=1

E[w(OPTi−1)− w(OPTi)] ≤
n∑

i=1

E[Bi − Bi−1]

This then implies (by linearity of expectations) and telescoping that

E[w(OPT0)]− w(OPTn)] ≤ E[Bn]− E[B0]

Restated:

w(OPTLP)− E[w(Sn)] ≤ E[w(Sn)]− 1

2
W

Rearranging and dividing by 2::

1

2
(OPTLP) +

1

4
W ≤ E[w(Sn)]

Which (since OPTLP ≤W) implies the desired result:

3

4
w(OPT) ≤ 3

4
w(OPTLP) ≤ 1

2
(OPTLP) +

1

4
W ≤ E[w(Sn)]

34 / 64

The supporting lemmas needed for the main lemma

We need to establish the following lemmas

Lemma 1: fi + ti ≥ 0. Note that this lemma insures that the weight of the
partial solution cannot decrease in any iteration.

Lemma 2: If fi + ti > 0, then
E[w(OPTi−1 − w(OPTi)] ≤ max{0, 2fi ti

fi+ti
}

Supporting Lemma 2 allows us to prove the main by considering two cases:

Case 1: fi ≤ 0 or ti ≤ 0 in which case xi is set deterministically so that
E[Bi] = E[Bi−1]. The lemma follows since it assumed fi + ti > 0 and
hence we must have fi ti ≤ 0.

Case 2: fi > 0 and ti > 0 so that fi ti > 0 and fi + ti > 0.
By definition
E[Bi − Bi−1] = fi

fi+ti
E[Bi (false)− Bi−1] + ti

fi+ti
E[Bi (true)− Bi−1]

=
f 2i +t2i
fi+ti

≥ 2fi ti
fi+ti

since f 2i − 2fi ti + t2i = (fi − ti)
2 ≥ 0

≥ E[w(OPTi−1 − w(OPTi)] by the supporting lemma.
35 / 64

Proof of supporting lemma 1

SATi (true/false) = weight of clauses satisfied by the partial
assignment Si−1 and setting xi = true/false.

UNSATi (true/false) are defined analogously for the weight of
unsatisfiable clauses by the partial assignment Si−1 and setting
xi = true/false.

Therefore
Bi (true/false) = 1

2(SATi (true/false) + (W − UNSATi (true/false))) and
ti = Bi (true)− Bi−1 and fi = Bi (false)− Bi−1.
Observe that if a clause becomes unsatisfied for the first time by setting xi
to be true then that clause becomes satisfied by setting xi to false (and
vice versa). This implies:

UNSATi (true/false)− UNSATi−1 ≤ SATi (false/true)− SATi−1.
Therefore, 1

2(SATi (true)− SATi−1) + 1
2(SATi (false)− SATi) ≥

1
2(UNSATi (false)− UNSATi−1) + 1

2(UNSATi (true)− UNSATi−1). With

some rearranging of this inequality we get the desired ti + fi ≥ 0
36 / 64

Proof of supporting lemma 2

We need to bound the change in w(OPTi) when the algorithm replaces x∗i
by xi = true. (An analogous argument can be made when when the
algorithm replaces x∗i by xi = false.) Equivalently, lets consider
w(OPTi−1)−w(OPTi) when we reverse setting xi = true = 1 back to x∗i .
Any clause Cj that contributes positively to w(OPTi−1)− w(OPTi) must
be a clause in which x̄i occurs and the increase due to such a clause Cj is
bounded by (1− x∗i) times the weight of Cj . That is, the total possible
increase is bounded by (1− x∗i) · [w(SATi (false))− w(SATi−1)]. On the

other hand, any clause Cj containing xi will cause a decrease of exactly
(i − x∗i) times the weight of Cj . That is, the total decrease is
(1− x∗i) · [w(UNSATi (false))−w(UNSATi−1)]. Hence the total change in

w(OPTi−1 − w(OPTi) is at most
(1− x∗i) · [(w(SATi (false))− w(Sati−1)− w(UNSATi (false))−
w(UNSATi−1)] = (1− x∗i) · 2fi .

37 / 64

Finishing the proof of supporting lemma 2

By the same type of reasoning, when setting of xi = false, we obtain
w(OPTi−1)− w(OPTi) ≤ x∗i · 2ti .
So to conclude the supporting lemma, we just need to recall how the
algorithm is probabilistically setting xi = true (resp. false) with probability
ti

ti+fi
(resp. with probability fi

ti+fi
. We then obtain the desired bound

E[w(OPTi−1)−w(OPTi)] ≤ ti
ti + fi

·(1−x∗i) ·2fi +
fi

ti + fi
·x∗i ·2ti =

2fi ti
ti + fi

.
This concludes all the required proofs and hence the proof that the
randomized mMax-Sat algorithm has competitive ratio at least 3

4 .

38 / 64

A matching 3
4 inapproximation result for Max-Sat

We recall input model 1 for Max-Sat where each input item is a
propositional variable represented by the clauses it appears positively and
negatively, and input model 2 which in addition provides the names (but
not the signs) of the variables appearing in those clauses.

We claimed that input model 1 was sufficient to implement the
randomized Max-Sat algorithm as an online algorithm. Now we claim that
even with respect to input model 2, for any ε > 0, no randomized online
algorithm can achieve competitive ratio 3

4 + ε.

The inapproximation will apply to exact Max-2-Sat. The idea is to
constuct a set of 2-clauses and a random distribution on the order of
variable arrivals so that no deterministic algorithm can obtain better than
the 3

4 ratio Iin expectation over the input distribution) and then appeal to
the Yao principle to infer the randomized result.

39 / 64

The idea behind the inapproximation

The adversary will present variables x1, . . . , xn, where each xi appears in
two clauses of length 2 and where the remaining variable is y : in one xi
appears positively and in the other negatively. In fact, the two clauses will
either represent an equivalence to y (given by xi ∨ y , xi ∨ y) or an
inequivalence to y (given by xi ∨ y , xi ∨ y), but the algorithm does not
know which is the case(by the limitation of input model 2). If an
assignment does not satisfy the (in)equivalence correctly, it will get only
one of the two clauses (ie 1/2 of the total).

It remains to create a random distribution of instances where the xi appear
first and then yj valiables so that with high probability, any deterministic
sertting of the xi variables will be between n/2− εn and n/2 + εn in
setting the variables of the (in)equivalence correctly.

It is an interesting question as to whether or not the 3
4 ratio can be beaten

using the most general input model 3 which completely reveals all the
clauses in which a variable appears.

40 / 64

A related problem: the unconstrained maximnization
of a (non-monotone) submodular set function.

A set function f : 2U → < is submodular if
f (S) + f (T) ≥ f (S ∪ T) + f (S ∩ T) for all S ,T ⊆ U.

Equivalently, f is submodular if it satisfies decreasing marginal gains;
that is,
f (S ∪{x})− f (S) ≥ f (T ∪{x})− f (T) for all S ⊆ T ⊆ U and x ∈ U

We will always assume that f is normalized in that f (∅) = 0 and
non-negative.

Submodular functions arise naturally in many applications and has
been a topic of much recent activity.

Probably the most frequent application of (and papers about)
submodular functions is when the function is also monotone
(non-decreasing) in that f (S) ≤ f (T) for S ⊆ T .

Note that linear functions (also called modular) functions are a
special case of monotone submodular functions.

41 / 64

Submodular maximization continued

In the submodular maximization problem, we want to compute S so as to
maximize f (S).

For monotone functions, we are maximizing f (S) subject to some
constraint (otherwise just choose S = U).

For the non monotone case, the problem is already interesting in the
unconstrained case. Perhaps the most prominent example of such a
problem is Max-Cut (and Max-Di-Cut).

Max-Cut is an NP-hard problem. Using an SDP approach just as we
will see for the Max-2-Sat problem yields the approximation ratio
α = 2

π min{0≤θ≤π}
θ

(1−cos(θ) ≈ .87856. Assuming UGC, this is optimal.

For a submodular function, we may be given an explicit representation
(when a succinct representation is possible as in Max-Cut) or we
access the function by an oracle such as the value oracle which given
S , outputs the value f (S) and such an oracle call is considered to
have O(1) cost. Other oracles are possible (e.g. given S , output the
element x of U that maximizes f (S ∪ {x})− f (S)).

42 / 64

Unconstrained (non monotone) submodular
maximization

Feige, Mirrokni and Vondrak [2007] began the study of approximation
algorithms for the unconstrained non monotone submodular
maximization (USM) problem establishing several results:

1 Choosing S uniformly at random provides a 1/4 approximation.
2 An oblivious local search algorithm results in a 1/3 approximation.
3 A non-oblivious local search algorithm results in a 2/5 approximation.
4 Any algorithm using only value oracle calls, must use an exponential

number of calls to achieve an approximation (1/2 + ε) for any ε > 0.

The Feige et al paper was followed up by improved local search
algorithms by Gharan and Vondrak [2011] and Feldman et al [2012]
yielding (respectively) approximation ratios of .41 and .42.

The (1/2 + ε) inapproximation was augmented by Dobzinski and
Vondrak showing the same bound for an explicitly given instance
under the assumption that RP 6= NP.

43 / 64

The Buchbinder et al (1/3) and (1/2)
approximations for USM

In the FOCS [2012] conference, Buchbinder et al gave an elegant linear
time deterministic 1/3 approximation and then extend that to a
randomized 1/2 approximization. The conceptually simple form of the
algorithm is (to me) as interesting as the optimality (subject to the proven
inapproximation results) of the result. Let U = u1, . . . un be the elements
of U in any order.

The deterministic 1/3 approximation for USM

X0 := ∅;Y0 := U
For i := 1 . . . n
ai := f (Xi−1 ∪ {ui})− f (Xi−1); bi := f (Yi−1 \ {ui})− f (Yi−1)
If ai ≥ bi

then Xi := Xi−1 ∪ {ui};Yi := Yi−1
else Xi := Xi−1;Yi := Yi−1 \ {ui}

End If
End For

44 / 64

The randomized 1/2 approximation for USM

Buchbinder et al show that the “natural randomization” of the
previous deterministic algorithm achieves approximation ratio 1/2.
That is, the algorithm chooses to either add {ui} to Xi−1 with

probability
a′i

a′i+b′i
or to delete {ui} from Yi−1 with probability

b′i
a′i+b′i

where a′i = max{ai , 0} and b′i = max{bi , 0}.
If ai = bi = 0 then add {ui} to Xi−1.
Note: Part of the proof for both the deterministic and randomized
algorithms is the fact that ai + bi ≥ 0.
This fact leads to the main lemma for the deterministic case:

f (OPTi−1 − f (OPTi) ≤ [f (Xi − f (Xi−1] + [f (Yi)− f (Yi−1]

Here OPTi = (OPT ∪ {Xi}) ∩ Yi so that OPTi coincides with Xi and
Yi for elements 1, . . . i and coincides with OPT on elements
i + 1, . . . , n. Note that OPT0 = OPT and OPTn = Xn = Yn. That
is, the loss in OPT s value is bounded by the total value increase in
the algorithm’s solutions.

45 / 64

Applying the algorithmic idea to Max-Sat

Buchbinder et al are able to adapt their randomized algorithm to the
Max-Sat problem (and even to the Submodular Max-Sat problem). So
assume we have a monotone normalized submodular function f (or just a
linear function as in the usual Max-Sat). The adaption to Submodular
Max-Sat is as follows:

Let φ : X → {0} ∪ {1} ∪∅ be a standard partial truth assignment.
That is, each variable is assigned exactly one of two truth values or
not assigned.
Let C be the set of clauses in formula Ψ. Then the goal is to
maximize f (C(φ)) where C(φ) is the sat of formulas satisfied by φ.
An extended assignment is a function φ′ : X → 2{0,1}. That is, each
variable can be given one, two or no values. (Equivalently
φ′ ⊆ X × {0, 1} is a relation.) A clause can then be satisfied if it
contains a positive literal (resp. negative literal) and the
corresponding variable has value {1} or {0, 1} (resp. has value {0} or
{0, 1}.
g(φ′) = f (C(φ′)) is a monotone normalized submodular function. ‘

46 / 64

Buchbinder et al Submodular Max-Sat

Now starting with X0 = X ×∅ and Y0 = Y × {0, 1}, each variable is
considered and set to either 0 or to 1 (i.e. a standard assignment of
precisely one truth value) depending on the marginals as in USM problem.

Algorithm 3: RandomizedSSAT(f, Ψ)

1 X0 ← ∅, Y0 ← N × {0, 1}.
2 for i = 1 to n do
3 ai,0 ← g(Xi−1 ∪ {ui, 0})− g(Xi−1).
4 ai,1 ← g(Xi−1 ∪ {ui, 1})− g(Xi−1).
5 bi,0 ← g(Yi−1 \ {ui, 0})− g(Yi−1).
6 bi,1 ← g(Yi−1 \ {ui, 1})− g(Yi−1).
7 si,0 ← max{ai,0 + bi,1, 0}.
8 si,1 ← max{ai,1 + bi,0, 0}.
9 with probability si,0/(si,0 + si,1)

* do:
Xi ← Xi−1 ∪ {ui, 0}, Yi ← Yi−1 \ {ui, 1}.

10 else (with the compliment probability
si,1/(si,0 + si,1)) do:

11 Xi ← Xi−1 ∪ {ui, 1}, Yi ← Yi−1 \ {ui, 0}.

12 return Xn (or equivalently Yn).
* If si,0 = si,1 = 0, we assume si,0/(si,0 + si,1) = 1.

Theorem IV.2. Algorithm 3 has a linear time implementa-
tion for instances of Max-SAT.

B. A (3/4)-Approximation for Submodular Welfare with 2
Players

The input for the Submodular Welfare problem consists
of a ground set N of n elements and k players, each
equipped with a normalized monotone submodular utility
function fi : 2N → R+. The goal is to divide the elements
among the players while maximizing the social welfare. For-
mally, the objective is to partition N into N1, N2, . . . ,Nk

while maximizing
∑k

i=1 fi(Ni).
We give below two different short proofs of Theorem I.4

via reductions to SSAT and USM, respectively. The second
proof is due to Vondrák [37].

Proof of Theorem I.4: We provide here two proofs.
Proof (1): Given an instance of SW with 2 players,

construct an instance of SSAT as follows:
1) The set of variables is N .
2) The CNF formula Ψ consists of 2|N | singleton

clauses; one for every possible literal.
3) The objective function f : 2C → R+ is defined as

following. Let P ⊆ C be the set of clauses of Ψ
consisting of positive literals. Then, f(C) = f1(C ∩
P) + f2(C ∩ (C \ P)).

Every assignment φ to this instance of SSAT corresponds
to a solution of SW using the following rule: N1 = {u ∈
N|φ(u) = 0} and N2 = {u ∈ N|φ(u) = 1}. One can
easily observe that this correspondence is reversible, and
that each assignment has the same value as the solution
it corresponds to. Hence, the above reduction preserves
approximation ratios.

Moreover, queries of f can be answered in constant time
using the following technique. We track for every subset

C ⊆ C in the algorithm the subsets C ∩P and C ∩ (C \ P).
For Algorithm 3 this can be done without effecting its
running time. Then, whenever the value of f(C) is queried,
answering it simply requires making two oracle queries:
f1(C ∩ P) and f2(C ∩ (C \ P)).

Proof (2): In any feasible solution to SW with two
players, the set N1 uniquely determines the set N2 = N −
N1. Hence, the value of the solution as a function of N1 is
given by g(N1) = f1(N1) + f2(N −N1). Thus, SW with
two players can be restated as the problem of maximizing
the function g over the subsets of N .

Observe that the function g is a submodular function, but
unlike f1 and f2, it is possibly non-monotone. Moreover,
we can answer queries to the function g using only two
oracle queries to f1 and f2

3. Thus, we obtain an instance
of USM. We apply Algorithm 2 to this instance. Using
the analysis of Algorithm 2 as is, provides only a (1/2)-
approximation for our problem. However, by noticing that
g(∅) + g(N) ≥ f1(N) + f2(N) ≥ g(OPT), the claimed
(3/4)-approximation is obtained.

REFERENCES

[1] A. A. Ageev and M. I. Sviridenko. An 0.828 approximation
algorithm for the uncapacitated facility location problem. Dis-
crete Appl. Math., 93:149–156, July 1999.

[2] Shabbir Ahmed and Alper Atamtürk. Maximizing a class
of submodular utility functions. Mathematical Programming,
128:149–169, 2011.

[3] Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan
Vondrák. Maximizing a monotone submodular function subject
to a matroid constraint. To appear in SIAM Journal on
Computing.

[4] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Depen-
dent randomized rounding via exchange properties of combi-
natorial structures. In FOCS, pages 575–584, 2010.

[5] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submod-
ular function maximization via the multilinear relaxation and
contention resolution schemes. In STOC, pages 783–792, 2011.

[6] V. P. Cherenin. Solving some combinaotiral problems of op-
timal planning by the method of successive calculations. Pro-
ceedings of the Conference on Experiences and Perspectives
on the Applications of Mathematical Methods and Electronic
Computers in Planning, Mimeograph, Novosibirsk, 1962 (in
Russian).

[7] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. Location of
bank accounts to optimize float: an analytic study of exact and
approximate algorithms. Management Sciences, 23:789–810,
1977.

3For every algorithm, assuming a representation of sets allowing addition
and removal of only a single element at a time, one can maintain the
complement sets of all sets maintained by the algorithm without changing
the running time. Hence, we need not worry about the calculation of N −
N1.

655

47 / 64

The primal dual framework

We will temp;orarily skip ovefr chapter 7 and move on to chapter 8. In
Chapter 8, we describe a framework for designing and analyzing online
algorithms based on linear programming (LP) duality. The design and
analysis of algorithms based on the primal-dual correspondence is a
fundamental idea that goes well beyond online algorithms.

We begin by recalling some basic definitions from the theory of linear
programming in the offline setting. Then we describe how linear
programming can be stated in the online setting. The key idea is for the
algorithm to maintain two online solutions: one to the primal formulation
and another to the dual formulation. The goal of the algorithm is to
minimize the gap between the objectives achieved by each of the two
online solutions. The competitive ratio can be readily derived from the gap
by using approximate complementary slackness. This is called the
primal-dual approach.

48 / 64

Linear programming

Although linear programs can arise naturally for some problems, our main
interest will be with respect to linear programs as a relaxation of integer
programs.

For example, perhaps the simplest wys to derive an offline approximation
for the weighted vertex cover problem. Let the input be a graph
G = (V ,E) with a weight function w : V → <≥0. To simplify notation let
the vertices be {1, 2,n}. Then we want to solve the following “natural
IP representation” of the problem:

Minimize w · x
subject to xi + xj ≥ 1 for every edge (vi , vj) ∈ E
xj ∈ {0, 1} for all j .

The intended meaning is that xj = 1 iff vertex vj is in the chosen cover.
The constraint forces every edge to be covered by at least one vertex.

Solving an IP is an NP-hard problem. Instead we relax the integral
xj ∈ {0, 1} constraints and instead allow fractional solutions xj ∈ [0, 1].
Here the rounding is quite obvious: round LP solution x∗j to x̄j iff
x∗j ≥ 1/2.

49 / 64

The integrality gap

For LP relaxations of an IP we can define the integrality gap (for a
minimization problem) as maxI IP−OPT

LP−OPT ; that is, we take the worst
case ratio over all input instances I of the IP optimum to the LP
optimum. (For maximization problems we take the inverse ratio.)

Note that the integrality gap refers to a particular IP/LP relaxation.

The same concept of the integrality gap can be applied to other
relaxations such as in semi definite programming (SDP).

It should be clear that the simple IP/LP rounding we just used for the
vertex cover problem shows that the integrality gap for the previously
given IP/LP formulation is at most 2.

By considering the complete graph Kn on n nodes, it is also easy to
see that this integrality gap is at least n−1

n/2 = 2− 1
n .

50 / 64

Linear programming continued

A linear program is a maximization or minimization problem with a linear
objective function subject to linear non-strict inequality constraints. We
will first consider minimization problems. Every linear program has an
equivalent formulation in the standard form which is the following program
P for a minimization problem:

minimize
n∑

i=1

cixi

subj. to
n∑

j=1

aijxj ≥ bi i ∈ [m]

xi ≥ 0 i ∈ [n]

In the above linear program we have n variables x1, . . . , xn and m
constraints involving aij and bi constants, as well as n nonnegativity
constraints xi ≥ 0.

minimize ctx

subj. to Ax ≥ b

x ≥ 0

51 / 64

Linear programming continued

We can write down the above program in matrix form as follows:

minimize ctx

subj. to Ax ≥ b

x ≥ 0

In the above, A = (aij) is the matrix of coefficients, x = (x1, . . . , xn),
b = (b1, . . . , bm) and c = (c1, . . . , cn) are vectors1 of variables, right-hand
side constant terms, and coefficients of the objective function, respectively.
For two vectors v and u of the same dimension, the notation v ≥ u is
interpreted component-wise, i.e., vi ≥ ui for all i .

1All vectors are column vectors unless stated otherwise. Note that we represent
contents of all vectors as row vectors inside text for typographical reasons.

52 / 64

And more linear programming

Any vector x ∈ Rn satisfying the constraints of a given LP, i.e., Ax ≥ b, is
called feasible. A feasible vector x∗ that optimizes the value of the
objective is called an optimal solution, or simply, an optimum.

A linear program might not admit any feasible vectors: a simple example is
when there are clearly contradictory constraints such as x1 − x2 ≥ 1,
x2 − x1 ≥ 1, and x1, x2 ≥ 0. An LP that does not admit any feasible
vectors is called infeasible.

When a linear program does have feasible vectors it can be either
bounded, i.e., has a finite optimum, or unbounded, i.e., has an infinite
optimum. A simple example of an unbounded LP is to minimize −x1
subject to x1 ≥ 0. We shall denote the value of an optimal solution of a
linear program P by OPT (P).

53 / 64

Duality

One way of proving lower bounds on the value of OPT (P) is to take
non-negative combinations of constraints of P. Let Ai denote the i th row
of matrix A. Then the i th constraint of P is Aix ≥ bi . Consider
multiplying constraint i by yi ≥ 0 and adding up all the resulting
inequalities. Then you get

∑m
i=1 yiAix ≥

∑m
i=1 biyi . In matrix form we

can write it as (Aty)tx ≥ bty . If we choose y so that (Aty) ≤ c then we
get ctx ≥ (Aty)tx ≥ bty . Thus, such a choice of y demonstrates a lower
bound bty on the value of P for any feasible x . What is the best possible
lower bound that can be derived this way? This is given by another linear
program, the dual program D:

maximize bty

subj. to Aty ≤ c

y ≥ 0

54 / 64

Relating the primal and the dual

The original linear program P is referred to as primal, and (as we just said)
the derived linear program D is referred to as dual. We have just derived
the basic fact about the relationship between the primal and the dual:

Theorem (Weak Duality for a Minimization Problem)

OPT (D) ≤ OPT (P).

We also state the stronger version of this theorem without proof. The
proof of the following Strong Duality Theorem relies on more advanced
machinery from polytope theory and can be found in any standard text on
linear programming.

Theorem (Strong Duality)

If the primal P is feasible and bounded then so is its dual D and,
moreover, we have

OPT (D) = OPT (P).

55 / 64

Approximate complementary slackness

Using linear programming formulations, one of the main tools for proving
offline approximation ratios and online competitive ratios is the following
approximate complementary slackness theorem.

Theorem (Approximate Complementary Slackness)

Suppose that x is a feasible solution to the primal P and y is a feasible
solution to the dual D. If there exist α, β > 1 such that

if xi > 0 then (ci/α) ≤ (At)iy ≤ ci ; and

if yi > 0 then bi ≤ Aix ≤ βbi
then ctx ≤ (αβ)bty .

56 / 64

Proof of complememtary slackness theorem

Proof.

The proof is rather straightforward:

ctx =
∑

i :xi>0

cixi ≤
∑

i :xi>0

(α(At)iy)xi

=
∑

i :xi>0

α
∑

j :yj>0

Ajiyjxi =
∑

j :yj>0

(αyj)Ajx

≤
∑

j :yj>0

(αyj)(βbj) = (αβ)bty .

57 / 64

Applying approximate complementary slackness

Approximate complementary slackness can be used to design competitive
online algorithms. Suppose that an algorithm maintains a primal solution
x and a dual solution y , such that they satisfy the approximate
complementary slackness conditions with parameters α and β. Then the
solution x is immediately (αβ) competitive, since

OPT (P) = ctx∗ ≤ ctx ≤ (αβ)bty ≤ (αβ)bty∗ = (αβ)OPT (D),

where P is the primal, D is the dual, x∗ is an integral optimum for P, and
y∗ is an LP optimum for D.

There is often a very elegant and general way to uitlize the primal dual
framework. We use the primal dual approach to construct a fractional
slolution to a problem. We then use the fractional solution to derive a
randomized algorithm for the (integral) problem. Finally, we try to
de-randomize the algorithm. We will first demonstrate the framework for
the online set cover problem.

58 / 64

The offline and online set cover problem

In the offline Set Cover problem, a universe of elements X and a family
S ⊆ 2X of subsets of X are given to an online algorithm in advance.
Moreover, each set S ∈ S is associated with a cost cS ∈ R, which is also
known in advance. We assume that cS ≥ 1 for all S . The goal is to select
sets from the collection S to cover X while minimizing the total cost.

It is known that the “natural greedy algorithm” achieves an Hn

approximation for the offline set cover problem and it is NP-hard to
achieve an approximation better than Ω(log n) where n = |X |. Using a
stronger complexity assumption it is hard to approximate better than Hn.

In the online set cover problem, a target set X ′ ⊆ X arrives online one
element at a time in an adversarial order. The goal is to select sets from
the collection S to cover X ′ while minimizing the total cost. That is the
goal is to find S ′ ⊆ S such that X ′ ⊆ ⋃

S∈S′ S and c(S ′) :=
∑

S∈S′ cS is
as small as possible.

59 / 64

The online set cover problem continued

An online algorithm maintains a solution S ′ that is initially empty. When
an element e ∈ X ′ is revealed if it is already “covered” by one of the sets
in the partial solution S ′ then the online algorithm doesn’t have to do
anything and the next element from X ′ can be revealed. If e is not yet
covered by one of the sets in S ′ then the algorithm has to pick a new set
S ∈ S ′ such that e ∈ S and add that set S to the partial solution S ′. This
way, the algorithm maintains the invariant that each of the revealed
elements is covered by at least one set from S ′ at all times. We shall
denote the size of X by n and (as stated) the size of S by m.

60 / 64

Primal dual statement for set cover

To state the primal-dual formulation for Online Set Cover, we introduce
primal variables xS for S ∈ S with the intended meaning “xS = 1”
indicating that S is part of the solution, and “xS = 0” indicating that S is
not part of the solution. In the relaxed LP formulation, the variables xS
can take on fractional values. We denote the dual variables by ye for
e ∈ X . The primal and dual LPs are stated below.

Primal Dual

minimize
∑

S∈S
cSxS maximize

∑

e∈X ′

ye

subject to
∑

S∈S:e∈S
xS ≥ 1 e ∈ X ′ subject to

∑

e∈S
ye ≤ cS S ∈ S

xS ∈ [0, 1] S ∈ S ye ≥ 0 e ∈ X ′

61 / 64

The fractional primal dual set cover as an online
problem

The online version of Set Cover translates into the following online version
of the above primal-dual formulation as follows:

Primal online input: constraints
∑

S∈S:e∈S xS ≥ 1 arrive one at a time in
the primal; and

Dual online input: variables ye arriving one at a time in the dual; and

Online decisions: an online algorithm for primal-dual is allowed to update
values of variables xS , ye only in a monotonically increasing
fashion.

62 / 64

A deterministic algorithm for the set cover primal
dual formulation

The primal dual formulation just given will lead to a deterministic
algorithm that computes a fractional set cover solution with a “good”
competitive ratia. Then, as previously foretold, we will be able to
transform the fractional algorithm into an integral randomized algorithm
with a somewhat worse competitive ratio. And finally we will be able to
de-randomize the algorithm maintaining the competitive ratio of the
randomized algorithm.

We need some additional notation. Let Fe denote the frequency of
element e among sets in S, i.e., Fe := |{S ∈ S : e ∈ S}|. Let F denote
the maximum frequency among input elements, i.e., F = maxe∈X ′ Fe .
Clearly F ≤ m.

63 / 64

The fractional algorithm

All primal variables are initially set to 0
While new elements e ∈ X ′ arrive

A new constraint
∑

S∈S:e∈S xS ≥ 1 for the primal arrives.
A new variable ye for the dual is introduced.
While

∑
S∈S:e∈S xS < 1

For S ∈ S such that e ∈ S
xS ← xS(1 + 1/cS) + 1/(cSFe)

EndFor
ye ← ye + 1

EndWhile
EndWhile

Theorem

The Algorithm above produces a feasible primal fractional solution. The
algorithm yields an integral dual solution that can be scaled down by a
factor O(log F) = O(logm) to obtain a feasible dual fractional solution.
This then establishes that the primal fractional is O(log F) = O(logm)
competitive. 64 / 64

	Week 5

